Econ 204
Problem Set 6 Solutions

Exercise 1

We know that there are solutions to the system $0=F(x, y, w, z)=f(x, y)-$ $(w, z) . \quad D F(x, y, w, z)=D f(x, y)-D(w, z)=\left(\begin{array}{cccc}D_{x} f_{1}(x, y) & D_{y} f_{1}(x, y) & -1 & 0 \\ D_{x} f_{2}(x, y) & D_{y} f_{2}(x, y) & 0 & -1\end{array}\right)$, where $f_{i}(x, y)$ is the $i^{t h}$ component of $f . D F$ is clearly of rank 2 for all (x, y, w, z) and since $f \in C^{3}$ it follow that $F \in C^{3}$. By Transversality Theorem we know that there is a subset B of R^{2} such that B^{c} is of measure zero, and for all (x, y, w, z) satisfying $F(x, y, w, z)=0$ where $(w, z) \in B$, we have $\operatorname{rank}\left(D_{(x, y)} F(x, y, w, z)\right)=$ 2. Hence, for these (x, y, w, z) we satisfy the hypotheses of the Implicit Function Theorem and we can find the desired implicit functions.

Exercise 2

Check directly. Since $0 \neq 1 / 2, x=0$ cannot be a fixed point. Hence the only chance we have is if $x=1 /(x+1)$ if and only if $x(x+1)=1$ if and only if $x_{1,2}=\frac{-1 \pm \sqrt{1+4}}{2}$. Thus f has one fixed point in the interval $[0,1] . f$ is a set function (correspondence) so Brower's Thm. does not apply. Kakutani's does not apply since f is not convex valued.

For the next function, $x=\epsilon$ is a fixed point. You can also verify that the assumptions of Kakutani's Theorem are satisfied: $[0,1]$ is compact (closed and bounded), convex (an interval), and non-empty, and the correspondence f is: convex valued since image of every point is an interval; closed valued since intervals in the image are also closed; non-empty valued because we defined it that way; upper-hemicontinuous since f has a closed graph and the set $[0,1]$ is compact (Theorem 12 Lecture 7)

Exercise 3

Pick y_{1} and y_{2} in B_{i}, then $y_{1}=z_{1}-x$ and $y_{2}=z_{2}-x$ where $z_{1} R_{i} x$ and $z_{2} R_{i} x$. By convexity of the relation $R_{i},\left(\alpha z_{1}+(1-\alpha) z_{2}\right) R_{i} x$ for all $\alpha \in(0,1)$. Thus $\alpha y_{1}+(1-\alpha) y_{2}=\alpha\left(z_{1}-x\right)+(1-\alpha)\left(z_{2}-x\right)=\left(\alpha z_{1}+(1-\alpha) z_{2}\right)-x$, and since $\left(\alpha z_{1}+(1-\alpha) z_{2}\right) R_{i} x$ we have $\alpha y_{1}+(1-\alpha) y_{2} \in B_{i}$. This holds for all $\alpha \in(0,1)$ and all $i=1, \ldots m$, so B_{i} is convex for all $i=1, \ldots m$.

Now Let $y_{1}, y_{2} \in B$. Thus $y_{1}=\sum_{i=1}^{m}\left(y_{i 1}-x\right)$ and $y_{2}=\sum_{i=1}^{m}\left(y_{i 2}-x\right)$.
$\alpha y_{1}+(1-\alpha) y_{2}=\alpha \sum_{i=1}^{m}\left(y_{i 1}-x\right)+(1-\alpha) \sum_{i=1}^{m}\left(y_{i 2}-x\right)=\sum_{i=1}^{m}\left\{\alpha\left(y_{i 1}-\right.\right.$ $\left.x)+(1-\alpha)\left(y_{i 2}-x\right)\right\}$ where $\left\{\alpha\left(y_{i 1}-x\right)+(1-\alpha)\left(y_{i 2}-x\right)\right\} \in B_{i}$ by convexity of B_{i} and thus $\sum_{i=1}^{m}\left\{\alpha\left(y_{i 1}-x\right)+(1-\alpha)\left(y_{i 2}-x\right)\right\} \in B$ by definition.

If $0 \notin B$ as given, convexity of B and $\{0\}$ is all we need to apply the Separating Hyperplane Theorem and get some $p \neq 0, p \in \mathbf{R}^{n}$ such that $0=$ $p \cdot 0=\sup p \cdot 0 \leq \inf p \cdot B$.

Exercise 4

Since $B \subset S_{i}$ for all $i \in I$, it follows that $B \subset \cap_{i \in 1} S_{i}$. Left to show the other set containment.

We know that for any two sets C, D we have $C \subset D$ if and only if $D^{c} \subset C^{c}$. Hence suppose that $x \in B^{c}$. This means that x is not an element of B. Since B is convex, we can apply the Separating Hyperplane Theorem and get $p \neq 0$, $p \in \mathbf{R}^{n}$ such that $p \cdot x \leq \inf p \cdot B<p \cdot y$ for all $y \in B$. How do we know that the infimum is not attained by any $y \in B$?:

Lemma:
I used the result that since B is open, $\inf p \cdot B$ is not attained by any element in B : for a contradiction, suppose that there was $y \in B$, such that inf $p \cdot B=p \cdot y$; without loss of generality, take $p_{i}>0$ (proof is almost the same if $p_{i}<0$). Then since B is open, there is an open ball U around y such that $U \subset B$. But then there must exist an $\epsilon>0$ such that $z=y-(0, \ldots, \epsilon, \ldots 0) \in U$ where ϵ is in the $i^{\prime} t h$ entry. Hence, $z \in B$, but $p \cdot z<p \cdot y$. Thus infimum is not attained by any $y \in B$.

Now let $S_{j}=\left\{y \in \mathbf{R}^{n}: p \cdot y \leq \inf p \cdot B\right\} . \quad S_{j}$ contains x and S_{j}^{c} is an open half-space containing B that does not contain x. Thus x cannot be in the intersection of all open half-spaces containing B. Hence we've shown that if $x \in B^{c}$ then $x \in\left(\cap S_{i \in I}\right)^{c}$.

Exercise 5

Suppse $f(x)=\ln x$ is Lipschitz, then there exists a constant $K \in \mathbf{R}$ such that $|\ln x-\ln y| \leq K|x-y|$ for $x, y>0$. Consider the mean value expansion for a differentiable function $f: \mathbf{X} \rightarrow \mathbf{R}$ where X is open and convex: $f(y)-f(x)=$ $f^{\prime}(z)(y-x)$ for some $z \in(x, y)$. Note that $\frac{d}{d x}(\ln x)=\frac{1}{x}$ is unbounded on $(0, \infty)$. Hence, if $0<x_{0}<\frac{1}{K}$ we will have $K<\frac{1}{x_{0}}=\left.\frac{d}{d x}(\ln x)\right|_{x=x_{0}}$ and since the derivative of $\ln x$ is strictly decreasing, for every $y<x_{0}$, by the mean value expansion we have $f(y)-f(x)>K(y-x)$ with $x<y<x_{0}$, which is a contradiction. $\quad f(x)=\ln x$ however is Lipschitz on any set of the form $[a, \infty)$ where $a>0$ since it's derivative is bounded (see part (c)).

On the other hand $\left|\frac{d}{d x} \cos (x)\right|=|\sin x| \leq 1$, so by mean value expansion $|\cos x-\cos y| \leq|x-y|$, so (b) is Lipschitz. Finally for (c) we have $|f(y)-f(x)|=$ $\left|f^{\prime}(z)(y-x)\right| \leq M|y-x|$ so it's Lipschitz as well.

The differential equation $\frac{d y}{d t}=\frac{3}{2} y(t)^{1 / 3}$ with $y\left(t_{0}\right)=0$ has a solution since the function on the right is continuous (Theorem 2, Lecture 14). Since the function is not Lipschitz (derivative unbounded, the solution may not be unique). Check that the $\frac{d}{d y} C y^{1 / 3}$ is unbounded near 0 . Also check that $y(t)=t^{3 / 2}$ is a solution. Let $y_{\theta}(t)=(t-\theta)^{3 / 2}$ if $t \geq \theta>0$ and $y(t)=0$ otherwise. This is also a solution: check lecture 14 for an identical proof.

Exercise 6

a) We get the parabola $y=x^{2}$ and the lines $y=1$ and $y=0$. The steady state with both $x, y>0$ is the point $(1,1)$.
b) When we linearize the system around $(1,1)$, we get

$$
\binom{x^{\prime}(t)}{y^{\prime}(t)}=\binom{(x(t)-1)^{\prime}}{(y(t)-1)^{\prime}}=\left(\begin{array}{cc}
2 & -1 \\
0 & 1
\end{array}\right)\binom{x(t)-1}{y(t)-1}
$$

Letting $z(t)=x(t)-1$ and $w(t)=y(t)-1$ we can write the system as:

$$
\begin{aligned}
z^{\prime}(t) & =2 \times z(t)-w(t) \\
w^{\prime}(t) & =w(t)
\end{aligned}
$$

c) Eigenvalues of the matrix $\left(\begin{array}{cc}2 & -1 \\ 0 & 1\end{array}\right)$ are 2 and 1 with a pair of eigenvectors $(1,0)$ and $(1,1): A \times(1,0)=(2,0)=2 \times(1,0)$ and $A \times(1,1)=(1,1)=1 \times(1,1)$. Both eigenvalues are positive, so the solutions diverge to infinity.

The general solution of the system is of the form:

$$
\begin{aligned}
z(t) & =C_{11} e^{2\left(t-t_{0}\right)}+C_{12} e^{\left(t-t_{0}\right)} \\
w(t) & =C_{21} e^{2\left(t-t_{0}\right)}+C_{22} e^{\left(t-t_{0}\right)}
\end{aligned}
$$

If we transform the system into the basis formed by the eigenvectors of $\left(\begin{array}{cc}2 & -1 \\ 0 & 1\end{array}\right)$ by setting $\binom{h(t)}{k(t)}=U^{-1}\binom{z(t)}{w(t)}$, where U^{-1} is the change of basis matrix from the standard basis to the basis formed by the two eigenvectors, then we can rewrite the system as:

$$
\binom{h^{\prime}(t)}{k^{\prime}(t)}=\left(\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right)\binom{h(t)}{k(t)}
$$

and get the solution $h(t)=K e^{2\left(t-t_{0}\right)}, k(t)=M e^{\left(t-t_{0}\right)} \cdot\binom{z(t)}{w(t)}=U\binom{h(t)}{k(t)}=$ $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\binom{h(t)}{k(t)}=\binom{K e^{2\left(t-t_{0}\right)}+M e^{\left(t-t_{0}\right)}}{M e^{\left(t-t_{0}\right)}}$, where $K=C_{11}, M=C_{12}=C_{22}$. C_{21} must then be zero.

