
Econ 204
Problem Set 6 Solutions

Exercise 1

We know that there are solutions to the system 0 = F (x; y; w; z) = f(x; y)�

(w; z). DF (x; y; w; z) = Df(x; y)�D(w; z) =
�
Dxf1(x; y) Dyf1(x; y) �1 0
Dxf2(x; y) Dyf2(x; y) 0 �1

�
,

where fi(x; y) is the ith component of f: DF is clearly of rank 2 for all (x; y; w; z)
and since f 2 C3 it follow that F 2 C3. By Transversality Theorem we know
that there is a subset B of R2 such that Bc is of measure zero, and for all
(x; y; w; z) satisfying F (x; y; w; z) = 0 where (w; z) 2 B, we have rank(D(x;y)F (x; y; w; z)) =
2. Hence, for these (x; y; w; z) we satisfy the hypotheses of the Implicit Function
Theorem and we can �nd the desired implicit functions.

Exercise 2

Check directly. Since 0 6= 1=2, x = 0 cannot be a �xed point. Hence the
only chance we have is if x = 1=(x + 1) if and only if x(x + 1) = 1 if and only
if x1;2 =

�1�
p
1+4

2 . Thus f has one �xed point in the interval [0; 1]. f is a set
function (correspondence) so Brower�s Thm. does not apply. Kakutani�s does
not apply since f is not convex valued.
For the next function, x = � is a �xed point. You can also verify that

the assumptions of Kakutani�s Theorem are satis�ed: [0; 1] is compact (closed
and bounded), convex (an interval), and non-empty, and the correspondence f
is: convex valued since image of every point is an interval; closed valued since
intervals in the image are also closed; non-empty valued because we de�ned it
that way; upper-hemicontinuous since f has a closed graph and the set [0; 1] is
compact (Theorem 12 Lecture 7)

Exercise 3 .

Pick y1 and y2 in Bi;, then y1 = z1 � x and y2 = z2 � x where z1Rix and
z2Rix. By convexity of the relation Ri, (�z1 + (1� �)z2)Rix for all � 2 (0; 1).
Thus �y1 + (1 � �)y2 = �(z1 � x) + (1 � �)(z2 � x) = (�z1 + (1 � �)z2) � x,
and since (�z1+ (1��)z2)Rix we have �y1+ (1��)y2 2 Bi: This holds for all
� 2 (0; 1) and all i = 1; :::m, so Bi is convex for all i = 1; :::m:
Now Let y1; y2 2 B. Thus y1 =

Pm
i=1(yi1 � x) and y2 =

Pm
i=1(yi2 � x).

�y1 + (1��)y2 = �
Pm

i=1(yi1 � x) + (1��)
Pm

i=1(yi2 � x) =
Pm

i=1f�(yi1 �
x) + (1� �)(yi2 � x)g where f�(yi1 � x) + (1� �)(yi2 � x)g 2 Bi by convexity
of Bi and thus

Pm
i=1f�(yi1 � x) + (1� �)(yi2 � x)g 2 B by de�nition.

If 0 =2 B as given, convexity of B and f0g is all we need to apply the
Separating Hyperplane Theorem and get some p 6= 0, p 2 Rn such that 0 =
p � 0 = sup p � 0 � inf p �B:

1



Exercise 4

Since B � Si for all i 2 I, it follows that B � \i21Si. Left to show the other
set containment.
We know that for any two sets C;D we have C � D if and only if Dc � Cc.

Hence suppose that x 2 Bc. This means that x is not an element of B. Since
B is convex, we can apply the Separating Hyperplane Theorem and get p 6= 0;
p 2 Rn such that p � x � inf p � B < p � y for all y 2 B. How do we know that
the in�mum is not attained by any y 2 B?:

Lemma:
I used the result that since B is open, inf p �B is not attained by any element

in B : for a contradiction, suppose that there was y 2 B, such that inf p�B = p�y;
without loss of generality, take pi > 0 (proof is almost the same if pi < 0). Then
since B is open, there is an open ball U around y such that U � B. But then
there must exist an � > 0 such that z = y � (0; :::; �; :::0) 2 U where � is in the
i0th entry. Hence, z 2 B, but p � z < p � y. Thus in�mum is not attained by any
y 2 B:

Now let Sj = fy 2 Rn : p � y � inf p � Bg. Sj contains x and Scj is an
open half-space containing B that does not contain x. Thus x cannot be in
the intersection of all open half-spaces containing B. Hence we�ve shown that
if x 2 Bc then x 2 (\Si2I)c.

Exercise 5

Suppse f(x) = lnx is Lipschitz, then there exists a constantK 2 R such that
jlnx� ln yj � K jx� yj for x; y > 0. Consider the mean value expansion for a
di¤erentiable function f : X! R where X is open and convex: f(y)� f(x) =
f 0(z)(y � x) for some z 2 (x; y). Note that d

dx (lnx) =
1
x is unbounded on

(0;1). Hence, if 0 < x0 <
1
K we will have K < 1

x0
= d

dx (lnx)jx=x0 and
since the derivative of lnx is strictly decreasing, for every y < x0; by the mean
value expansion we have f(y) � f(x) > K(y � x) with x < y < x0, which is a
contradiction. f(x) = lnx however is Lipschitz on any set of the form [a;1)
where a > 0 since it�s derivative is bounded (see part (c)).
On the other hand

�� d
dx cos(x)

�� = jsinxj � 1, so by mean value expansion
j cosx�cos yj � jx�yj, so (b) is Lipschitz. Finally for (c) we have jf(y)� f(x)j =
jf 0(z)(y � x)j �M jy � xj so it�s Lipschitz as well.
The di¤erential equation dy

dt =
3
2y(t)

1=3 with y(t0) = 0 has a solution since
the function on the right is continuous (Theorem 2, Lecture 14). Since the func-
tion is not Lipschitz (derivative unbounded, the solution may not be unique).
Check that the d

dyCy
1=3 is unbounded near 0. Also check that y(t) = t3=2 is a

solution. Let y�(t) = (t � �)3=2 if t � � > 0 and y(t) = 0 otherwise. This is
also a solution: check lecture 14 for an identical proof.
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Exercise 6

a) We get the parabola y = x2 and the lines y = 1 and y = 0: The steady
state with both x; y > 0 is the point (1; 1).
b) When we linearize the system around (1; 1), we get�

x0(t)
y0(t)

�
=

�
(x(t)� 1)0
(y(t)� 1)0

�
=

�
2 �1
0 1

��
x(t)� 1
y(t)� 1

�
Letting z(t) = x(t)� 1 and w(t) = y(t)� 1 we can write the system as:

z0(t) = 2� z(t)� w(t)
w0(t) = w(t)

c) Eigenvalues of the matrix
�
2 �1
0 1

�
are 2 and 1 with a pair of eigenvectors

(1; 0) and (1; 1): A�(1; 0) = (2; 0) = 2�(1; 0) and A�(1; 1) = (1; 1) = 1�(1; 1):
Both eigenvalues are positive, so the solutions diverge to in�nity.
The general solution of the system is of the form:

z(t) = C11e
2(t�t0) + C12e

(t�t0)

w(t) = C21e
2(t�t0) + C22e

(t�t0)

If we transform the system into the basis formed by the eigenvectors of�
2 �1
0 1

�
by setting

�
h(t)
k(t)

�
= U�1

�
z(t)
w(t)

�
; where U�1 is the change of basis

matrix from the standard basis to the basis formed by the two eigenvectors,
then we can rewrite the system as:�

h0(t)
k0(t)

�
=

�
2 0
0 1

��
h(t)
k(t)

�
and get the solution h(t) = Ke2(t�t0), k(t) =Me(t�t0):

�
z(t)
w(t)

�
= U

�
h(t)
k(t)

�
=�

1 1
0 1

��
h(t)
k(t)

�
=

�
Ke2(t�t0) +Me(t�t0)

Me(t�t0)

�
, where K = C11, M = C12 = C22.

C21 must then be zero.
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