Key Words

Metric Space, Normed Vector Space, Euclidean Space, Lipschitz-Equivalent, Convergence, Cluster Point, Increasing(Decreasing) Sequence, Lim Sups(Lim Infs), Rising Sun Lemma, Bolzano-Weierstrass Theorem

Section 4.1 Metric Space

- Lecture 3 Definition 1 A metric space is a pair (X, d), where X is a set and $d: X \times X \to \mathbf{R}+$, satisfying
 - 1. $\forall x, y \in X \ d(x, y) \ge 0, d(x, y) = 0 \Leftrightarrow x = y$
 - 2. $\forall x, y \in X \ d(x, y) = d(y, x)$
 - 3. (triangle inequality) $\forall x, y, z \in X \ d(x, y) + d(y, z) \ge d(x, z)$

Example 4.1.1 Let $d(x, y) = max\{|x - y|, 1\}$. Prove or disprove that (\mathbf{R}, d) is a metric space.

Disproof:

Let $x \in X$. Then $d(x, x) = max\{|x - x|, 1\} = max\{0, 1\} = 1$. So d is not a metric.

Example 4.1.2 Let $d(x,y) = min\{|x-y|,1\}$. Prove or disprove that (\mathbf{R},d) is a metric space.

Proof:: In fact this is called the standard bounded metric corresponding to d.

Check the first two conditions for a metric. Do it by yourself.

Check the triangle inequality: $d(x, z) \leq d(x, y) + d(y, z)$

Now if either $|x - y| \ge 1$ or $|y - z| \ge 1$ then the right side of this inequality is at least 1; since the left side is (by definition) at most 1, the inequality holds. It remains to consider the case in which |x - y| < 1 and |y - z| < 1. In this case, we have $|x - z| \le |x - y| + |y - z| = d(x, y) + d(y, z)$. Hence $d(x, z) = min\{|x - z|, 1\} \le |x - z| \le d(x, y) + d(y, z)$. The triangle inequality holds.

Example 4.1.3 Let $X = [1, +\infty)$. Let $d(x, y) = \left|\frac{1}{x} - \frac{1}{y}\right|$. Prove or disprove that (X, d) is a metric space.

Proof:

Check the first two conditions for a metric $\forall x, y \in X, d(x, y) = \left|\frac{1}{x} - \frac{1}{y}\right| \ge 0 \text{ and } d(x, y) = \left|\frac{1}{x} - \frac{1}{y}\right| = 0 \Leftrightarrow x = y$ $\forall x, y \in X, d(x, y) = \left|\frac{1}{x} - \frac{1}{y}\right| = \left|\frac{1}{y} - \frac{1}{x}\right| = d(y, x)$

Check the triangle inequality. We show that $d(x, z) \leq d(x, y) + d(y, z)$ will depend upon the ordering of x, y, and z.

Because d(x, z) = d(z, x), without loss of generality, we can assume $x \le z$. Case 1. Suppose $\frac{1}{x} \ge \frac{1}{y} \ge \frac{1}{z}$. Then

 $\begin{aligned} & (x,y) + d(y,z) = \left|\frac{1}{x} - \frac{1}{y}\right| + \left|\frac{1}{y} - \frac{1}{z}\right| = \frac{1}{x} - \frac{1}{y} + \frac{1}{y} - \frac{1}{z} = \frac{1}{x} - \frac{1}{z} = \left|\frac{1}{x} - \frac{1}{z}\right| = d(x,z) \\ & \text{Case 2. Suppose } \frac{1}{x} \ge \frac{1}{z} \ge \frac{1}{y}. \text{ Then} \\ & d(x,y) + d(y,z) = \left|\frac{1}{x} - \frac{1}{y}\right| + \left|\frac{1}{y} - \frac{1}{z}\right| = \frac{1}{x} - \frac{1}{y} + \frac{1}{z} - \frac{1}{y} = \frac{1}{x} + \frac{1}{z} - \frac{2}{y} \ge \frac{1}{x} + \frac{1}{z} - \frac{2}{z} = \frac{1}{x} - \frac{1}{z} = \\ & \left|\frac{1}{x} - \frac{1}{z}\right| = d(x,z) \\ & \text{Case 3. Suppose } \frac{1}{y} \ge \frac{1}{x} \ge \frac{1}{z}. \text{ Then} \\ & d(x,y) + d(y,z) = \left|\frac{1}{x} - \frac{1}{y}\right| + \left|\frac{1}{y} - \frac{1}{z}\right| = \frac{1}{y} - \frac{1}{x} + \frac{1}{y} - \frac{1}{x} = \frac{2}{y} - \frac{1}{x} - \frac{1}{z} \ge \frac{2}{x} - \frac{1}{x} - \frac{1}{z} = \frac{1}{x} - \frac{1}{z} = \\ & \left|\frac{1}{x} - \frac{1}{z}\right| = d(x,z) \end{aligned}$

So the triangle inequality holds.

Typically, showing the triangle inequality involves more effort. But do not forget to check the first two conditions.

Section 4.2 Normed Vector Space

- Lecture 2 Definition 2 Let V be a vector space over **R**. A norm on V is a function $\| \|$: $V \rightarrow \mathbf{R} + \text{satisfying}$
 - 1. $\forall x \in V ||x|| \ge 0$
 - 2. $\forall x \in V ||x|| = 0 \Leftrightarrow x = 0$
 - 3. (triangle inequality) $\forall x, y \in V ||x+y|| \le ||x|| + ||y||$
 - 4. $\forall \alpha \in R, x \in V ||\alpha x|| = |\alpha|||x||$

Example 4.2.1 C([0,1]) is the set of continuous functions from [0,1] to **R**. Show that C([0,1]) is a normed space with norm $||f|| = \max_{x \in [0,1]} |f(x)|$

Solution:

Check the first two conditions by yourself

Check triangle inequality

$$\left\|f+g\right\| = \max_{x \in [0,1]} \left|f(x)+g(x)\right| \le \max_{x \in [0,1]} \left|\left|f(x)\right|+\left|g(x)\right|\right| \le \max_{x \in [0,1]} \left|f(x)\right|+\max_{x \in [0,1]} \left|g(x)\right| = \left\|f\right\|+\left\|g\right\|$$

ī

Check scalar multiplication

$$||\alpha f|| = \max_{x \in [0,1]} |\alpha \cdot f(x)| = \max_{x \in [0,1]} \left| |\alpha| \cdot f(x) \right| = |\alpha| \cdot \max_{x \in [0,1]} |f(x)| = |\alpha| \cdot ||f||$$

Section 4.3 Lipschitz-equivalent

- Lecture 3 Definition 5 Two norms $\| \|$ and $\| \|'$ on the same vector space V are said to be Lipschitz-equivalent if $\exists m, M > 0 \ \forall x \in V \ m \|x\| \le \|x\|' \le M \|x\|$.
- Lecture 3 Theorem 6: All norms on \mathbb{R}^n are Lipschitz-equivalent. In exercise 6 of problem set 2, you are asked to reexamine the proof of De La Fuente.

Section 4.4 Convergence and Cluster Point

- Lecture 3 Definition 8: Let (X, d) be a metric space. A sequence x_n converges to x if $\forall \varepsilon > 0 \exists N(\varepsilon) \in \mathbf{N}$ for all $N > N(\varepsilon) \Rightarrow d(x_n, x) < \varepsilon$. This is exactly the same as the definition of convergence of a sequence of real numbers, except we replace $|\cdot|$ in **R** by the metric d.
- Lecture 3 Definition Cluster Point: c is a cluster point of a sequence $\{x_n\}$ in a metric space (X, d) if $\forall \varepsilon > 0$: $\{n : x_n \in B_{\varepsilon}(c)\}$ is an infinite set. Equivalently, $\forall \varepsilon > 0, \forall N \in \mathbf{N}, \exists$ n > N such that $x_n \in B_{\varepsilon}(c)$.
- Lecture 3 Theorem 10: Let (X,d) be a metric space. $c \in X$ and $\{x_n\}$ is a sequence in X. Then c is a cluster point of $\{x_n\}$ if and only if there is a subsequence $\{x_{n_k}\}$ such that $\lim_{k \to \infty} x_{n_k} = c.$

Example 4.4.1 Uniqueness of Cluster Point.

Prove that a convergent sequence in a metric space (X, d) has exactly one cluster point. Solution:

Clearly, the limit of a convergent sequence is a cluster point of the sequence, so a convergent sequence must have at least one cluster point.

Let x_n be a convergent sequence in a metric space (X, d), converging to x. Let P be any point different from x, so d(x, P) > 0. We will show that P is not a cluster point. Let $\varepsilon = \frac{d(x,P)}{2}$, so $\varepsilon > 0$. There exists $N \in \mathbf{N}$ such that for all n > N, $d(x_n,x) < \varepsilon$, $d(x_n, P) \ge \tilde{d}(x, P) - d(x_n, x) \ge 2\varepsilon - \varepsilon = \varepsilon$, so P is not a cluster point.

Section 4.5 Sequences

- Lecture 3 Definition 11: A sequence of real number x_n is increasing (decreasing) if $x_{n+1} \ge x_n(x_{n+1} \le x_n)$ for all n.
- Lecture 3 Theorem 13: Let $\{x_n\}$ be an increasing (decreasing) sequence of real numbers. The limit of $\{x_n\}$ exists.
- Lecture 3 Theorem 15 Lim Sups and Lim Infs Handout: Let x_n be a sequence of real numbers. Then $\lim_{n\to\infty} x_n = \gamma \in \mathbf{R} \cup \{-\infty, \infty\} \Leftrightarrow \limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n = \gamma$.
- Lecture 3 Theorem 16 Rising Sun Lemma: Every sequence of real numbers contains an increasing subsequence or a decreasing subsequence or both.
- Lecture 3 Theorem 17 Bolzano-Weierstrass Theorem: Every bounded sequence of real numbers contains a convergent subsequence.

Example 4.5.1 Lecture 3 Theorem 15 Lim Sups and Lim Infs Handout.

Prove this theorem for the case that γ is finite.

Solution:

 $(\Rightarrow) x_n \to \gamma \in \mathbf{R}$ implies that $\forall \varepsilon > 0$ there exist $N(\varepsilon)$ such that $n \ge N(\varepsilon) \Rightarrow |x_n - \gamma| < \varepsilon$. This means that $\gamma + \varepsilon$ is an upper bound and $\gamma - \varepsilon$ is a lower bound for $\{x_k : k \ge N(\varepsilon)\}$. Using $\alpha_n = \sup\{x_k : k \ge n\}$ and $\beta_n = \inf\{x_k : k \ge n\}$, we know that $\beta_n \le \alpha_n$ (because a lower bound can't be greater than an upper bound) and for $n > N(\varepsilon)$,

$$\gamma - \varepsilon \le \beta_n \le \alpha_n \le \gamma + \varepsilon.$$

Since this is true for any ε , it must be true that α_n and β_n both converge to x. This completes the proof that $\limsup x_n = \liminf x_n = \gamma$.

(\Leftarrow) We will prove the contraposition. Suppose that $\lim_{n\to\infty} x_n \neq \gamma$. Then there exists an $\varepsilon > 0$ such that for all N, there is some $n \ge N$ such that $|x_n - \gamma| \ge \varepsilon$. This means that there are infinitely many x_n outside of $B_{\varepsilon}(\gamma)$ and it must be the case that there are infinitely many of these above $\gamma + \varepsilon$, infinitely many below $\gamma - \varepsilon$ or both. If the former is true, then $\alpha_n \ge \gamma + \varepsilon$ for all n which means that $\limsup x_n$ must be greater than or equal to $\gamma + \varepsilon$. If the latter is true, then $\beta_n \le \gamma - \varepsilon$ for all n, so $\liminf x_n$ must be less than or equal to $\gamma - \varepsilon$. In either case, it is not true that $\limsup x_n = \liminf x_n = \gamma$, completing the proof.

Example 4.5.2 Let $x_1 = \sqrt{2}$, $x_{n+1} = \sqrt{2 + x_n}$. Prove that the sequence $\{x_n\}$ converges to 2.

Solution:

We show that the sequence is increasing and bounded, hence convergent. Then we calculate the limit.

Show that $\{x_n\}$ is strictly increasing by induction.

$$\begin{split} x_2 &= \sqrt{2 + \sqrt{2}} > \sqrt{2} = x_1 \\ \text{Suppose } x_k - x_{k-1} > 0 \text{ holds. } x_k^2 = 2 + x_{k-1} \\ x_{k+1} &= \sqrt{2 + x_k} \Rightarrow x_{k+1}^2 = 2 + x_k. \text{ So } (x_{k+1} + x_k) \cdot (x_{k+1} - x_k) = x_{k+1}^2 - x_k^2 = x_k - x_{k-1} > 0. \\ \text{Since } x_n > 0, x_{k+1} - x_k > 0 \\ \text{So } \{x_n\} \text{is strictly increasing.} \\ \text{Show that } \{x_n\} \text{is bounded between 0 and 3 by induction.} \\ 0 < x_1 < 3 \\ \text{Suppose } 0 < x_k < 3 \text{ holds} \\ 0 < x_{k+1}^2 = 2 + x_k < 2 + 3 < 3^2 \Rightarrow x_{k+1} < 3 \\ \text{So } \{x_n\} \text{ is bounded.} \\ \text{Hence } \{x_n\} \text{ converges to a finite real number } x. \ x_{n+1} = \sqrt{2 + x_n} \Rightarrow x = \sqrt{2 + x} \Rightarrow x = 2 \end{split}$$

Example 4.5.3 Prove that every bounded sequence in \mathbb{R}^2 has a convergent subsequence.

Solution:

Let (x_n, y_n) be a bounded sequence in \mathbb{R}^2 . Then, the coordinate sequences x_n and y_n must also be bounded sequences. By the Bolzano-Weierstrass theorem, there is a subsequence $x_{n_k} \to \alpha$. Consider now the corresponding subsequence y_{n_k} . By Bolzano-Weierstrass again, there is a further subsequence $y_{n_{k_j}} \to \beta$. Since $x_{n_{k_j}}$ is a subsequence of x_{n_j} , it converges to α , too. It follows that the subsequence $(x_{n_{k_j}}, y_{n_{k_j}}) \to (\alpha, \beta)$.

Example 4.5.4 Prove $-\sup a_n = \inf (-a_n)$

Solution:

Note that $a \leq b \Rightarrow -a \geq -b$. Let $a = \inf\{-a_n\}$. Then, by definition, $a \leq -a_m \quad \forall m \geq n \Rightarrow -a \geq a_m, \quad \forall m \geq n$. This implies that $\sup a_n \leq -\inf\{-a_n\} = -a$. To show the reverse inequality, pick any $\varepsilon > 0$. Then, by the definition of the infimum, $\exists N > n$ such that $-a_N < a + \varepsilon \Rightarrow a_N > -a - \varepsilon \Rightarrow \sup a_n > -a - \varepsilon$. As $\varepsilon > 0$ may be chosen to be arbitrarily small, we obtain $\sup a_n \geq -\inf\{-a_n\} \Rightarrow \sup a_n = -\inf\{-a_n\}$. The proof that $-\inf a_n = \sup\{-a_n\}$ follows along similar lines and is omitted.