Economics 204 Problem Set 4 Solutions

Exercise 1

a) First note that S is a subset of \mathbb{R}^3 , which is a vector space (over \mathbb{R} , with the operations assumed). Hence, all we have to show is that 0 vector is contained in S and that $\forall \alpha, \beta \in \mathbb{R}$, and $x, y \in S$, we have $\alpha x + \beta y \in S$. But this is pretty obvious: i) take c = 0 to show that $0 \in S$; ii) if $x = c_1 v$ and $y = c_2 v$, then $\alpha x + \beta y \in (\alpha c_1 + \beta c_2)v$ and if we let $c = \alpha c_1 + \beta c_2$ then it follows that $\alpha x + \beta y \in S$. The space is one dimensional, and $\{v\}$ is a basis for S.

b) Same argument applies here: i) 0 vector is obviously in S. ii) Now take $\alpha, \beta \in \mathbf{R}$ and $x, y \in S$; let $z := \alpha x + \beta y$, then $z_1 + z_2 + z_3 = (\alpha x_1 + \beta y_1) + (\alpha x_2 + \beta y_2) + (\alpha x_3 + \beta y_3) = \alpha (x_1 + x_2 + x_3) + \beta (y_1 + y_2 + y_3) = \alpha 0 + \beta 0 = 0$; and $z_1 + 2z_2 = (\alpha x_1 + \beta y_1) + 2(\alpha x_2 + \beta y_2) = (\alpha x_1 + 2\alpha x_2) + (\alpha y_1 + 2\beta y_2) = \alpha (x_1 + 2x_2) + \beta (y_1 + 2y_2) = 0$. The space is again one dimensional (Note that if we fix x_2 , then x_1 and x_3 are determined). $\{(1, -1, 0)\}$ is a basis for S.

c) S is not a vector space since it does not contain 0 vector.

d) not a vector space since not all additive inverses of continuous functions are in S.

Exercise 2

a) $x \in Ker(g) \Rightarrow g(x) = 0 \Rightarrow (f \circ g)(x) = f(g(x)) = f(0) = 0$ since f is a linear transformation. Thus $x \in Ker(f \circ g)$ and thus dim $Ker(g) \leq \dim Ker(f \circ g)$. We have assumed that dim $Z = \dim V = \dim W = n$. Since dim $Im(h) + \dim Ker(h) = n$ for any linear transformation $h : Z \to U$ (U a vector space), we can conclude that dim $Im(g) \geq \dim Im(f \circ g)$.

b) (\Rightarrow) Since f is a linear tranformation, f(0) = 0 and since f is one to one, it follows that $Ker(f) = \{0\}$. (\Leftarrow) Suppose f(x) = f(y), then we have that f(x) - f(y) = 0 and so f(x - y) = 0. But $Ker(f) = \{0\}$; thus we must have that x = y and therefore f is one to one.

d) That composition of two linear maps is linear is shown in the R. Anderson's lecture notes. To prove that $f \circ g$ is one to one, suppose that $(f \circ g)(x)$

 $= (f \circ g)(y)$ then f(g(x)) = f(g(y)). Since f is one to one, it follows that g(x) = g(y), and since g is one to one we have x = y. To prove that $f \circ g$ is onto, let $y \in V$. since f is onto there is $x \in V$ such that f(x) = y and since g is onto there is $z \in V$, such that g(z) = x. Hence given z, $(f \circ g)(z) = y$. Thus $f \circ g$ is an automorphism of V.

Exercise 3

a) Consider $A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$; $Ae_1 = 0$ and $Ae_2 = -e_1$ where $e_1 = (1,0)$ and $e_2 = (0,1)$. Thus $a_{11} = a_{22} = a_{21} = 0$ and $a_{12} = -1$.

b) Projecting onto the x-axis followed by projection onto the y-axis maps every vector to 0. The matrix representing this transformation is the 0 matrix.

c) i) The transformation maps every vector $(x, y, z) \in \mathbf{R}^3$ to (x, y, 0). The matrix is

(1)	0	$0 \rangle$
0	1	0
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	0	$\begin{pmatrix} 0\\0\\0 \end{pmatrix}$

ii) The transformation maps every vector $(x, y, z) \in \mathbf{R}^3$ to (x, y, -z). The matrix is

11	U	0 1
0	1	0
$ \begin{pmatrix} 1\\0\\0 \end{pmatrix} $	0	$\begin{pmatrix} 0\\ 0\\ -1 \end{pmatrix}$

Exercise 4

Ker(T) is the set of 2 by 2 matrices such that $b_{11} = b_{12}$, which is a three dimensional space with

 $A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, and $A_3 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ forming a basis for Ker(T); finally rank(T) = 1 as rank(T) + dimKer(T) = 4. T is not one to one since Ker(T) is non-trivial; T is not onto since rank(T) = 1 and not 4.

Exercise 5

$$\begin{split} A^{n} &= (P^{-1}BP)(P^{-1}BP)...(P^{-1}BP) = P^{-1}B(PP^{-1})B(PP^{-1})BP...P^{-1}BP = \\ P^{-1}B^{n}P. \text{ Since } Tr(AB) &= \sum_{i=1}^{n} (\sum_{j=1}^{n} a_{ij}b_{ji}) = \sum_{j=1}^{n} (\sum_{i=1}^{n} b_{ji}a_{ij}) = Tr(BA) \text{ and} \\ \text{since } B \text{ is diagonal}, Tr(A^{n}) &= Tr(P^{-1}B^{n}P) = Tr((P^{-1}B^{n})P) = Tr(P(P^{-1}B^{n})) = \\ Tr((PP^{-1})B^{n}) &= Tr(B^{n}) = \sum_{i=1}^{m} b_{ii}^{n} \text{ and } Det(A^{n}) = \prod_{i=1}^{m} b_{ii}^{n} \text{ where } m \text{ is the number of columns/rows of } A \text{ and } B. \end{split}$$

Exercise 6

a) False, since W may be a much larger vector space than V. Let $V = \mathbf{R}$ and $W = \mathbf{R}^2$. Any non-zero transformation $T: V \to W$ will have a trivial Kernel but only one-dimensional image. Thus, $\{Tv_{\theta}\}_{\theta \in \Theta}$ cannot span W and therefore $\{w_{\gamma}\}_{\gamma \in \Gamma} \not\subseteq Span\{Tv_{\theta}\}_{\theta \in \Theta}$. The statement would be true if the spaces had the same dimension.

b) True. Since T is an isomorphism, $W = \operatorname{Im} T$. Thus, $\operatorname{span}\{Tv_{\theta}\}_{\theta\in\Theta} = W$. $\{Tv_{\theta}\}_{\theta\in\Theta}$ is a set of independent vectors: for any linear combination such that $0 = \sum_{i=1}^{n} \alpha_i(Tv_{\theta_i}) = \sum_{i=1}^{n} T(\alpha_i v_{\theta_i}) = T(\sum_{i=1}^{n} \alpha_i v_{\theta_i})$ we have $\sum_{i=1}^{n} \alpha_i v_{\theta_i} = 0$ as T is an isomorphism; and since $\{v_{\theta}\}_{\theta\in\Theta}$ are independent, $\alpha_i = 0$ for all i. Therefore $\{Tv_{\theta}\}_{\theta\in\Theta}$ is a basis for W (the set is linearly independent and spans W). $\{Tv_{\theta}\}_{\theta\in\Theta}$ and $\{w_{\gamma}\}_{\gamma\in\Gamma}$ are thus numerically equivalent by Theorem 4 Lecture 8.

c) False, since V may be a much larger space than W. Let $V = \mathbf{R}^2$ and $W = \mathbf{R}$ and define $T(v_1) = w$ and $T(v_2) = 0$ where v_1, v_2 are the two vectors in the given basis for V and $\{w\}$ is the given basis for W. the bases $\{v_i\}_{i=1}^2$ and $\{w\}$ are not numerically equivalent; nevertheless $\{Tv_i\}_{i=1}^2$ spans **R**.