Econ 204 Summer 2009 Problem Set 2 Solutions

1. Boundary, Exterior and Closure

Find the boundary, exterior, and closure of the following sets:

- (a) $\{(x,y) \in \mathbf{R}^2 | x^2 + y^2 > 1\}$
- (b) $\{(x,y) \in \mathbf{R}^2 | x y = 3\}$

Solution:

- (a) Boundary $\{(x, y) \in \mathbf{R}^2 | x^2 + y^2 = 1\}$. Exterior $\{(x, y) \in \mathbf{R}^2 | x^2 + y^2 < 1\}$. Closure $\{(x, y) \in \mathbf{R}^2 | x^2 + y^2 \ge 1\}$.
- (b) Boundary $\{(x, y) \in \mathbb{R}^2 | x y = 3\}$. Exterior $\{(x, y) \in \mathbb{R}^2 | x y \neq 3\}$. Closure $\{(x, y) \in \mathbb{R}^2 | x y = 3\}$.

2. Closed Set

Show that $E = \{x \in \mathbf{R}^1 : |x - a| \le 2\}$ is a closed set where a is a real number.

Solution:

We prove that E^c is open. Then E is closed by the definition. Consider $x \in E^c$, where $E^c = \{x \in \mathbf{R}^1 : | x - a | > 2\}$. There are only two cases, x > a + 2 and x < a - 2. If x > a + 2, then there exists $\varepsilon = \frac{x-a-2}{2} > 0$ such that $x - \varepsilon = \frac{x+a+2}{2} > a + 2$ and $x + \varepsilon > x > a + 2$. So $B_{\varepsilon}(x) \subseteq E^c$. If x < a - 2, then there exists $\varepsilon = \frac{a-2-x}{2} > 0$ such that $x + \varepsilon = \frac{a-2+x}{2} < a - 2$ and $x + \varepsilon > x > a + 2$. So $B_{\varepsilon}(x) \subseteq E^c$. If x < a - 2, then there exists $\varepsilon = \frac{a-2-x}{2} > 0$ such that $x + \varepsilon = \frac{a-2+x}{2} < a - 2$ and $x - \varepsilon < x < a - 2$. So $B_{\varepsilon}(x) \subseteq E^c$. Hence $\forall x \in E^c$, there exists ε such that $B_{\varepsilon}(x) \subseteq E^c \Rightarrow E^c$ is open. So E is closed.

3. Intersection of Closed Sets

Suppose $\{A_k\}$ is a sequence of non-empty closed sets on \mathbb{R}^n such that $A_1 \supset A_2 \supset A_3 ... \supset A_k \supset$...Show that if A_m is bounded for some m, then $\bigcap_{k=1}^{\infty} A_k \neq \emptyset$.

Solution:

Choose any $x_k \in A_k, k = 1, 2, ...,$

Since A_m is bounded, $\{x_k\}$ is bounded. By Bolzano-Weierstrass theorem, there exists x_0 and a subsequence $\{x_{k_i}\}$ of $\{x_k\}$ such that $\{x_{k_i}\} \to x_0$. For every k, if $k_i > k$, $x_{k_i} \in A_{k_i} \subset A_k$. Hence $x_0 = \lim_{k \to \infty} x_{k_i} \in A_k$. Since A_k is closed, $x_0 \in \bigcap_{k=1}^{\infty} A_k$.

4. Uniform Continuity in Euclidean Metric Space

Therefore $x_0 \in E$, E is a closed set.

 (\mathbf{R}^n, d) is the n-dimensional Euclidean metric space. Suppose $E \subset \mathbf{R}^n$ is a nonempty set. Define $d(x, E) = \inf \{d(x, y) : y \in E\}$

- (a) Show that E is a closed set if and only if for any $x \in \mathbb{R}^n$, there exists $y \in E$, such that d(x, y) = d(x, E).
- (b) Define function $f: \mathbf{R}^n \to \mathbf{R}^+$ as f(x) = d(x, E). Show that f(x) is uniformly continuous.

Solution:

(a) \Rightarrow : Suppose *E* is a closed set. Given $x \in \mathbb{R}^n$, since $d(x, E) = \inf_{y \in E} d(x, y)$, $d(x, E) + \frac{1}{n}$ is not a lower bound for $\{d(x, y) : y \in E\}$. Therefore we can find $y_n \in E$ such that $d(x, y_n) < d(x, E) + \frac{1}{n}$ and $d(x, y_n) \ge d(x, E)$. Hence $\lim_{n \to \infty} d(x, y_n) = d(x, E)$. So $\{y_n\}$ is bounded and by Bolzano-Weierstrass theorem there exists a subsequence $\{y_{n_i}\} \to y$. $y \in E$ as *E* is closed. So there exists $y \in E d(x, y) = \lim_{i \to \infty} d(x, y_{n_i}) = d(x, E)$. \Leftarrow : Consider a convergent sequence $\{x_n\} \subset E$, $\lim_{n \to \infty} x_n = x_0$. There exists $y \in E$ such that $d(x_0, y) = d(x_0, E)$. Since x_0 is a cluster point of *E*, $d(x_0, E) = 0$, so $x_0 = y \in E$. (b) Suppose $x, y \in \mathbb{R}^n$. Given any $\theta > 0$, there exists $z \in E$, such that $d(x, z) < d(x, E) + \theta$. Hence $f(y) = d(y, E) \le d(y, z) \le d(y, x) + d(x, z) < d(x, y) + d(x, E) + \theta = d(x, y) + f(x) + \theta$. Since θ is arbitrary, $f(y) - f(x) \le d(x, y)$. Similarly we can get $f(x) - f(y) \le d(x, y)$. Hence $| f(y) - f(x) | \le d(x, y)$. So $\forall \varepsilon > 0$ there exists $\delta(\varepsilon) = \varepsilon$ such that $\forall y \in \mathbb{R}^n$ $d(x, y) < \delta(\varepsilon) = \varepsilon \Rightarrow \rho(x, y) = | f(y) - f(x) | \le d(x, y) < \varepsilon$, which shows that f(x) is uniformly continuous.

5. Continuous Function in Euclidean Metric Space

 (\mathbf{R}^n, d) is the n-dimensional Euclidean metric space. $f : \mathbf{R}^n \to \mathbf{R}^1$ is a function. Show that f is countinuous if and only if for every $c \in \mathbf{R}^1$, A_c and B_c are closed sets where $A_c = \{x \in \mathbf{R}^n : f(x) \ge c\}$ and $B_c = \{x \in \mathbf{R}^n : f(x) \le c\}$.

Solution:

⇒: Consider a convergent sequence $\{x_n\} \subset A_c$, $\lim_{n\to\infty} x_n = x_0$. Since $f(x_n) \ge c$ and f(x) is continuous, $f(x_0) = \lim_{n\to\infty} f(x_n) \ge c$. So $x_0 \in A_c$, A_c is a closed set. Similarly we can show that B_c is closed.

 \Leftarrow : If f(x) is not continuous at x_0 , then there exists $\varepsilon_0 > 0$ and $\{x_n\} \to x_0$ such that $f(x_n) \ge f(x_0) + \varepsilon_0$ or $f(x_n) \le f(x_0) - \varepsilon_0$. If $f(x_k) \ge f(x_0) + \varepsilon_0$, let $c = f(x_0) + \epsilon_0$, then $\{x_n\} \subset A_c, x_0 \notin A_c$, contradiction with that A_c is closed. If $f(x_n) \le f(x_0) - \varepsilon_0$, let $c = f(x_0) - \epsilon_0$, then contradiction with that B_c is closed.

6. Lipschitz Equivalent

Theorem 10.8 on page 107 of de la Fuente says that all norms on \mathbb{R}^n are Lipschitz-equivalent to the Euclidean norm. The Theorem is correct, but is the proof correct?

- (a) Suppose $\|\cdot\|$: $(\mathbf{R}^n, d) \to (\mathbf{R}_+, \rho)$ is a norm on \mathbf{R}^n . d is the metric generated by the norm, $d(x, y) = \|x - y\|$. ρ is the Euclidean metric. Show that $\|\cdot\|$ is a continuous function. (Hint: Use the triangle inequality.)
- (b) Now consider the Euclidean norm $\|\cdot\|_E \colon \mathbf{R}^n \to \mathbf{R}_+$. The unit circle on \mathbf{R}^n is defined as $C = \{x \in \mathbf{R}^n : \|x\|_E = 1\}$. Show that C is compact. (Hint: Show that C is closed and bounded.)
- (c) Can we use the result of part a and the extreme-value theorem to prove that that $\|\cdot\|$ attains a minimum and a maximum in the set C definded in part b?

Solution:

(a) By $d(\cdot, \cdot) \ge 0$ and triangle inequality we have $\forall x, y, z \in \mathbf{R}^n$, $d(x, z) \le d(x, y) + d(z, y)$ $\Rightarrow d(x, y) \ge d(x, z) - d(z, y)$ and $d(z, y) \le d(x, z) + d(x, y) \Rightarrow d(x, y) \ge d(z, y) - d(x, z)$. Hence $d(x, y) \ge |d(x, z) - d(z, y)|$. Suppose $\|\cdot\|$ is a norm in a \mathbf{R}^n . Then $\|x - y\|$ is a valid metric on \mathbf{R}^n . Take any pair $x, x_0 \in \mathbf{R}^n$. We have

 $\begin{aligned} &||x - 0|| - ||x_0 - 0|| \leq ||x - x_0|| \Rightarrow ||x|| - ||x_0|| \leq ||x - x_0||. \text{ For any } \varepsilon > 0, \text{ let } \delta = \frac{\varepsilon}{2}. \text{ If } \\ &||x - x_0|| < \delta \text{ , then } |||x|| - ||x_0|| \leq \delta = \frac{\varepsilon}{2} < \varepsilon. \text{ Therefore } ||\cdot|| \text{ is a continuous function.} \end{aligned}$

- (b) For any convergent sequence $\{x_n\} \in C$, $\{x_n\} \to x$, suppose $\|x\|_E > 1$, then by continuity of $\|\cdot\|_E$, there exists $m \in N$ such that $\|x_n\|_E > 1$ for all n > m which is contradiction with that $\{x_n\} \in C$. Similarly we can show that $\|x\|_E < 1$ is contradiction with $\{x_n\} \in C$. Hence $\|x\|_E = 1$, $x \in C$. So C is closed. C is bounded by definition. Therefore C is compact.
- (c) No. What the extreme value theorem tells us is that

Let C be a compact set in a metric space (X, d) and $f : (C, d) \to \mathbf{E}^1$ a continuous function. Then f attains both its maximum and its minimum in the set. The compact set C and the continuous function f should be with the same metric.

In part a we show that $\|\cdot\|$ is a continuous function in metric space (\mathbf{R}^n, d) . The metric d is generated by a norm which is not Euclidean. In part b we show that C is a compact set in

the Euclidean metric space. As d is not Euclidean metric, we can not use the extreme-value theorem.