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Section 4.1 Metric Space

e Lecture 3 Definition 1 A metric space is a pair (X,d), where X isaset and d: X x X —
R+, satisfying
1. Vaz,y € X d(z,y) > 0,d(z,y) =0z =y
2. Va,y € X d(z,y) = d(y,x)
3. (triangle inequality) Vz,y, z € X d(z,y) + d(y,z) > d(z, z)

Example 4.1.1 Let d(z,y) = max{’x - y|, 1}. Prove or disprove that (R,d) is a metric
space.
Disproof:

Let z € X. Then d(z,z) = max{|z — z|,1} = max{0,1} =1 . So d is not a metric.

,1}. Prove or disprove that (R,d) is a metric

Example 4.1.2 Let d(z,y) = min{|z —y
space.

Proof:: In fact this is called the standard bounded metric corresponding to d.

Check the first two conditions for a metric. Do it by yourself.

Check the triangle inequality: d(z, z) < d(x,y) + d(y, 2)

Now if either |x — y‘ >1or fy — z| > 1 then the right side of this inequality is at least 1;
since the left side is (by definition) at most 1, the inequality holds. It remains to consider the
case in which ‘w — y‘ < 1and ‘y — z’ < 1. In this case, we have ’x — z‘ < |x — y’—&—‘y — z’ =
d(x,y) + d(y, z). Hence d(z, 2) = mm{‘x - z’, 1} < ’a: - z‘ < d(z,y) + d(y, z). The triangle
inequality holds.

Example 4.1.3 Let X = [1,+00). Let d(z,y) = |1 — % . Prove or disprove that (X,d) is
a metric space.

Proof:

Check the first two conditions for a metric

Va,y € X, d(z,y) = ‘% —i‘ > 0andd(z,y) = ‘% —i‘ =0sr=y

Ve,y € X, d(z,y) = |% — i| = {% — %| =d(y,x)

Check the triangle inequality. We show that d(z,z) < d(z,y) + d(y, z) will depend upon
the ordering of z, y, and z.

Because d(z, z) = d(z,x), without loss of generality, we can assume z < z.

Case 1. Suppose % > % > % Then

_ |1 1 1 1] 1 1 1 1 _ 1 1 _ |1 1|
dz,y) +dy2) =3 —y[+];—il=2-+y-1=1-2=[r i =d=2
Case 2. Suppose%Z%zi Then

_ |1 1 1 1] 1 1 1 1 _ 1 1 2 1 1 2 1 1 _
dwy)+dyz) = |3 -G+ -2 =s—3+i-g=s+i-32z+i-i=2-1=
%—%’:d(x,z)
Case 3. Supposeizizé. Then

_ |1 1 1 1] 1 1 1 1 _ 2 1 1 2 1 1 _ 1 _
dlz,y) +dy,2) =3 =S| +[;—il=y -+, -1=3-3-123--1=1-1=
z—zl=d=2)

So the triangle inequality holds.
Typically, showing the triangle inequality involves more effort. But do not forget to check
the first two conditions.



Section 4.2 Normed Vector Space

o Lecture 2 Definition 2 Let V be a vector space over R. A norm on V is a function || ||
: V — R+ satisfying
1.V eV |z|| >0
2.Vz eV |z[|=02=0
3. (triangle inequality) Yo,y € V ||z + y|| < ||| + ||yl
4. VYa e Rz €V |az| = |||z

Example 4.2.1 C([0,1]) is the set of continuous functions from [0, 1] to R. Show that
C([0,1]) is a normed space with norm || f|| = max,e[o,1)| f(2)]

Solution:

Check the first two conditions by yourself

Check triangle inequality

Hf+9|| = maXze[o,l]}f(x)‘f‘g(ff)’ < maxXge(o,1]
171+l

Check scalar multiplication

|f($){+|9(x)|’ < maxge(o,1] |f($)|+maxze[o,1] |g(x)

lloef|| = maxgepo,y|a - f(2)] = maxzep,y||e] - f(2)|= |o| - maxzepo | f(z)| = lal - ||£]]
Section 4.3 Lipschitz-equivalent
e Lecture 3 Definition 5 Two norms || || and || ||” on the same vector space V are said to be

Lipschitz-equivalent if 3m, M > 0 Vaz € V m|z| < |z| < M]||z]|.
e Lecture 3 Theorem 6: All norms on R"™ are Lipschitz-equivalent.
In exercise 6 of problem set 2, you are asked to reexamine the proof of De La Fuente.

Section 4.4 Convergence and Cluster Point

e Lecture 3 Definition 8: Let (X,d) be a metric space. A sequence z,, converges to z if
Ve > 03N(e) € N for all N > N(¢) = d(x,,z) < e. This is exactly the same as the
definition of convergence of a sequence of real numbers, except we replace |- | in R by the
metric d.

e Lecture 3 Definition Cluster Point: ¢ is a cluster point of a sequence {z,} in a metric
space (X,d) if Ve > 0: {n: =, € B:(c)} is an infinite set. Equivalently, Ve > 0, VN € N 3
n > N such that z,, € B.(c).

e Lecture 3 Theorem 10: Let (X,d) be a metric space. ¢ € X and {z,} is a sequence in

X. Then c is a cluster point of {z,} if and only if there is a subsequence {z,, } such that
liMEg—0oTn, = cC.

Example 4.4.1 Uniqueness of Cluster Point.

Prove that a convergent sequence in a metric space (X, d) has exactly one cluster point.
Solution:

Clearly, the limit of a convergent sequence is a cluster point of the sequence, so a convergent
sequence must have at least one cluster point.

Let z, be a convergent sequence in a metric space (X,d), converging to xz. Let P be
any point different from z, so d(z, P) > 0. We will show that P is not a cluster point.
Let ¢ = M, so € > 0. There exists N € N such that for all n > N, d(z,,z) < e,
d(xy, P) > d(z, P) — d(zn,x) > 26 —e =€, so P is not a cluster point.

Section 4.5 Sequences



Lecture 3 Definition 11: A sequence of real number z,, is increasing (decreasing) if
Tn41 Z xn(mn+1 § xn)fOI" all n.

Lecture 3 Theorem 13: Let {x,} be an increasing (decreasing) sequence of real numbers.
The limit of {z,} exists.

Lecture 3 Theorem 15 Lim Sups and Lim Infs Handout: Let x, be a sequence of real
numbers. Then lim,, o z, =7 € RU{—00, 00} < limsup,,_,  z, = liminf, . z, = 7.
Lecture 3 Theorem 16 Rising Sun Lemma: Every sequence of real numbers contains an
increasing subsequence or a decreasing subsequence or both.

Lecture 3 Theorem 17 Bolzano-Weierstrass Theorem: Every bounded sequence of real num-
bers contains a convergent subsequence.

Example 4.5.1 Lecture 3 Theorem 15 Lim Sups and Lim Infs Handout.

Prove this theorem for the case that + is finite.

Solution:

(=) x,, — v € R implies that Ve > 0 there exist N(¢) such that n > N(e) = |z, — 7| <.
This means that v 4 € is an upper bound and v — ¢ is a lower bound for {xy : kK > N(e)}.
Using oy, = sup{zy : kK > n} and §,, = inf{zy : £ > n}, we know that 3, < a,, (because a
lower bound can’t be greater than an upper bound) and for n > N(¢),

y—e< B, Loy <y+te

Since this is true for any e, it must be true that «,, and 3, both converge to x. This
completes the proof that limsup z,, = liminf x,, = 7.

(<) We will prove the contraposition. Suppose that lim, . x, # 7. Then there exists
an € > 0 such that for all N, there is some n > N such that |z, — | > €. This means
that there are infinitely many x,, outside of B.(7) and it must be the case that there are
infinitely many of these above 7 + ¢, infinitely many below 7 — ¢ or both. If the former is
true, then «,, > v + ¢ for all n which means that lim sup x,, must be greater than or equal
to v+ e. If the latter is true, then 8, < v — ¢ for all n, so liminf z,, must be less than or
equal to v —e. In either case, it is not true that lim sup x,, = liminf z,, = 7, completing the
proof.

Example 4.5.2 Let 21 = \/57 Zpi1 = V2 + z,. Prove that the sequence {x,} converges
to 2.

Solution:

We show that the sequence is increasing and bounded, hence convergent. Then we calculate
the limit.

Show that {z,} is strictly increasing by induction.

To=V2+V2>V2=m

Suppose z — xr_1 > 0 holds. xﬁ =24+ w1

Tpr1 = V2 + T = x%_H = 2+xp. So (Tp41 + k) (Tpy1 — T) = xﬁﬂ—x% =xp—op_1 > 0.
Since z,, > 0, 41 — 2, >0

So {xy }is strictly increasing.

Show that {z,}is bounded between 0 and 3 by induction.

O0<z1 <3

Suppose 0 < zx < 3 holds

0<ai, =242, <2+3<3%= a1 <3

So {z,} is bounded.

Hence {z,} converges to a finite real number z. z,11 =2+ z, =>2x=vV24+2x=>2=2

Example 4.5.3 Prove that every bounded sequence in R? has a convergent subsequence.



Solution:

Let (2, yn) be a bounded sequence in R2. Then, the coordinate sequences z,, and 3, must
also be bounded sequences. By the Bolzano-Weierstrass theorem, there is a subsequence
Zp, — . Consider now the corresponding subsequence y,,, . By Bolzano-Weierstrass again,
there is a further subsequence Yni, — 5. Since Tny,, is a subsequence of x,,, it converges

to a, too. It follows that the subsequence (x”kj, ynkj) — (o, B).

Example 4.5.4 Prove —sup a,, = inf (—a,,)

Solution:
Note that a < b = —a > —b. Let a = inf{—a,}. Then, by definition, a < —a,, Ym >
n = —a > G, Ym > n. This implies that supa, < —inf{—a,} = —a. To show the

reverse inequality, pick any € > 0. Then, by the definition of the infimum, 3N > n such
that —ay < a+¢ = ay > —a— € = supa, > —a —e. As ¢ > 0 may be chosen to be
arbitrarily small, we obtain sup a,, > —inf {—a,} = supa, = —inf {—a,}. The proof that
—inf a, = sup {—a,} follows along similar lines and is omitted.



