Econ 204 Section 4

GSI: Hui Zheng
Key Words
Metric Space, Normed Vector Space, Euclidean Space, Lipschitz-Equivalent, Convergence, Cluster Point, Increasing(Decreasing) Sequence, Lim Sups(Lim Infs), Rising Sun Lemma, Bolzano-Weierstrass Theorem

Section 4.1 Metric Space

- Lecture 3 Definition 1 A metric space is a pair (X, d), where X is a set and $d: X \times X \rightarrow$ $\mathbf{R}+$, satisfying

1. $\forall x, y \in X d(x, y) \geq 0, d(x, y)=0 \Leftrightarrow x=y$
2. $\forall x, y \in X \quad d(x, y)=d(y, x)$
3. (triangle inequality) $\forall x, y, z \in X d(x, y)+d(y, z) \geq d(x, z)$

Example 4.1.1 Let $d(x, y)=\max \{|x-y|, 1\}$. Prove or disprove that (\mathbf{R}, d) is a metric space.
Disproof:
Let $x \in X$. Then $d(x, x)=\max \{|x-x|, 1\}=\max \{0,1\}=1$. So d is not a metric.
Example 4.1.2 Let $d(x, y)=\min \{|x-y|, 1\}$. Prove or disprove that (\mathbf{R}, d) is a metric space.
Proof:: In fact this is called the standard bounded metric corresponding to d. Check the first two conditions for a metric. Do it by yourself.
Check the triangle inequality: $d(x, z) \leq d(x, y)+d(y, z)$
Now if either $|x-y| \geq 1$ or $|y-z| \geq 1$ then the right side of this inequality is at least 1 ; since the left side is (by definition) at most 1 , the inequality holds. It remains to consider the case in which $|x-y|<1$ and $|y-z|<1$. In this case, we have $|x-z| \leq|x-y|+|y-z|=$ $d(x, y)+d(y, z)$. Hence $d(x, z)=\min \{|x-z|, 1\} \leq|x-z| \leq d(x, y)+d(y, z)$. The triangle inequality holds.

Example 4.1.3 Let $X=[1,+\infty)$. Let $d(x, y)=\left|\frac{1}{x}-\frac{1}{y}\right|$. Prove or disprove that (X, d) is a metric space.
Proof:
Check the first two conditions for a metric
$\forall x, y \in X, d(x, y)=\left|\frac{1}{x}-\frac{1}{y}\right| \geq 0$ and $d(x, y)=\left|\frac{1}{x}-\frac{1}{y}\right|=0 \Leftrightarrow x=y$
$\forall x, y \in X, d(x, y)=\left|\frac{1}{x}-\frac{1}{y}\right|=\left|\frac{1}{y}-\frac{1}{x}\right|=d(y, x)$
Check the triangle inequality. We show that $d(x, z) \leq d(x, y)+d(y, z)$ will depend upon the ordering of x, y, and z.
Because $d(x, z)=d(z, x)$, without loss of generality, we can assume $x \leq z$.
Case 1. Suppose $\frac{1}{x} \geq \frac{1}{y} \geq \frac{1}{z}$. Then
$d(x, y)+d(y, z)=\left|\frac{1}{x}-\frac{1}{y}\right|+\left|\frac{1}{y}-\frac{1}{z}\right|=\frac{1}{x}-\frac{1}{y}+\frac{1}{y}-\frac{1}{z}=\frac{1}{x}-\frac{1}{z}=\left|\frac{1}{x}-\frac{1}{z}\right|=d(x, z)$
Case 2. Suppose $\frac{1}{x} \geq \frac{1}{z} \geq \frac{1}{y}$. Then
$d(x, y)+d(y, z)=\left|\frac{1}{x}-\frac{1}{y}\right|+\left|\frac{1}{y}-\frac{1}{z}\right|=\frac{1}{x}-\frac{1}{y}+\frac{1}{z}-\frac{1}{y}=\frac{1}{x}+\frac{1}{z}-\frac{2}{y} \geq \frac{1}{x}+\frac{1}{z}-\frac{2}{z}=\frac{1}{x}-\frac{1}{z}=$ $\left|\frac{1}{x}-\frac{1}{z}\right|=d(x, z)$
Case 3. Suppose $\frac{1}{y} \geq \frac{1}{x} \geq \frac{1}{z}$. Then
$d(x, y)+d(y, z)=\left|\frac{1}{x}-\frac{1}{y}\right|+\left|\frac{1}{y}-\frac{1}{z}\right|=\frac{1}{y}-\frac{1}{x}+\frac{1}{y}-\frac{1}{x}=\frac{2}{y}-\frac{1}{x}-\frac{1}{z} \geq \frac{2}{x}-\frac{1}{x}-\frac{1}{z}=\frac{1}{x}-\frac{1}{z}=$ $\left|\frac{1}{x}-\frac{1}{z}\right|=d(x, z)$
So the triangle inequality holds.
Typically, showing the triangle inequality involves more effort. But do not forget to check the first two conditions.

Section 4.2 Normed Vector Space

- Lecture 2 Definition 2 Let V be a vector space over \mathbf{R}. A norm on V is a function $\|\|$ $: V \rightarrow \mathbf{R}+$ satisfying

1. $\forall x \in V\|x\| \geq 0$
2. $\forall x \in V\|x\|=0 \Leftrightarrow x=0$
3. (triangle inequality) $\forall x, y \in V\|x+y\| \leq\|x\|+\|y\|$
4. $\forall \alpha \in R, x \in V\|\alpha x\|=|\alpha|\|x\|$

Example 4.2.1 $C([0,1])$ is the set of continuous functions from $[0,1]$ to \mathbf{R}. Show that $C([0,1])$ is a normed space with norm $\|f\|=\max _{x \in[0,1]}|f(x)|$
Solution:
Check the first two conditions by yourself
Check triangle inequality

$$
\begin{aligned}
& \|f+g\|=\max _{x \in[0,1]}|f(x)+g(x)| \leq \max _{x \in[0,1]}| | f(x)|+|g(x)|| \leq \max _{x \in[0,1]}|f(x)|+\max _{x \in[0,1]}|g(x)|= \\
& \|f\|+\|g\|
\end{aligned}
$$

Check scalar multiplication

$$
\|\alpha f\|=\max _{x \in[0,1]}|\alpha \cdot f(x)|=\max _{x \in[0,1]}| | \alpha|\cdot f(x)|=|\alpha| \cdot \max _{x \in[0,1]}|f(x)|=|\alpha| \cdot\|f\|
$$

Section 4.3 Lipschitz-equivalent

- Lecture 3 Definition 5 Two norms $\|\|$ and $\| \|^{\prime}$ on the same vector space V are said to be Lipschitz-equivalent if $\exists m, M>0 \forall x \in V m\|x\| \leq\|x\|^{\prime} \leq M\|x\|$.
- Lecture 3 Theorem 6: All norms on \mathbf{R}^{n} are Lipschitz-equivalent.

In exercise 6 of problem set 2, you are asked to reexamine the proof of De La Fuente.
Section 4.4 Convergence and Cluster Point

- Lecture 3 Definition 8: Let (X, d) be a metric space. A sequence x_{n} converges to x if $\forall \varepsilon>0 \exists N(\varepsilon) \in \mathbf{N}$ for all $N>N(\varepsilon) \Rightarrow d\left(x_{n}, x\right)<\varepsilon$. This is exactly the same as the definition of convergence of a sequence of real numbers, except we replace $|\cdot|$ in \mathbf{R} by the metric d.
- Lecture 3 Definition Cluster Point: c is a cluster point of a sequence $\left\{x_{n}\right\}$ in a metric space (X, d) if $\forall \varepsilon>0$: $\left\{n: x_{n} \in B_{\varepsilon}(c)\right\}$ is an infinite set. Equivalently, $\forall \varepsilon>0, \forall N \in \mathbf{N}, \exists$ $n>N$ such that $x_{n} \in B_{\varepsilon}(c)$.
- Lecture 3 Theorem 10: Let (X, d) be a metric space. $c \in X$ and $\left\{x_{n}\right\}$ is a sequence in X. Then c is a cluster point of $\left\{x_{n}\right\}$ if and only if there is a subsequence $\left\{x_{n_{k}}\right\}$ such that $\lim _{k \rightarrow \infty} x_{n_{k}}=c$.

Example 4.4.1 Uniqueness of Cluster Point.
Prove that a convergent sequence in a metric space (X, d) has exactly one cluster point.
Solution:
Clearly, the limit of a convergent sequence is a cluster point of the sequence, so a convergent sequence must have at least one cluster point.
Let x_{n} be a convergent sequence in a metric space (X, d), converging to x. Let P be any point different from x, so $d(x, P)>0$. We will show that P is not a cluster point. Let $\varepsilon=\frac{d(x, P)}{2}$, so $\varepsilon>0$. There exists $N \in \mathbf{N}$ such that for all $n>N, d\left(x_{n}, x\right)<\varepsilon$, $d\left(x_{n}, P\right) \geq d(x, P)-d\left(x_{n}, x\right) \geq 2 \varepsilon-\varepsilon=\varepsilon$, so P is not a cluster point.

Section 4.5 Sequences

- Lecture 3 Definition 11: A sequence of real number x_{n} is increasing (decreasing) if $x_{n+1} \geq x_{n}\left(x_{n+1} \leq x_{n}\right)$ for all n.
- Lecture 3 Theorem 13: Let $\left\{x_{n}\right\}$ be an increasing (decreasing) sequence of real numbers. The limit of $\left\{x_{n}\right\}$ exists.
- Lecture 3 Theorem 15 Lim Sups and Lim Infs Handout: Let x_{n} be a sequence of real numbers. Then $\lim _{n \rightarrow \infty} x_{n}=\gamma \in \mathbf{R} \cup\{-\infty, \infty\} \Leftrightarrow \limsup _{n \rightarrow \infty} x_{n}=\liminf _{n \rightarrow \infty} x_{n}=\gamma$.
- Lecture 3 Theorem 16 Rising Sun Lemma: Every sequence of real numbers contains an increasing subsequence or a decreasing subsequence or both.
- Lecture 3 Theorem 17 Bolzano-Weierstrass Theorem: Every bounded sequence of real numbers contains a convergent subsequence.

Example 4.5.1 Lecture 3 Theorem 15 Lim Sups and Lim Infs Handout.
Prove this theorem for the case that γ is finite.
Solution:
$(\Rightarrow) x_{n} \rightarrow \gamma \in \mathbf{R}$ implies that $\forall \varepsilon>0$ there exist $N(\varepsilon)$ such that $n \geq N(\varepsilon) \Rightarrow\left|x_{n}-\gamma\right|<\varepsilon$. This means that $\gamma+\varepsilon$ is an upper bound and $\gamma-\varepsilon$ is a lower bound for $\left\{x_{k}: k \geq N(\varepsilon)\right\}$. Using $\alpha_{n}=\sup \left\{x_{k}: k \geq n\right\}$ and $\beta_{n}=\inf \left\{x_{k}: k \geq n\right\}$, we know that $\beta_{n} \leq \alpha_{n}$ (because a lower bound can't be greater than an upper bound) and for $n>N(\varepsilon)$,

$$
\gamma-\varepsilon \leq \beta_{n} \leq \alpha_{n} \leq \gamma+\varepsilon
$$

Since this is true for any ε, it must be true that α_{n} and β_{n} both converge to x. This completes the proof that $\lim \sup x_{n}=\lim \inf x_{n}=\gamma$.
(\Leftarrow) We will prove the contraposition. Suppose that $\lim _{n \rightarrow \infty} x_{n} \neq \gamma$. Then there exists an $\varepsilon>0$ such that for all N, there is some $n \geq N$ such that $\left|x_{n}-\gamma\right| \geq \varepsilon$. This means that there are infinitely many x_{n} outside of $B_{\varepsilon}(\gamma)$ and it must be the case that there are infinitely many of these above $\gamma+\varepsilon$, infinitely many below $\gamma-\varepsilon$ or both. If the former is true, then $\alpha_{n} \geq \gamma+\varepsilon$ for all n which means that $\lim \sup x_{n}$ must be greater than or equal to $\gamma+\varepsilon$. If the latter is true, then $\beta_{n} \leq \gamma-\varepsilon$ for all n, so $\lim \inf x_{n}$ must be less than or equal to $\gamma-\varepsilon$. In either case, it is not true that $\lim \sup x_{n}=\lim \inf x_{n}=\gamma$, completing the proof.

Example 4.5.2 Let $x_{1}=\sqrt{2}, x_{n+1}=\sqrt{2+x_{n}}$. Prove that the sequence $\left\{x_{n}\right\}$ converges to 2 .
Solution:
We show that the sequence is increasing and bounded, hence convergent. Then we calculate the limit.
Show that $\left\{x_{n}\right\}$ is strictly increasing by induction.
$x_{2}=\sqrt{2+\sqrt{2}}>\sqrt{2}=x_{1}$
Suppose $x_{k}-x_{k-1}>0$ holds. $x_{k}^{2}=2+x_{k-1}$
$x_{k+1}=\sqrt{2+x_{k}} \Rightarrow x_{k+1}^{2}=2+x_{k}$. So $\left(x_{k+1}+x_{k}\right) \cdot\left(x_{k+1}-x_{k}\right)=x_{k+1}^{2}-x_{k}^{2}=x_{k}-x_{k-1}>0$.
Since $x_{n}>0, x_{k+1}-x_{k}>0$
So $\left\{x_{n}\right\}$ is strictly increasing.
Show that $\left\{x_{n}\right\}$ is bounded between 0 and 3 by induction.
$0<x_{1}<3$
Suppose $0<x_{k}<3$ holds
$0<x_{k+1}^{2}=2+x_{k}<2+3<3^{2} \Rightarrow x_{k+1}<3$
So $\left\{x_{n}\right\}$ is bounded.
Hence $\left\{x_{n}\right\}$ converges to a finite real number x. $x_{n+1}=\sqrt{2+x_{n}} \Rightarrow x=\sqrt{2+x} \Rightarrow x=2$

Example 4.5.3 Prove that every bounded sequence in \mathbf{R}^{2} has a convergent subsequence.

Solution:

Let $\left(x_{n}, y_{n}\right)$ be a bounded sequence in \mathbf{R}^{2}. Then, the coordinate sequences x_{n} and y_{n} must also be bounded sequences. By the Bolzano-Weierstrass theorem, there is a subsequence $x_{n_{k}} \rightarrow \alpha$. Consider now the corresponding subsequence $y_{n_{k}}$. By Bolzano-Weierstrass again, there is a further subsequence $y_{n_{k_{j}}} \rightarrow \beta$. Since $x_{n_{k_{j}}}$ is a subsequence of $x_{n_{j}}$, it converges to α, too. It follows that the subsequence $\left(x_{n_{k_{j}}}, y_{n_{k_{j}}}\right) \rightarrow(\alpha, \beta)$.

Example 4.5.4 Prove $-\sup a_{n}=\inf \left(-a_{n}\right)$
Solution:
Note that $a \leq b \Rightarrow-a \geq-b$. Let $a=\inf \left\{-a_{n}\right\}$. Then, by definition, $a \leq-a_{m} \forall m \geq$ $n \Rightarrow-a \geq a_{m}, \forall m \geq n$. This implies that $\sup a_{n} \leq-\inf \left\{-a_{n}\right\}=-a$. To show the reverse inequality, pick any $\varepsilon>0$. Then, by the definition of the infimum, $\exists N>n$ such that $-a_{N}<a+\varepsilon \Rightarrow a_{N}>-a-\varepsilon \Rightarrow \sup a_{n}>-a-\varepsilon$. As $\varepsilon>0$ may be chosen to be arbitrarily small, we obtain $\sup a_{n} \geq-\inf \left\{-a_{n}\right\} \Rightarrow \sup a_{n}=-\inf \left\{-a_{n}\right\}$. The proof that $-\inf a_{n}=\sup \left\{-a_{n}\right\}$ follows along similar lines and is omitted.

