
Econ 204
Problem Set 5 Solutions

Exercise 1

C is already diagonal.
B can be diagonalized: it has eigenvalues 1 and 2 and a pair of eigenvectors

(1; 0) and (1; 1) corresponding to these eigenvalues.
Let V = f(1; 0), (1; 1)g be the set with the two eigenvectors. It is also a

basis for R2. Let W be the standard basis and consider the change of basis

matrix MtxV;W (id) = MtxW;V (id)
�1 =

�
1 1
0 1

��1
. Thus, B can be written

as B = MtxW (B) = MtxW;V (id) �MtxV (B) �MtxV;W (id) where MtxV (B)

is precisely the diagonal matrix
�
1 0
0 2

�
(since (1; 0) and (1; 1) are both the

eigenvectors of B and the basis vectors in V ).

To check that this works,MtxW;V (id)�MtxV (B)�MtxV;W (id) =
�
1 1
0 1

��
1 0
0 2

��
1 1
0 1

��1
=�

1 1
0 1

��
1 0
0 2

��
1 �1
0 1

�
=

�
1 2
0 2

��
1 �1
0 1

�
=

�
1 1
0 2

�
= B:

Eigenvalues for matrixA are 1;�1; and 2 with eigenvectors (1; 0;�1), (0; 0; 1),
and (2; 1;�2). Let M the matrix formed by these eigenvectors and K the di-
agonal matrix with eigenvalues on the diagonal. You can proceed similarly for
matrix A and verify that A =MKM�1; M�1 is thus again the change of basis
matrix from the standard basis to the basis formed by the above eigenvectors.

Exercise 2

If A is positive semide�nite and B is an n bym matrix, then BTAB is indeed
positive semide�nite. Let x be a vector in Rm. Then Bx is a vector in Rn and
since A is positive semide�nite, xTBTABx = (Bx)TA(Bx) � 0; so that BTAB
is positive semide�nite.

Now supposeA is positive de�nite. Previous reasoning shows that xTBTABx �
0; however we need the inequality to be strict for x 6= 0. Since A is positive
de�nite, xTBTABx 6= 0 for x 6= 0 if and only if Bx 6= 0 for x 6= 0; and Bx 6= 0
for x 6= 0 if and only if Ker(B) = f0g This can only hold if m � n since
m = rank(B) + dimKer(B) = rank(B) + 0. We have rank(B) � n since B is
n by m.
If m > n; BTAB can never be positive de�nite.
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Exercise 3

a) First result is z � v = 0. (Picture vectors u and v in a plane; then the
shortest distance from vector u to vector v must be along the ray perpendicular
to vector v; vector ��v is formed by connecting the origin to the point at which
the ray perpendicular to v hits vector v; vector z = u � ��v is parallel to that
ray). From that we can �nd an expression for ��: 0 = z � v = (u� ��v) � v and
thus �� = u�v

v�v =
u�v
kvk2 .

b) The expressions for 
 and � are simpler: 
 = u�v1
kv1k2

= u�v1
1 = av1 � v1 = a

and similar computation yields � = b. When v1 and v2 are orthogonal, the
coe¢ cients on the two vectors are found by projecting vector u on each of the
two vectors separately.

Exercise 4

Here, we can use The Inverse Function Theorem (IFT). Thus, we need to
check that the function is C1(R3) and �nd points inR3 such that det(Df(x0; y0; z0))
is non-zero. By Theorem 4 in Lecture 11, to get di¤erentiability of f , it is
enough to check that the partial derivatives exist and are continuous: partials
are either the 0 function or 2x; 2y; or 2z, all of which are continuous on R3.

The Jacobian of f is Df(x0; y0; z0) =

0@2x0 0 0
0 2y0 0
0 0 2z0

1A, which is invertible
if and only if x0; y0; and z0 are all non-zero.

At all such points, (Df�1)(f(x0; y0; z0)) =

0@1=(2x0) 0 0
0 1=(2y0) 0
0 0 1=(2z0)

1A =0@1=2 0 0
0 1=2 0
0 0 1=2

1A0@1=x01=y0
1=z0

1A =

0@1=(2x0) 0 0
0 1=(2y0) 0
0 0 1=(2z0)

1A0@ 1=(�2�
p
f1(x0; y0; z0))

1=[2� (1�
p
f2(x0; y0; z0)]

1=(�2�
p
f3(x0; y0; z0))

1A ;
where fi denotes the ith component of f evaluated at (x0; y0; z0). If x0 is nega-
tive then we take �

p
f1(x0; y0; z0) to be negative, and if x0 is positive we take

it positive. We do the same for y0 and z0.

a)
The 2nd order Taylor expansion is:

f(x; y) = f(x0; y0)+Df(x0; y0)

�
x� x0
y � y0

�
+ 1
2

�
x� x0 y � y0

�
D2f(x0; y0)

�
x� x0
y � y0

�
+

O(jx� x0j3) ( f 2 C3), where Df(x0; y0) =
�
14x0 � 10 + 2y0 22y0 + 2x0 + 3

�
and D2f(x0;y0) =

�
fxx(x0; y0) fxy(x0; y0)
fyx(x0; y0) fyy(x0; y0)

�
=

�
14 2
2 22

�
Thus, f(x; y) = f11y20 + 7x20 � 10x0 + (2x0 + 3)y0g+ f14x0 � 10 + 2y0g(x�

x0) + f22y0 + 2x0 + 3g(y � y0) + 1
214(x� x0)

2 + 1
222(y � y0)

2 + 2(x� x0)(y �
y0) +O(jx� x0j3)
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b) Matrix A takes the form A =

0@4 2 0
2 4 0
0 0 3

1A, with eigenvalues: 2; 6; and 3.
Thus f has a global minimum at 0 (Lecture 10, Corollary 5).

Exercise 5

When F (x; y; z) = x2yz3� 3, F (x; y; z) = 0 implies x2yz3 = 3; so that when
y and z are non-zero, x2 = 3=(yz3). Thus as long as x0; y0; z0 are all non-zero
and satisfy the previous equation, there is unique local solution x(z; y), such
that x(y; z)2 = 3=(yz3). Note that we could not have found a globally unique
solution x(y; z) since x2 = 3=(yz3) implies x = �(3=(yz3))1=2. (you could also
use ImpFT to answer this question).
For F (x; y; z) = x2yz3� 3x10 we can use ImpFT (though we don�t have to).

First we need to �ndDxF (x; y; z). DxF (x; y; z) = 2xyz3�30x9:We need to �nd
(x0; y0; z0) such that 2xyz3� 30x9 6= 0 : Thus we must have x(yz3� 15x8) 6= 0,
i.e. we must have both x 6= 0 and yz3 � 15x8 6= 0; however we need these
two conditions to hold at solutions to the system x2yz3 � 3x10 = 0 which is
equivalent to x2(yz3 � 3x8) = 0; i.e. x = 0 or (yz3 � 3x8) = 0. If x = 0;
the Jacobian is not invertible. Thus we must have yz3 � 3x8 = 0. Since we
concluded that x cannot be 0; it follows that (0; 0; 0) is not a point where we
can apply ImpFT. Thus we can write yz3 � 3x8 = 0 , y = 3x8=z3 (1). This
set of points combined with the set of points x 6= 0 (2) and yz3�15x8 6= 0 (3) is
the region where we can use the ImpFT to solve locally for x in terms of y and
z; i.e. for each point satisfying conditions (1), (2), and (3) we can �nd open sets
U and V with x0 2 U and (y0; z0) 2 V and an implicit function x(y; z) : U ! V
, such that F (x(y; z); y; z) = 0; x(y; z) 2 C1 and a formula for it�s derivative is
given in the lecture note 12.

Exercise 6

Now suppose the assumptions of the InvFT hold: i.e. suppose X � Rn is
open, f : X ! Rn, f 2 C1(X); x0 2 X and det(Df(x0)) 6= 0:
Let y0 = f(x0), and F (x; y) = f(x) � y, so that then F (x0; y0) = 0 and

DxF (x0; y0) = Df(x0) 6= 0: By ImpFT, there are neigboorhoods U and W of
x0 and y0 respectively, such that for all y 2 W there is a unique x 2 U such
that F (x; y) = 0; thus we construct a function g : W ! U uniquely which by
the ImpFT is C1 on W: Thus we have f(g(y)) = y for y 2 W and since g is
one-to-one, we also have f(x) = g�1(x) which proves that f is invertible on W
and that g = f�1:
Finally, (Df�1)(f(x0)) = Dg(y0) = �[DxF (x0; y0)]�1[DyF (x0; y0)] = [Df(x0)]�1In =

[Df(x0)]
�1 and �nally f 2 Cn =) F 2 Cn =) g 2 Cn =) f�1 2 Cn and the

result follows.
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