Econ 204 Summer 2009 Problem Set 3 Due in Lecture Friday August 7

1. Cauchy Sequence

Suppose $\{x_n\} \in \mathbf{R}^n$ is a Cauchy sequence. It has a subsequence $\{x_{n_k}\}$ such that $\lim_{n_k \to \infty} x_{n_k} = x$. Show that $\lim_{n \to \infty} x_n = x$.

2. Compactness

Use the open cover definition of compactness to show that the subset $\left\{\frac{n}{n^2+1}, n=0,1,2\ldots\right\}$ of **R** is compact.

3. Completeness

- **a.** Show that (0,1) is not complete in the Euclidean metric.
- **b.** Show that $\{\frac{n\sqrt{2}}{m}, m \neq 0, n, m \in N\}$ is not complete in the Euclidean metric.

4. Completeness and Compactness

 (\mathbf{R}, d) is a metric space where d is defined as follows:

$$d(x,y) = \begin{cases} 1 & if \ x \neq y \\ 0 & if \ x = y \end{cases}$$

- (a) Show that (\mathbf{R}, d) is complete.
- (b) Is (\mathbf{R}, d) bounded? Is (\mathbf{R}, d) compact? Prove your answer.

5. Continuous Function

Let $f: X \to Y$ be a continuous function (X and Y are metric spaces). Using the characterization of continuous functions in terms of open sets, the open cover definition of compactness, and the open set definition of connectedness:

- **a.** Prove that if X is compact then f(X), the image of f, is compact.
- **b.** Prove that if X is connected then f(X), the image of f, is connected.

6. Upper Hemicontinuous

Let $F: C \times \mathbf{R}^p \to \mathbf{R}^1$ be a continuous function, where $C \subseteq \mathbf{R}^1$. Let $\Psi(\omega) = \{x \in \mathbf{R}^n : F(x, \omega) = 0\}$ be a correspondence. Show directly from the definition that if C is compact, then Ψ is an upper hemicontinuous correspondence. (Hint: The proof is by contradiction. Suppose that Ψ is not upper hemicontinuous at some ω_0 ; this tells you that there is a sequence $\omega_n \to \omega_0$ with certain properties.)