Econ 204 Summer 2009

Problem Set 2 Solutions

1. Boundary, Exterior and Closure

Find the boundary, exterior, and closure of the following sets:
(a) $\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}+y^{2}>1\right\}$
(b) $\left\{(x, y) \in \mathbf{R}^{2} \mid x-y=3\right\}$

Solution:
(a) Boundary $\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}+y^{2}=1\right\}$. Exterior $\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}+y^{2}<1\right\}$. Closure $\left\{(x, y) \in \mathbf{R}^{2} \mid x^{2}+y^{2} \geq 1\right\}$.
(b) Boundary $\left\{(x, y) \in \mathbf{R}^{2} \mid x-y=3\right\}$. Exterior $\left\{(x, y) \in \mathbf{R}^{2} \mid x-y \neq 3\right\}$. Closure $\left\{(x, y) \in \mathbf{R}^{2} \mid x-y=3\right\}$.

2. Closed Set

Show that $E=\left\{x \in \mathbf{R}^{1}:|x-a| \leq 2\right\}$ is a closed set where a is a real number.
Solution:
We prove that E^{c} is open. Then E is closed by the definition. Consider $x \in E^{c}$, where $E^{c}=$ $\left\{x \in \mathbf{R}^{1}:|x-a|>2\right\}$. There are only two cases, $x>a+2$ and $x<a-2$. If $x>a+2$, then there exists $\varepsilon=\frac{x-a-2}{2}>0$ such that $x-\varepsilon=\frac{x+a+2}{2}>a+2$ and $x+\varepsilon>x>a+2$. So $B_{\varepsilon}(x) \subseteq E^{c}$. If $x<a-2$, then there exists $\varepsilon=\frac{a-2-x}{2}>0$ such that $x+\varepsilon=\frac{a-2+x}{2}<a-2$ and $x-\varepsilon<x<a-2$. So $B_{\varepsilon}(x) \subseteq E^{c}$. Hence $\forall x \in E^{c}$, there exists ε such that $B_{\varepsilon}(x) \subseteq E^{c} \Rightarrow E^{c}$ is open. So E is closed.

3. Intersection of Closed Sets

Suppose $\left\{A_{k}\right\}$ is a sequence of non-empty closed sets on \mathbf{R}^{n} such that $A_{1} \supset A_{2} \supset A_{3} \ldots \supset A_{k} \supset$... Show that if A_{m} is bounded for some m, then $\cap_{k=1}^{\infty} A_{k} \neq \varnothing$.
Solution:
Choose any $x_{k} \in A_{k}, k=1,2, \ldots$,
Since A_{m} is bounded, $\left\{x_{k}\right\}$ is bounded. By Bolzano-Weierstrass theorem, there exists x_{0} and a subsequence $\left\{x_{k_{i}}\right\}$ of $\left\{x_{k}\right\}$ such that $\left\{x_{k_{i}}\right\} \rightarrow x_{0}$. For every k, if $k_{i}>k, x_{k_{i}} \in A_{k_{i}} \subset A_{k}$. Hence $x_{0}=\lim _{i \rightarrow \infty} x_{k_{i}} \in A_{k}$. Since A_{k} is closed, $x_{0} \in \cap_{k=1}^{\infty} A_{k}$.

4. Uniform Continuity in Euclidean Metric Space

$\left(\mathbf{R}^{n}, d\right)$ is the n-dimentional Euclidean metric space. Suppose $E \subset \mathbf{R}^{n}$ is a nonempty set. Define $d(x, E)=\inf \{d(x, y): y \in E\}$
(a) Show that E is a closed set if and only if for any $x \in \mathbf{R}^{n}$, there exists $y \in E$, such that $d(x, y)=d(x, E)$.
(b) Define function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{+}$as $f(x)=d(x, E)$. Show that $f(x)$ is uniformly continuous.

Solution:
(a) \Rightarrow : Suppose E is a closed set. Given $x \in R^{n}$, since $d(x, E)=\inf _{y \in E} d(x, y), d(x, E)+\frac{1}{n}$ is not a lower bound for $\{d(x, y): y \in E\}$. Therefore we can find $y_{n} \in E$ such that $d\left(x, y_{n}\right)<d(x, E)+\frac{1}{n}$ and $d\left(x, y_{n}\right) \geq d(x, E)$. Hence $\lim _{n \rightarrow \infty} d\left(x, y_{n}\right)=d(x, E)$. So $\left\{y_{n}\right\}$ is bounded and by Bolzano-Weierstrass theorem there exists a subsequence $\left\{y_{n_{i}}\right\} \rightarrow y$. $y \in E$ as E is closed. So there exists $y \in E d(x, y)=\lim _{i \rightarrow \infty} d\left(x, y_{n_{i}}\right)=d(x, E)$.
\Leftarrow : Consider a convergent sequence $\left\{x_{n}\right\} \subset E, \lim _{n \rightarrow \infty} x_{n}=x_{0}$. There exists $y \in E$ such that $d\left(x_{0}, y\right)=d\left(x_{0}, E\right)$. Since x_{0} is a cluster point of $E, d\left(x_{0}, E\right)=0$, so $x_{0}=y \in E$. Therefore $x_{0} \in E, E$ is a closed set.
(b) Suppose $x, y \in R^{n}$. Given any $\theta>0$, there exists $z \in E$, such that $d(x, z)<d(x, E)+\theta$. Hence $f(y)=d(y, E) \leq d(y, z) \leq d(y, x)+d(x, z)<d(x, y)+d(x, E)+\theta=d(x, y)+f(x)+\theta$. Since θ is arbitrary, $f(y)-f(x) \leq d(x, y)$. Similarly we can get $f(x)-f(y) \leq d(x, y)$. Hence $|f(y)-f(x)| \leq d(x, y)$. So $\forall \varepsilon>0$ there exists $\delta(\varepsilon)=\varepsilon$ such that $\forall y \in R^{n}$ $d(x, y)<\delta(\varepsilon)=\varepsilon \Rightarrow \rho(x, y)=|f(y)-f(x)| \leq d(x, y)<\varepsilon$, which shows that $f(x)$ is uniformly continuous.

5. Continuous Function in Euclidean Metric Space

$\left(\mathbf{R}^{n}, d\right)$ is the n-dimentional Euclidean metric space. $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{1}$ is a function. Show that f is countinuous if and only if for every $c \in \mathbf{R}^{1}, A_{c}$ and B_{c} are closed sets where $A_{c}=$ $\left\{x \in \mathbf{R}^{n}: f(x) \geq c\right\}$ and $B_{c}=\left\{x \in \mathbf{R}^{n}: f(x) \leq c\right\}$.

Solution:

\Rightarrow : Consider a convergent sequence $\left\{x_{n}\right\} \subset A_{c}, \lim _{n \rightarrow \infty} x_{n}=x_{0}$. Since $f\left(x_{n}\right) \geq c$ and $f(x)$ is continuous, $f\left(x_{0}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right) \geq c$. So $x_{0} \in A_{c}, A_{c}$ is a closed set. Similarly we can show that B_{c} is closed.
\Leftarrow : If $f(x)$ is not continuous at x_{0}, then there exists $\varepsilon_{0}>0$ and $\left\{x_{n}\right\} \rightarrow x_{0}$ such that $f\left(x_{n}\right) \geq f\left(x_{0}\right)+\varepsilon_{0}$ or $f\left(x_{n}\right) \leq f\left(x_{0}\right)-\varepsilon_{0}$. If $f\left(x_{k}\right) \geq f\left(x_{0}\right)+\varepsilon_{0}$, let $c=f\left(x_{0}\right)+\epsilon_{0}$, then $\left\{x_{n}\right\} \subset A_{c}, x_{0} \notin A_{c}$, contradiction with that A_{c} is closed. If $f\left(x_{n}\right) \leq f\left(x_{0}\right)-\varepsilon_{0}$, let $c=f\left(x_{0}\right)-\epsilon_{0}$, then contradition with that B_{c} is closed.

6. Lipschitz Equivalent

Theorem 10.8 on page 107 of de la Fuente says that all norms on \mathbf{R}^{n} are Lipschitz-equivalent to the Euclidean norm. The Theorem is correct, but is the proof correct?
(a) Suppose ॥•॥: $\left(\mathbf{R}^{n}, d\right) \rightarrow\left(\mathbf{R}_{+}, \rho\right)$ is a norm on $\mathbf{R}^{n} . d$ is the metric generated by the norm, $d(x, y)=\|x-y\| . \rho$ is the Euclidean metric. Show that $\|\cdot\|$ is a continuous function. (Hint: Use the triangle inequality.)
(b) Now consider the Euclidean norm $\|\cdot\|_{E}: \mathbf{R}^{n} \rightarrow \mathbf{R}_{+}$. The unit circle on \mathbf{R}^{n} is defined as $C=\left\{x \in \mathbf{R}^{n}:\|x\|_{E}=1\right\}$. Show that C is compact. (Hint: Show that C is closed and bounded.)
(c) Can we use the result of part a and the extreme-value theorem to prove that that ॥ . ॥ attains a minimum and a maximum in the set C definded in part b?

Solution:
(a) By $d(\cdot, \cdot) \geq 0$ and triangle inequality we have $\forall x, y, z \in \mathbf{R}^{n}, d(x, z) \leq d(x, y)+d(z, y)$ $\Rightarrow d(x, y) \geq d(x, z)-d(z, y)$ and $d(z, y) \leq d(x, z)+d(x, y) \Rightarrow d(x, y) \geq d(z, y)-d(x, z)$. Hence $d(x, y) \geq|d(x, z)-d(z, y)|$.
Suppose ॥ $\cdot \|$ is a norm in a \mathbf{R}^{n}. Then ॥ $x-y ॥$ is a valid metric on \mathbf{R}^{n}. Take any pair $x, x_{0} \in \mathbf{R}^{n}$. We have
$\left|॥ x-0 ॥-॥ x_{0}-0\|\leq\| x-x_{0}\left\|\Rightarrow \mid ॥ x \Perp-॥ x_{0}\right\| \leq\left\|x-x_{0}\right\|\right.$. For any $\varepsilon>0$, let $\delta=\frac{\varepsilon}{2}$. If $\left\|x-x_{0}\right\|<\delta$, then $\|x\|-\left\|x_{0}\right\| \leq \delta=\frac{\varepsilon}{2}<\varepsilon$. Therefore $\|\cdot\|$ is a continuous function.
(b) For any convergent sequence $\left\{x_{n}\right\} \in C,\left\{x_{n}\right\} \rightarrow x$, suppose $\|x\|_{E}>1$, then by continuity of $\|\cdot\|_{E}$, there exists $m \in N$ such that $\left\|x_{n}\right\|_{E}>1$ for all $n>m$ which is contradiction with that $\left\{x_{n}\right\} \in C$. Similarly we can show that $\|x\|_{E}<1$ is contradiction with $\left\{x_{n}\right\} \in C$. Hence $\|x\|_{E}=1, x \in C$. So C is closed. C is bounded by definition. Therefore C is compact.
(c) No. What the extreme value theorem tells us is that

Let C be a compact set in a metric space (X, d) and $f:(C, d) \rightarrow \mathbf{E}^{1}$ a continuous function. Then f attains both its maximum and its minimum in the set. The compact set C and the continuous function f should be with the same metric.
In part a we show that $\|\cdot\|$ is a continuous function in metric space $\left(\mathbf{R}^{n}, d\right)$. The metric d is generated by a norm which is not Euclidean. In part b we show that C is a compact set in
the Euclidean metric space. As d is not Euclidean metric, we can not use the extreme-value theorem.

