Econ 204
Problem Set 6 Solutions

Exercise 1

We know that there are solutions to the system 0 = F/(z,y,w, 2) = f(z,y) —

Dy fi(z,y) Dyfi(z,y) -1 0

w,z). DF(z,y,w,z) = Df(x,y)—D(w,z) = ’ Y ’ ,
(0.2). DP(a.pyw.2) = Df(e)-Dlw,z) = (Do) Doife) 4 0
where fi(x,y) is the i*" component of f. DF is clearly of rank 2 for all (z, y, w, 2)
and since f € C3 it follow that FF € C3. By Transversality Theorem we know
that there is a subset B of R? such that B¢ is of measure zero, and for all
(x,y,w, z) satisfying F'(z,y,w, z) = 0 where (w, z) € B, we have rank(D , , F'(z,y,w, 2)) =
2. Hence, for these (z,y, w, z) we satisfy the hypotheses of the Implicit Function
Theorem and we can find the desired implicit functions.

Exercise 2

Check directly. Since 0 # 1/2, x = 0 cannot be a fixed point. Hence the
only chance we have is if = 1/(x + 1) if and only if z(x + 1) = 1 if and only
if 210 = %‘/m. Thus f has one fixed point in the interval [0,1]. f is a set
function (correspondence) so Brower’s Thm. does not apply. Kakutani’s does
not apply since f is not convex valued.

For the next function, x = € is a fixed point. You can also verify that
the assumptions of Kakutani’s Theorem are satisfied: [0,1] is compact (closed
and bounded), convex (an interval), and non-empty, and the correspondence f
is: convex valued since image of every point is an interval; closed valued since
intervals in the image are also closed; non-empty valued because we defined it
that way; upper-hemicontinuous since f has a closed graph and the set [0, 1] is
compact (Theorem 12 Lecture 7)

Exercise 3 .

Pick y; and ys in B;,, then y; = 21 — x and ys = 2o — x where z; R;x and
zoR;x. By convexity of the relation R;, (az; + (1 — a)z2)R;x for all a € (0,1).
Thus ay; + (1 —a)ys = a(z1 —z) + (1 — a)(z2 — z) = (az1 + (1 — a)z2) — x,
and since (az1 + (1 — a)z2) Rz we have oy + (1 — a)ye € B;. This holds for all

€ (0,1) and all 4 = 1,...m, so B; is convex for all i = 1,...m.

Now Let y1,y2 € B. Thus y1 =Y ;v (yan — ) and yo = Y 1w (yi2 — ).

ayi + (1 —a)yz = a0 (v — @) + (1 —a) 2200 (yie — 2) = 2210 {a(yin —
x) + (1 — a)(yi2 — )} where {a(yi1 — ) + (1 — a)(yi2 — )} € B; by convexity
of B; and thus > 1" {a(yin — ) + (1 — @)(yi2 — )} € B by definition.

If 0 ¢ B as given, convexity of B and {0} is all we need to apply the
Separating Hyperplane Theorem and get some p # 0, p € R" such that 0 =
p-0=supp-0<infp-B.



Exercise 4

Since B C S; for all i € I, it follows that B C N;¢1.5;. Left to show the other
set containment.

We know that for any two sets C, D we have C' C D if and only if D¢ C C*°.
Hence suppose that x € B€. This means that x is not an element of B. Since
B is convex, we can apply the Separating Hyperplane Theorem and get p # 0,
p € R” such that p-x <infp- B <p-y for all y € B. How do we know that
the infimum is not attained by any y € B?:

Lemma:

I used the result that since B is open, inf p- B is not attained by any element
in B : for a contradiction, suppose that there was y € B, such that inf p-B = p-y;
without loss of generality, take p; > 0 (proof is almost the same if p; < 0). Then
since B is open, there is an open ball U around y such that U C B. But then
there must exist an € > 0 such that z =y — (0,...,¢,...0) € U where € is in the
7'th entry. Hence, z € B, but p-z < p-y. Thus infimum is not attained by any
y € B.

Now let S; = {y € R" : p-y < infp- B}. S; contains z and S is an
open half-space containing B that does not contain z. Thus z cannot be in
the intersection of all open half-spaces containing B. Hence we’ve shown that
if © € B¢ then z € (NS;er)©.

Exercise 5

Suppse f(z) = Inx is Lipschitz, then there exists a constant K € R such that
lnz —Iny| < K |z —y| for z,y > 0. Consider the mean value expansion for a
differentiable function f : X — R where X is open and convex: f(y) — f(z) =
f'(2)(y — z) for some z € (z,y). Note that - (Inz) = 1 is unbounded on
(0,00). Hence, if 0 < 29 < & we will have K < % = L (Inx)|,—y and
since the derivative of Inz is strictly decreasing, for every y < xg, by the mean
value expansion we have f(y) — f(z) > K(y — ) with < y < xg, which is a
contradiction. f(x) = Inz however is Lipschitz on any set of the form [a, 00)
where a > 0 since it’s derivative is bounded (see part (c)).

On the other hand |d% cos(z)| = [sinz| < 1, so by mean value expansion
| cosx—cosy| < |x—yl, so (b) is Lipschitz. Finally for (¢) we have |f(y) — f(z)| =
|'(2)(y —x)| < M |y — x| so it’s Lipschitz as well.

The differential equation % = 3y(#)1/3 with y(to) = 0 has a solution since
the function on the right is continuous (Theorem 2, Lecture 14). Since the func-
tion is not Lipschitz (derivative unbounded, the solution may not be unique).

Check that the d%Cyl/?’ is unbounded near 0. Also check that y(t) = t3/2 is a

solution. Let yg(t) = (t — 0)>/2 if t > 0 > 0 and y(t) = 0 otherwise. This is
also a solution: check lecture 14 for an identical proof.



Exercise 6

a) We get the parabola y = 22 and the lines y = 1 and y = 0. The steady
state with both x,y > 0 is the point (1,1).
b) When we linearize the system around (1, 1), we get

(i) = (G -) =6 ) (=)

Letting z(t) = z(t) — 1 and w(t) = y(¢) — 1 we can write the system as:

2(t) = 2xz(t)—w(t)
w'(t) = w(t)
¢) Eigenvalues of the matrix (2) _1 are 2 and 1 with a pair of eigenvectors

(1,0) and (1,1): Ax(1,0) =(2,0) =2x(1,0) and Ax(1,1) =(1,1) = 1x(1,1).
Both eigenvalues are positive, so the solutions diverge to infinity.
The general solution of the system is of the form:

2(t) = Ot 4 Oppelt—to)
w(t) = Coe’™10) 4 Chpelt ™M)

If we transform the system into the basis formed by the eigenvectors of
2 -1 . R\ 1 [ 2(t) 1 - .
(0 1 ) by setting (k(t)) =U w(t) )’ where U™ is the change of basis
matrix from the standard basis to the basis formed by the two eigenvectors,
then we can rewrite the system as:

(ki) = ) G63)

and get the solution h(t) = Ke2(t=t) k(1) = Me(t—to), (;((7;))) =U (ZEQ) =

1 1 h(t K e2(t—to) +M (t—to)
(0 1) (kEtD - ( ) Me(t*tr))e , where K = Ci1, M = Chz = Co.
(31 must then be zero.



