Econ 204
Problem Set 5 Solutions

Exercise 1

C is already diagonal.

B can be diagonalized: it has eigenvalues 1 and 2 and a pair of eigenvectors
(1,0) and (1,1) corresponding to these eigenvalues.

Let V = {(1,0), (1,1)} be the set with the two eigenvectors. It is also a

basis for R2. Let W be the standard basis and consider the change of basis
-1

matrix Mitzy,w (id) = Mtzw,y(id)~! = é i

as B = Mtxw (B) = Mtxw,v(id) x Mtzy(B) x Mtzy,w(id) where Mtxy (B)
é (2)) (since (1,0) and (1,1) are both the
eigenvectors of B and the basis vectors in V).

Thus, B can be written

is precisely the diagonal matrix
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To check that this works, Mtxw,v (id) x Mtzy (B)x Mtxy,w (id) = <1 1) (1 0) (1 1) =

0 1)\0 2/\0 1
G626 D626 )62
0 1)\0 2/\0 1 0 2/\0 1 0 2 '
Eigenvalues for matrix A are 1, —1, and 2 with eigenvectors (1,0, —1), (0,0, 1),
and (2,1,—2). Let M the matrix formed by these eigenvectors and K the di-
agonal matrix with eigenvalues on the diagonal. You can proceed similarly for

matrix A and verify that A = MKM~'; M~ is thus again the change of basis
matrix from the standard basis to the basis formed by the above eigenvectors.

Exercise 2

If A is positive semidefinite and B is an n by m matrix, then BT AB is indeed
positive semidefinite. Let x be a vector in R™. Then Bz is a vector in R™ and
since A is positive semidefinite, x7 BT ABx = (Bz)T A(Bx) > 0, so that BT AB
is positive semidefinite.

Now suppose A is positive definite. Previous reasoning shows that 7 BT ABx >
0; however we need the inequality to be strict for z # 0. Since A is positive
definite, 2" BT ABx # 0 for « # 0 if and only if Bx # 0 for 2 # 0; and Bz # 0
for © # 0 if and only if Ker(B) = {0} This can only hold if m < n since
m = rank(B) + dim Ker(B) = rank(B) + 0. We have rank(B) < n since B is
n by m.

If m > n, BT AB can never be positive definite.



Exercise 3

a) First result is z - v = 0. (Picture vectors u and v in a plane; then the
shortest distance from vector u to vector v must be along the ray perpendicular
to vector v; vector a*v is formed by connecting the origin to the point at which
the ray perpendicular to v hits vector v; vector z = u — a*v is parallel to that
ray). From that we can find an expression for a*: 0 = z-v = (u — a*v) - v and

thus o = %2 = U
ov Tl
b) The expressions for v and 3 are simpler: v = ‘ﬁ)‘l”ulg =t =avi-vi=a

and similar computation yields § = . When v; and vy are orthogonal, the
coefficients on the two vectors are found by projecting vector u on each of the
two vectors separately.

Exercise 4

Here, we can use The Inverse Function Theorem (IFT). Thus, we need to
check that the function is C*(R?) and find points in R3 such that det(D f(zo, Yo, 20))
is non-zero. By Theorem 4 in Lecture 11, to get differentiability of f, it is
enough to check that the partial derivatives exist and are continuous: partials
are either the 0 function or 2z, 2y, or 2z, all of which are continuous on R?.

2370 0 0
The Jacobian of f is Df(xo,90,20) = | 0 2y, 0 |, which is invertible
0 0 220
if and only if z¢, yo, and 2 are all non-zero.
1/(2z0) 0 0
At all such points, (Df~)(f(zo, g0 20) = [ 0 1/@w) 0 | =
0 0 1/(220)
1/2 0 0 1/1‘0 1/(2.7}0) 0 0 1/(:':2 X fl(l‘o,yo,ZQ))
0 1/2 0 Vyo | = 0 1/(2y0) 0 1/[2 x (1 £ v/ f2(20, Y0, 20)] | ;
0 0 1/2) \1/z 0 0 1/(220) 1/(£2 x / f3(z0, Y0, 20))
where f; denotes the i'" component of f evaluated at (zo, o, 20). If 7o is nega-
tive then we take —/ f1(zo,y0,20) to be negative, and if z is positive we take

it positive. We do the same for yo and zg.

a)
The 2nd order Taylor expansion is:
T—T T—
f(x,y) = f(xo,y0)+D f(x0,y0) (y B y:)))‘*‘% (x—z0 y—yo)D*f(z0,v0) (y _ y§>+
O(|lz — xo\s) ( f € C?), where Df(xq,y0) = (143:0 — 10+ 2y 22yg + 270 + 3)
14 2
and D2 f(x _ fww(mthyO) fxy(x07y0)> _ ( )
YCED (fyx(iﬁmyo) Jyy(0,%0) 2 22
Thus, f(z,y) = {11y2 + 722 — 1020 + (220 + 3)yo} + {1470 — 10 + 2y }(z —
o) + {220 + 220 + 3}(y — o) + 514(z — 20)® + 522(y — o) + 2(x — x0)(y —
yo) + O(|z — zo|*)



4 2 0
b) Matrix A takes the foom A= |2 4 0], with eigenvalues: 2,6, and 3.
0 0 3
Thus f has a global minimum at 0 (Lecture 10, Corollary 5).

Exercise 5

When F(x,y,2) = 22yz3 — 3, F(z,y, z) = 0 implies 2%y2® = 3, so that when
y and z are non-zero, x2 = 3/(yz®). Thus as long as x¢, o, 20 are all non-zero
and satisfy the previous equation, there is unique local solution z(z,y), such
that z(y, 2)? = 3/(y2®). Note that we could not have found a globally unique
solution z(y, z) since x2 = 3/(y2>) implies 2 = £(3/(yz%))'/2. (you could also
use ImpFT to answer this question).

For F(z,y,2) = 2%yz® — 32'° we can use ImpFT (though we don’t have to).
First we need to find D, F(z,y, z). D.F(z,y,2) = 2ryz3—302°. We need to find
(70, Yo, z0) such that 2zyz3 — 302 # 0 . Thus we must have z(yz3 — 152%) # 0,
i.e. we must have both z # 0 and yz*® — 1528 # 0; however we need these
two conditions to hold at solutions to the system z?yz3 — 32! = 0 which is
equivalent to 2?(yz® — 328) = 0, ie. z = 0or (yz3 —32%) =0. Ifax =0,
the Jacobian is not invertible. Thus we must have yz3 — 32® = 0. Since we
concluded that = cannot be 0, it follows that (0,0,0) is not a point where we
can apply ImpFT. Thus we can write yz% —32% = 0 & y = 328/2% (1). This
set of points combined with the set of points z # 0 (2) and y2® — 1528 #£ 0 (3) is
the region where we can use the ImpFT to solve locally for z in terms of y and
z, 1.e. for each point satisfying conditions (1), (2), and (3) we can find open sets
U and V with zg € U and (yo, z0) € V and an implicit function z(y,2) : U — V
, such that F(z(y,z),y,2) = 0; z(y, 2) € C! and a formula for it’s derivative is
given in the lecture note 12.

Exercise 6

Now suppose the assumptions of the InvFT hold: i.e. suppose X C R" is
open, f: X — R", f € CY(X), 79 € X and det(Df(xq)) # 0.

Let yo = f(z0), and F(z,y) = f(x) — y, so that then F(zq,y0) = 0 and
D, F(zo,y0) = Df(x9) # 0. By ImpFT, there are neighoorhoods U and W of
xo and yo respectively, such that for all y € W there is a unique x € U such
that F(z,y) = 0; thus we construct a function g : W — U uniquely which by
the ImpFT is C* on W. Thus we have f(g(y)) = y for y € W and since g is
one-to-one, we also have f(z) = g~ '(x) which proves that f is invertible on W
and that g = f~1.

Finally, (Df~1)(f(20)) = Dg(yo) = —[DuF (w0, y0)] "' [DyF(x0,y0)] = [D f(w0)] ' In =
[Df(x)]~! and finally f €e C" = F € C" = g€ C" = f~! € C" and the
result follows.



