Economics 204
Problem Set 4
Due Tuesday, August 11

Exercise 1

State (and check) whether each of the following is a vector space (over \mathbf{R}).
a) $S=\{c v: c \in R, v=(1,1,1)\}$
b) $S=\left\{\left(x_{1}, x_{2}, x_{3}\right): x_{1}+x_{2}+x_{3}=0, x_{1}+2 x_{2}=0\right\}$
c) $S=\left\{\left(x_{1}, x_{2}\right): x_{1}+x_{2}=1\right\}$
d) $S=\{f:[0,1] \rightarrow[0,1]: f$ continuous $\}$. (first, define $(f+g)(x):=$ $f(x)+g(x)$ and $(c f)(x)=c f(x))$.

If to any one of $(a)-(c)$ you answered "yes", then find the dimension of the space and a Hamel basis for it.

Exercise 2

Let Z, V, W be vector spaces and $g: Z \rightarrow V, f: V \rightarrow W$ be linear transformations and Z, V, and W have dimension n.
a) Show that $\operatorname{Ker}(g) \subseteq \operatorname{Ker}(f \circ g)$ and thus $\operatorname{dim} \operatorname{Im} g \geq \operatorname{dim} \operatorname{Im}(f \circ g)$, where $\operatorname{dim} \operatorname{Im} g$ indicates the dimension of the image of the map g, and $\operatorname{Ker}(h)=\{x \in$ $V: h(x)=0\}$.
b) Show that f is one-to-one if and only if $\operatorname{Ker}(f)=\{0\}$.
c) Let $Z=W=V$. Show that if f, g are autmorphisms of V (i.e. isomorphisms from V to V), then $f \circ g$ is an automorphism of V.

Exercise 3

a) What 2 by 2 matrix represents, with respect to the standard basis, the transformation which rotates every vector in \mathbf{R}^{2} counterclockwise 90 degrees and then projecs the result onto the $x-a x i s$?
b) What 2 by 2 matrix represents, with respect to the standard basis, projection of \mathbf{R}^{2} onto the x-axis followed by projection onto the y-axis?
c) What 3 by 3 matrices represent, with respect to the standard basis, the tranformations that i) project every vector onto the $x-y$ plane; $i i$) reflect every vector through the $x-y$ plane.

Exercise 4

Let $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$

$$
T\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)=\left(\begin{array}{ll}
b_{11}-b_{12} & 0 \\
b_{12}-b_{11} & 0
\end{array}\right)
$$

Determine $\operatorname{Ker}(T), \operatorname{dim} \operatorname{Ker}(T), \operatorname{rank}(T)$. Is T one-to-one, onto, or neither?

Exercise 5

Suppose that square matrices A and B are similar, i.e. $A=P^{-1} B P$, for some invertible matrix P. Find an expression for A^{n}. Suppose B is diagonal with $b_{i i}$ on it's diagonal. Find an expression for $\operatorname{Tr}\left(A^{n}\right)$ and $\operatorname{Det}\left(A^{n}\right)$ in terms of $b_{i i}$.

Exercise 6

Let V, W be vector spaces with bases $\left\{v_{\theta}\right\}_{\theta \in \boldsymbol{\Theta}}$ and $\left\{w_{\gamma}\right\}_{\gamma \in \Gamma}$ and $T: V \rightarrow W$ be a linear transformation. Say which of the following statements is true/false, and prove your claim.
a) If $\operatorname{Ker}(T)=\{0\}$, then $\left\{w_{\gamma}\right\}_{\gamma \in \Gamma} \subset \operatorname{Span}\left\{T v_{\theta}\right\}_{\theta \in \Theta}$ i.e. the set of vectors $\left\{w_{\gamma}\right\}_{\gamma \in \Gamma}$ is spanned by the set of vectors $\left\{T v_{\theta}\right\}_{\theta \in \Theta}$.
b) If T is an isomorphism from V to W, then the bases $\left\{w_{\gamma}\right\}_{\gamma \in \Gamma}$ and $\left\{T v_{\theta}\right\}_{\theta \in \Theta}$ are numerically equivalent, i.e. there exists a bijection between the two.
c) If $\left\{T v_{\theta}\right\}_{\theta \in \Theta}$ spans W, then $\left\{v_{\theta}\right\}_{\theta \in \Theta}$ and $\left\{w_{\gamma}\right\}_{\gamma \in \Gamma}$ are numerically equivalent.

