Key words

Extreme Value Theorem, Intermediate Value Theorem, Monotonically Increasing, Completeness, Contraction Mapping Theorem, Cauchy Sequence

Section 6.1 Properties of Continuous Functions

- Lecture 5 Theorem 1 (Extreme Value Theorem): Let f be a continuous real-valued function on [a, b]. Then f assumes its minimum and maximum on [a, b]. In particular, f is bounded above and below.
- Lecture 5 Theorem 2 (Intermediate Value Theorem): Suppose $f:[a,b] \to R$ is continuous, and f(a) < d < f(b). Then there exists $c \in (a, b)$ such that f(c) = d.

Example 6.1.1

If f is continuous real-valued function on [a, b], then f([a, b]) is a closed interval. Solution: The Extreme Value Theorem shows that the range of f is bounded, and the extrema are attained. Thus there are points c and d in [a, b] such that

$$f(c) = m := \inf_{x \in [a,b]} f(x)$$

$$f(d) = M := \sup_{x \in [a,b]} f(x)$$

Suppose that $c \leq d$ (the case c > d may be handled similarly by considering the function -f). Pick any arbitrary point y in (m, M). Since f(x) is continuous on the interval [c, d]. Thus by the Intermediate Value Theorem, there is a point $x \in (c, d)$ such that f(x) = y. This is true for every point $y \in (m, M)$, as well as two end points. Therefore, f([a, b]) = [m, M].

Section 6.2 Cauchy Sequence

- Lecture 5 Definition 6: A sequence $\{x\}$ in a metric space (X,d) is **Cauchy** if $\forall \varepsilon > 0$ $0 \exists N(\varepsilon) n, m > N(\varepsilon) \Rightarrow d(x_n, x_m) < \varepsilon$
- Lecture 5 Theorem 7: Every convergent sequence in a metric space is Cauchy.

Example 6.2.1

Show that the sequence $\{x_n\} = \frac{(-1)^n}{n}$ is Cauchy with Euclidean metric. Solution 1: Pick an $\varepsilon > 0$, choose $N > \frac{2}{\varepsilon}$, for every m, n > N, $|x_m - x_n| < |\frac{(-1)^m}{m} - \frac{(-1)^n}{n}| \le 1$ $\left|\frac{1}{m} + \frac{1}{n}\right| < \frac{2}{N} < \varepsilon$. So it is Cauchy.

Solution 2: We know that $\{x_n\} \to 0$. All convergent sequences are Cauchy (Theorem 7). So $\{x_n\}$ is Cauchy.

Example 6.2.2

Show that if x_n and y_n are Cauchy sequences from a metric space X, then $d(x_n, y_n)$ converges.

Solution:

Because X is not necessarily complete, we cannot rely on the convergence of x_n and y_n . The fact that the sequences are Cauchy means that for all $\varepsilon > 0$, there exists an $N_x(\varepsilon)$ such that $m, n \geq N_x(\varepsilon) \Rightarrow d(x_m, x_n) < \varepsilon$ and there exists an $N_y(\varepsilon)$ such that $m, n \geq N_y(\varepsilon) \Rightarrow$ $d(y_m, y_n) < 0$. We will use this to show that the sequence $d(x_n, y_n)$ is Cauchy. Then because $d(x_n, y_n)$ is in **R** and **R** is complete, it must converge.

First let us make note of two facts which come from repeated application of the triangle inequality:

$$\begin{aligned} d(x_n, y_n) &\leq d(x_n, x_m) + d(x_m, y_m) + d(y_m, y_n) \\ d(x_m, y_m) &\leq d(x_m, x_n) + d(x_n, y_n) + d(y_n, y_m) \end{aligned}$$

Rearranging these (by isolating the expression $d(x_m, y_m) - d(x_n, y_n)$) yields

$$\begin{array}{lll} -(d(x_m, x_n) + d(y_m, y_n)) &\leq & d(x_m, y_m) - d(x_n, y_n) \leq d(x_m, x_n) + d(y_m, y_n) \\ & & \downarrow \\ & |d(x_m, y_m) - d(x_n, y_n)| &\leq & d(x_m, x_n) + d(y_m, y_n) \end{array}$$

Now given $\varepsilon > 0$, choose $N(\varepsilon) > \max\{N_x(\frac{\varepsilon}{2}), N_y(\frac{\varepsilon}{2})\}$. Then $\forall n \ge N(\varepsilon) \Rightarrow |d(x_m, y_m) - d(x_n, y_n)| \le d(x_m, x_n) + d(y_m, y_n) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$. So $d(x_n, y_n)$ is Cauchy and consequently converges.

Example 6.2.3

Prove that a sequence of real numbers $\{a_n\}$ converges iff it is Cauchy.

Solution: Assume the sequence is Cauchy. Given $\varepsilon > 0$, there exists $N(\varepsilon)$ such that $|a_n - a_m| < \varepsilon/2$, $\forall n, m > N(\varepsilon)$. Our first observation is that a Cauchy sequence is a bounded sequence. In fact, letting $\epsilon = 1$, put $M = max\{|a_1|, |a_2|, ..., |a_{N(1)}|, |a_{N(1)+1}| + 1/2\}$. Then, M is an upper bound on $|a_n|$, $\forall n$. Since the sequence is bounded we know, by the Bolzano-Weierstrass Theorem, that there is a subsequence a_{n_k} that converges (to some limit L). Choose an index N' such that $\forall n_k > N'$, $|a_{n_k} - L| < \varepsilon/2$. Then $\forall n, n_k > N = max\{N(\varepsilon), N'\}$

$$|a_n - L| = |a_n - a_{n_k} + a_{n_k} - L| \le |a_n - a_{n_k}| + |a_{n_k} - L| < \varepsilon$$

Notice that the first term on the RHS is $\langle \epsilon/2 \rangle$ by the fact that the sequence is Cauchy. The second term is $\langle \varepsilon/2 \rangle$ because the a_{n_k} 's form a convergent subsequence. It follows that $|a_n - L| < \varepsilon \forall n > N$.

Now assume the sequence converges (to some number L). Given $\varepsilon > 0$ there exists $N(\varepsilon)$ such that whenever $n > N(\varepsilon)$, $|a_n - L| < \varepsilon/2$. Let $m, n > N(\varepsilon)$. We then obtain:

$$|a_n - a_m| = |a_n - L + L - a_m| \le |a_n - L| + |L - a_m| < \varepsilon$$

By hypothesis, both terms on the RHS are $< \varepsilon/2$. Therefore, the a_n 's are Cauchy.

Example 6.2.4:

Are the following statements true or false? Write down your proof or disproof.

- (1) Cauchy sequence \Rightarrow bounded squence
- (2) bounded squence \Rightarrow Cauchy sequence
- (3) Convergent squence \Rightarrow Cauchy sequence
- (4) Cauchy sequence \Rightarrow Convergent squence

Section 6.3 Complete Metric Spaces

- Lecture 5 Definition 8: A metric space (X, d) is **complete** if every Cauchy sequence $\{x_n\} \subseteq X$ converges to a limit $x \in X$.
- Lecture 5 Definition 8: A **Banach space** is a normed space which is complete in the metric generated by its norm.
- Lecture 5 Theorem 9: **R** is complete with the usual metric (so E^1 is a Banach space).
- Lecture 5 Theorem 10: E^n is complete for every $n \in \mathbf{N}$
- Lecture 5 Theorem 11: Suppose (X, d) is a complete metric space, $Y \subseteq X$. Then $(Y, d) = (Y, d|_y)$ is complete if and only if Y is a closed subset of X. Note

Why we need the definition of completeness? It's because convergent point (limit point) may not exist in X. A careful examination of definition 5 and definition 8 tells us that whether some sequence is Cauchy depends on how the metric is defined rather than the underlying metric space. But whether a Cauchy sequence converges in a metric space depends on the definition of the metric space.

Example 6.3.1

Show that $(0, \infty)$ is not complete.

Solution: The easiest way to show that a metric space is not complete is to find a Cauchy sequence that converges to a limit out of the space. Pick a sequence $\{x_n\} = \frac{1}{n}$ in the metric space $(0, \infty)$. $\{x_n\}$ is a Cauchy sequence: Given an $\varepsilon > 0$, choose $N > \frac{1}{\varepsilon}$, for every m, n > N, $|x_m - x_n| < \max\{\frac{1}{m}, \frac{1}{n}\} < \frac{1}{N} < \varepsilon$. And we know it converges to 0. But $0 \notin (0, \infty)$, so this metric space is not complete.

Example 6.3.2

Let X denote the set of all bounded finite and infinite sequences of real numbers $\{a_n\}_{n=1}^{\infty}$ (hereafter denoted simply as a_n). Define the "distance" between two sequences a_n and b_n to be: $d(a_n, b_n) = \sum_{n=1}^{\infty} 2^{-n} |a_n - b_n|$.

(a). Show that: (X, d) is a metric space.

(b). Show that (X, d) is not complete.

Solution:

(a). Elements of X are sequences of numbers. Put $\{a_n\}, \{b_n\}, \{c_n\} \in X$. We check only the triangle inequality as the other two properties of a metric are obviously satisfied: $d(\{a_n\}, \{b_n\}) + d(\{b_n\}, \{c_n\}) = \sum_{n=1}^{\infty} 2^{-n} |a_n - b_n| + \sum_{n=1}^{\infty} 2^{-n} |b_n - c_n| = \sum_{n=1}^{\infty} 2^{-n} (|a_n - b_n| + |b_n - c_n|) \ge \sum_{n=1}^{\infty} 2^{-n} |a_n - c_n| = d(\{a_n\}, \{c_n\})$, where the last inequality follows from the usual triangle inequality for the real numbers.

Remark: The assumptions on the space X ensure that the equation defining d in fact yields a function from X to \Re : For any $\{a_n\}, \{b_n\} \in X$, put A_1, A_2 such that $|a_n| \leq A_1, |b_n| \leq A_2 \forall n$. We then obtain: $d(\{a_n\}, \{b_n\}) = \sum_{n=1}^{\infty} 2^{-n} |a_n - b_n| \leq \sum_{n=1}^{\infty} 2^{-n} (|a_n| + |b_n|) \leq \sum_{n=1}^{\infty} 2^{-n} (A_1 + A_2) < \infty$.

(b). To show that X is not complete we will produce a sequence of elements $a^m = \{a_r^m\}_{r=1}^\infty \in X$ such that $d(a^m, a^n) \to 0$ as $m, n \to \infty$ and $a = \{a_r\}, a_r = \lim_{m \to \infty} a_r^m \notin X$. In other words, we will produce a Cauchy sequence of elements of X whose componentwise limits

form an unbounded sequence. Define a^m by setting: $a_r^m = \begin{cases} r & if \ r < m \\ m & if \ r \ge m \end{cases}$

Notice that $a_r = \lim_{m\to\infty} a_r^m = r$, hence the sequence $a = \{a_r\}$ formed by the componentwise limits is unbounded and, thus, not an element of X. On the other hand, note that the sequence of elements $a^m = \{a_r^m\}$ is a Cauchy sequence in X: Given any $\epsilon > 0$ we will show that there exists an $N(\epsilon)$ such that $d(a^m, a^n) < \epsilon$ whenever $m, n > N(\epsilon)$. Notice that even though $a = \{a_r\} \notin X$, we may still apply the triangle inequality to d as long as all terms in the inequality arev finite: $d(a^m, a^n) \leq d(a^m, a) + d(a, a^n)$. From the construction of $a^m = \{a_r^m\}$ we obtain: $d(a^m, a) = \sum_{r=m+1}^{\infty} 2^{-r} \cdot (r-m)$. The latter sum can be shown to converge as follows:

$$\sum_{r=m+1}^{\infty} 2^{-r}(r-m) = 2^{-m} \sum_{r=m+1}^{\infty} 2^{-(r-m)}(r-m) \le 2^{-m} \cdot \sum_{r=0}^{\infty} 2^{-r} \cdot r = 2^{-m} \cdot \frac{4}{3}$$

The last equality above follows from the fact that $\sum_{r=0}^{\infty} x^r = \frac{1}{1-x}$, whenever |x| < 1, and from the fact that $\frac{d}{dx} \left\{ \frac{1}{1-x} \right\} = \frac{1}{(1-x)^2}$. We thus obtain: $d(a^m, a^n) \le d(a^n, a) + d(a^m, a) < (2^{-m}+2^{-n}) \cdot \frac{4}{3}$. Clearly, the RHS tends to zero as $m, n \to \infty$. Thus, the sequence $a^m = \{a_r^m\}$ is Cauchy in X.

Section 6.4 Contraction

- Lecture 5 Definition 13: Let (X, d) be a nonempty complete metric space. An operator is a function $T: X \to X$.
- Lecture 5 Definition 13: An operator T is a contraction of modulus β if $\beta < 1$ and $\forall x, y \in X \ d(T(x), T(y)) \leq \beta d(x, y)$.
- Lecture 5 Theorem 14: Every contraction is uniformly continuous.

• Lecture 5 Theorem 15 Contraction Mapping Theorem: Let (X, d) be a complete metric space, $T: X \to X$ a contraction with modulus $\beta < 1$. Then T has a unique fixed point x*. And for every $x_0 \in X$, the sequence defined by $x_1 = T(x_0), x_2 = T(x_1) \dots x_{n+1} = T(x_n)$ converges to x*.

Example 6.4.1

Show $T(x) = x - \frac{1}{x}$ on $(0, \infty)$ is not a contraction. Solution: $|s - y - (\frac{1}{x} - \frac{1}{x})|$

 $\forall x, y \in (0, \infty), \frac{d(T(x), T(y))}{d(x, y)} = \frac{|s - y - (\frac{1}{x} - \frac{1}{y})|}{|x - y|} = 1 + \frac{1}{xy} > 1$. So we cannot find any $\beta < 1$ that qualifies as a contraction.

Example 6.4.2

Let $X = C([0, \beta], \beta < 1$. Let $d(f, g) = \{\max_t | f(t) - g(t)| \}$. Define $T : X \to X$ by $Tf(t) = \int_0^t f(s) ds$. Show that T has a unique fixed point. Solution:

It suffices to show that T is a contraction:

$$d(Tf, Tg) = max_t |Tf(t) - Tg(t)|$$

$$= max_t |\int_0^t f(s) \, ds - \int_0^t g(s) \, ds|$$

$$\leq max_t \int_0^t |f(s) - g(s)| \, ds$$

$$\leq \int_0^\beta max_t \{|f(t) - g(t)|\} \, ds$$

$$= \beta \cdot d(f, g)$$