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Section 4.1 Metric Space

� Lecture 3 De�nition 1 A metric space is a pair (X; d), where X is a set and d : X �X !
R+, satisfying
1. 8x; y 2 X d(x; y) � 0; d(x; y) = 0, x = y

2. 8x; y 2 X d(x; y) = d(y; x)

3. (triangle inequality) 8x; y; z 2 X d(x; y) + d(y; z) � d(x; z)

Example 4.1.1 Let d(x; y) = maxf
��x� y��; 1g. Prove or disprove that (R; d) is a metric

space.
Disproof:
Let x 2 X. Then d(x; x) = maxf

��x� x��; 1g = maxf0; 1g = 1 . So d is not a metric.
Example 4.1.2 Let d(x; y) = minf

��x� y��; 1g. Prove or disprove that (R; d) is a metric
space.
Proof:: In fact this is called the standard bounded metric corresponding to d.
Check the �rst two conditions for a metric. Do it by yourself.
Check the triangle inequality: d(x; z) � d(x; y) + d(y; z)
Now if either

��x� y�� � 1 or ��y � z�� � 1 then the right side of this inequality is at least 1;
since the left side is (by de�nition) at most 1, the inequality holds. It remains to consider the
case in which

��x� y�� < 1 and ��y � z�� < 1. In this case, we have ��x� z�� � ��x� y��+��y � z�� =
d(x; y) + d(y; z): Hence d(x; z) = minf

��x� z��; 1g � ��x� z�� � d(x; y) + d(y; z): The triangle
inequality holds.

Example 4.1.3 Let X = [1;+1). Let d(x; y) =
�� 1
x �

1
y

��. Prove or disprove that (X; d) is
a metric space.
Proof:
Check the �rst two conditions for a metric
8x; y 2 X; d(x; y) =

�� 1
x �

1
y

�� � 0 and d(x; y) = �� 1x � 1
y

�� = 0, x = y

8x; y 2 X; d(x; y) =
�� 1
x �

1
y

�� = �� 1y � 1
x

�� = d(y; x)
Check the triangle inequality. We show that d(x; z) � d(x; y) + d(y; z) will depend upon
the ordering of x, y, and z.
Because d(x; z) = d(z; x), without loss of generality, we can assume x � z.
Case 1. Suppose 1

x �
1
y �

1
z . Then

d(x; y) + d(y; z) =
�� 1
x �

1
y

��+ �� 1y � 1
z

�� = 1
x �

1
y +

1
y �

1
z =

1
x �

1
z =

�� 1
x �

1
z

�� = d(x; z)
Case 2. Suppose 1

x �
1
z �

1
y . Then

d(x; y) + d(y; z) =
�� 1
x �

1
y

��+ �� 1y � 1
z

�� = 1
x �

1
y +

1
z �

1
y =

1
x +

1
z �

2
y �

1
x +

1
z �

2
z =

1
x �

1
z =�� 1

x �
1
z

�� = d(x; z)
Case 3. Suppose 1

y �
1
x �

1
z . Then

d(x; y) + d(y; z) =
�� 1
x �

1
y

��+ �� 1y � 1
z

�� = 1
y �

1
x +

1
y �

1
x =

2
y �

1
x �

1
z �

2
x �

1
x �

1
z =

1
x �

1
z =�� 1

x �
1
z

�� = d(x; z)
So the triangle inequality holds.
Typically, showing the triangle inequality involves more e¤ort. But do not forget to check
the �rst two conditions.
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Section 4.2 Normed Vector Space

� Lecture 2 De�nition 2 Let V be a vector space over R. A norm on V is a function k k
: V ! R+ satisfying
1. 8x 2 V kxk � 0
2. 8x 2 V kxk = 0, x = 0

3. (triangle inequality) 8x; y 2 V kx+ yk � kxk+ kyk
4. 8� 2 R; x 2 V k�xk = j�jkxk

Example 4.2.1 C([0; 1]) is the set of continuous functions from [0; 1] to R. Show that
C([0; 1]) is a normed space with norm

f = maxx2[0;1]��f(x)��
Solution:
Check the �rst two conditions by yourself
Check triangle inequalityf+g = maxx2[0;1]��f(x)+g(x)�� � maxx2[0;1]������f(x)��+��g(x)������ � maxx2[0;1]��f(x)��+maxx2[0;1]��g(x)�� =f+g
Check scalar multiplication

jj�f jj = maxx2[0;1]
��� � f(x)�� = maxx2[0;1]��������� � f(x)����= ����� �maxx2[0;1]��f(x)�� = j�j � jjf jj

Section 4.3 Lipschitz-equivalent

� Lecture 3 De�nition 5 Two norms k k and k k0 on the same vector space V are said to be
Lipschitz-equivalent if 9m;M > 0 8x 2 V mkxk � kxk0 �Mkxk:

� Lecture 3 Theorem 6: All norms on Rn are Lipschitz-equivalent.
In exercise 6 of problem set 2, you are asked to reexamine the proof of De La Fuente.

Section 4.4 Convergence and Cluster Point

� Lecture 3 De�nition 8: Let (X; d) be a metric space. A sequence xn converges to x if
8" > 09N(") 2 N for all N > N(") ) d(xn; x) < ". This is exactly the same as the
de�nition of convergence of a sequence of real numbers, except we replace j � j in R by the
metric d.

� Lecture 3 De�nition Cluster Point: c is a cluster point of a sequence fxng in a metric
space (X; d) if 8" > 0: fn : xn 2 B"(c)g is an in�nite set. Equivalently, 8" > 0; 8N 2 N ;9
n > N such that xn 2 B"(c).

� Lecture 3 Theorem 10: Let (X; d) be a metric space. c 2 X and fxng is a sequence in
X. Then c is a cluster point of fxng if and only if there is a subsequence fxnkg such that
limk!1xnk = c.

Example 4.4.1 Uniqueness of Cluster Point.
Prove that a convergent sequence in a metric space (X; d) has exactly one cluster point.
Solution:
Clearly, the limit of a convergent sequence is a cluster point of the sequence, so a convergent
sequence must have at least one cluster point.
Let xn be a convergent sequence in a metric space (X; d), converging to x. Let P be
any point di¤erent from x, so d(x; P ) > 0. We will show that P is not a cluster point.
Let " = d(x;P )

2 , so " > 0. There exists N 2 N such that for all n > N , d(xn; x) < ",
d(xn; P ) � d(x; P )� d(xn; x) � 2"� " = ", so P is not a cluster point.

Section 4.5 Sequences
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� Lecture 3 De�nition 11: A sequence of real number xn is increasing (decreasing) if
xn+1 � xn(xn+1 � xn)for all n.

� Lecture 3 Theorem 13: Let fxng be an increasing (decreasing) sequence of real numbers.
The limit of fxng exists.

� Lecture 3 Theorem 15 Lim Sups and Lim Infs Handout: Let xn be a sequence of real
numbers. Then limn!1 xn =  2 R [ f�1;1g , lim supn!1 xn = lim infn!1 xn = .

� Lecture 3 Theorem 16 Rising Sun Lemma: Every sequence of real numbers contains an
increasing subsequence or a decreasing subsequence or both.

� Lecture 3 Theorem 17 Bolzano-Weierstrass Theorem: Every bounded sequence of real num-
bers contains a convergent subsequence.

Example 4.5.1 Lecture 3 Theorem 15 Lim Sups and Lim Infs Handout.
Prove this theorem for the case that  is �nite.
Solution:
()) xn !  2 R implies that 8 " > 0 there exist N(") such that n � N(")) jxn � j < ".
This means that  + " is an upper bound and  � " is a lower bound for fxk : k � N(")g.
Using �n = supfxk : k � ng and �n = inffxk : k � ng, we know that �n � �n (because a
lower bound can�t be greater than an upper bound) and for n > N("),

 � " � �n � �n �  + ":

Since this is true for any ", it must be true that �n and �n both converge to x. This
completes the proof that lim supxn = lim inf xn = .
(() We will prove the contraposition. Suppose that limn!1 xn 6= . Then there exists
an " > 0 such that for all N , there is some n � N such that jxn � j � ". This means
that there are in�nitely many xn outside of B"() and it must be the case that there are
in�nitely many of these above  + ", in�nitely many below  � " or both. If the former is
true, then �n �  + " for all n which means that lim supxn must be greater than or equal
to  + ". If the latter is true, then �n �  � " for all n, so lim inf xn must be less than or
equal to � ". In either case, it is not true that lim supxn = lim inf xn = , completing the
proof.

Example 4.5.2 Let x1 =
p
2, xn+1 =

p
2 + xn. Prove that the sequence fxng converges

to 2.
Solution:
We show that the sequence is increasing and bounded, hence convergent. Then we calculate
the limit.
Show that fxng is strictly increasing by induction.
x2 =

p
2 +

p
2 >

p
2 = x1

Suppose xk � xk�1 > 0 holds. x2k = 2 + xk�1
xk+1 =

p
2 + xk ) x2k+1 = 2+xk. So (xk+1 + xk)�(xk+1 � xk) = x2k+1�x2k = xk�xk�1 > 0.

Since xn > 0, xk+1 � xk > 0
So fxngis strictly increasing.
Show that fxngis bounded between 0 and 3 by induction.
0 < x1 < 3

Suppose 0 < xk < 3 holds
0 < x2k+1 = 2 + xk < 2 + 3 < 3

2 ) xk+1 < 3

So fxng is bounded.
Hence fxng converges to a �nite real number x. xn+1 =

p
2 + xn ) x =

p
2 + x) x = 2

Example 4.5.3 Prove that every bounded sequence in R2 has a convergent subsequence.
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Solution:
Let (xn; yn) be a bounded sequence in R2. Then, the coordinate sequences xn and yn must
also be bounded sequences. By the Bolzano-Weierstrass theorem, there is a subsequence
xnk ! �. Consider now the corresponding subsequence ynk . By Bolzano-Weierstrass again,
there is a further subsequence ynkj ! �. Since xnkj is a subsequence of xnj , it converges
to �, too. It follows that the subsequence (xnkj ; ynkj )! (�; �).

Example 4.5.4 Prove �sup an = inf (�an)
Solution:
Note that a � b ) �a � �b. Let a = inff�ang. Then, by de�nition, a � �am 8m �
n ) �a � am; 8m � n. This implies that sup an � �inff�ang = �a. To show the
reverse inequality, pick any " > 0. Then, by the de�nition of the in�mum, 9N > n such
that�aN < a + " ) aN > �a � " ) sup an > �a � ". As " > 0 may be chosen to be
arbitrarily small, we obtain sup an � �inf f�ang ) sup an = �inf f�ang. The proof that
�inf an = sup f�ang follows along similar lines and is omitted.
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