Economics 204 Problem Set 4 Due Tuesday, August 11

Exercise 1

State (and check) whether each of the following is a vector space (over **R**). a) $S = \{cv : c \in R, v = (1, 1, 1)\}$

b) $S = \{(x_1, x_2, x_3) : x_1 + x_2 + x_3 = 0, x_1 + 2x_2 = 0\}$

c)
$$S = \{(x_1, x_2) : x_1 + x_2 = 1\}$$

d) $S = \{f : [0,1] \to [0,1] : f \text{ continuous}\}$. (first, define (f+g)(x) := f(x) + g(x) and (cf)(x) = cf(x)).

If to any one of (a) - (c) you answered "yes", then find the dimension of the space and a Hamel basis for it.

Exercise 2

Let Z, V, W be vector spaces and $g: Z \to V, f: V \to W$ be linear transformations and Z, V, and W have dimension n.

a) Show that $Ker(g) \subseteq Ker(f \circ g)$ and thus dim Im $g \ge \dim Im(f \circ g)$, where dim Im g indicates the dimension of the image of the map g, and $Ker(h) = \{x \in V : h(x) = 0\}$.

b) Show that f is one-to-one if and only if $Ker(f) = \{0\}$.

c) Let Z = W = V. Show that if f, g are autmorphisms of V (i.e. isomorphisms from V to V), then $f \circ g$ is an automorphism of V.

Exercise 3

a) What 2 by 2 matrix represents, with respect to the standard basis, the transformation which rotates every vector in \mathbf{R}^2 counterclockwise 90 degrees and then projects the result onto the x - axis?

b) What 2 by 2 matrix represents, with respect to the standard basis, projection of \mathbf{R}^2 onto the x - axis followed by projection onto the y - axis?

c) What 3 by 3 matrices represent, with respect to the standard basis, the tranformations that i) project every vector onto the x - y plane; ii) reflect every vector through the x - y plane.

Exercise 4

Let $T: M_{2 \times 2} \to M_{2 \times 2}$

$$T\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} b_{11} - b_{12} & 0 \\ b_{12} - b_{11} & 0 \end{pmatrix}$$

Determine Ker(T), dim Ker(T), rank(T). Is T one-to-one, onto, or neither?

Exercise 5

Suppose that square matrices A and B are similar, i.e. $A = P^{-1}BP$, for some invertible matrix P. Find an expression for A^n . Suppose B is diagonal with b_{ii} on it's diagonal. Find an expression for $Tr(A^n)$ and $Det(A^n)$ in terms of b_{ii} .

Exercise 6

Let V, W be vector spaces with bases $\{v_{\theta}\}_{\theta \in \Theta}$ and $\{w_{\gamma}\}_{\gamma \in \Gamma}$ and $T : V \to W$ be a linear transformation. Say which of the following statements is true/false, and prove your claim.

a) If $Ker(T) = \{0\}$, then $\{w_{\gamma}\}_{\gamma \in \Gamma} \subset Span\{Tv_{\theta}\}_{\theta \in \Theta}$ i.e. the set of vectors $\{w_{\gamma}\}_{\gamma \in \Gamma}$ is spanned by the set of vectors $\{Tv_{\theta}\}_{\theta \in \Theta}$.

b) If T is an isomorphism from V to W, then the bases $\{w_{\gamma}\}_{\gamma\in\Gamma}$ and $\{Tv_{\theta}\}_{\theta\in\Theta}$ are numerically equivalent, i.e. there exists a bijection between the two.

c) If $\{Tv_{\theta}\}_{\theta\in\Theta}$ spans W, then $\{v_{\theta}\}_{\theta\in\Theta}$ and $\{w_{\gamma}\}_{\gamma\in\Gamma}$ are numerically equivalent.