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Section 6.1 Properties of Continuous Functions

� Lecture 5 Theorem 1 (Extreme Value Theorem): Let f be a continuous real-valued function
on [a; b]. Then f assumes its minimum and maximum on [a; b]. In particular, f is bounded
above and below.

� Lecture 5 Theorem 2 (Intermediate Value Theorem): Suppose f : [a; b]! R is continuous,
and f(a) < d < f(b). Then there exists c 2 (a; b) such that f(c) = d.
Example 6.1.1
If f is continuous real-valued function on [a; b], then f([a; b]) is a closed interval.
Solution: The Extreme Value Theorem shows that the range of f is bounded, and the
extrema are attained. Thus there are points c and d in [a; b] such that

f(c) = m := inf
x2[a;b]

f(x)

f(d) = M := sup
x2[a;b]

f(x)

Suppose that c � d (the case c > d may be handled similarly by considering the function
�f). Pick any arbitrary point y in (m;M). Since f(x) is continuous on the interval [c; d].
Thus by the Intermediate Value Theorem, there is a point x 2 (c; d) such that f(x) = y. This
is true for every point y 2 (m;M), as well as two end points. Therefore, f([a; b]) = [m;M ].

Section 6.2 Cauchy Sequence

� Lecture 5 De�nition 6: A sequence fxg in a metric space (X; d) is Cauchy if 8" >
09N(")n;m > N(")) d(xn; xm) < "

� Lecture 5 Theorem 7: Every convergent sequence in a metric space is Cauchy.

Example 6.2.1
Show that the sequence fxng = (�1)n

n is Cauchy with Euclidean metric.

Solution 1: Pick an " > 0, choose N > 2
" , for everym;n > N , jxm�xnj < j

(�1)m
m � (�1)n

n j �
j 1m +

1
n j <

2
N < ". So it is Cauchy.

Solution 2: We know that fxng ! 0. All convergent sequences are Cauchy (Theorem 7).
So fxng is Cauchy.

Example 6.2.2
Show that if xn and yn are Cauchy sequences from a metric space X, then d(xn; yn) con-
verges.
Solution:
Because X is not necessarily complete, we cannot rely on the convergence of xn and yn.
The fact that the sequences are Cauchy means that for all " > 0, there exists an Nx(") such
that m;n � Nx(") ) d(xm; xn) < " and there exists an Ny(") such that m;n � Ny(") )
d(ym; yn) < 0. We will use this to show that the sequence d(xn; yn) is Cauchy.Then because
d(xn; yn) is in R and R is complete, it must converge.
First let us make note of two facts which come from repeated application of the triangle
inequality:

d(xn; yn) � d(xn; xm) + d(xm; ym) + d(ym; yn)

d(xm; ym) � d(xm; xn) + d(xn; yn) + d(yn; ym)
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Rearranging these (by isolating the expression d(xm; ym)� d(xn; yn)) yields

�(d(xm; xn) + d(ym; yn)) � d(xm; ym)� d(xn; yn) � d(xm; xn) + d(ym; yn)
+

jd(xm; ym)� d(xn; yn)j � d(xm; xn) + d(ym; yn)

Now given " > 0, choose N(") > maxfNx( "2 ); Ny(
"
2 )g. Then 8n � N(") ) jd(xm; ym) �

d(xn; yn)j � d(xm; xn) + d(ym; yn) < "
2 +

"
2 = ": So d(xn; yn) is Cauchy and consequently

converges.

Example 6.2.3
Prove that a sequence of real numbers fang converges i¤ it is Cauchy.
Solution: Assume the sequence is Cauchy. Given "> 0, there exists N(") such that jan �
amj < "=2 , 8n;m > N("). Our �rst observation is that a Cauchy sequence is a bounded
sequence. In fact, letting � = 1, put M = maxfja1j; ja2j; ::::; jaN(1)j; jaN(1)+1j + 1=2g.
Then, M is an upper bound on janj; 8n. Since the sequence is bounded we know, by
the Bolzano-Weierstrass Theorem, that there is a subsequence ank that converges (to some
limit L). Choose an index N 0 such that 8nk > N 0; jank � Lj < "=2. Then 8n; nk > N =
maxfN("); N 0g

jan � Lj = jan � ank + ank � Lj � jan � ank j+ jank � Lj < "

Notice that the �rst term on the RHS is < �=2 by the fact that the sequence is Cauchy.
The second term is < "=2 because the ank�s form a convergent subsequence. It follows that
jan � Lj < " 8n > N .
Now assume the sequence converges (to some number L). Given "> 0 there exists N(")
such that whenever n > N("), jan � Lj < "=2. Let m;n > N("). We then obtain:

jan � amj = jan � L+ L� amj � jan � Lj+ jL� amj < "

By hypothesis, both terms on the RHS are < "=2. Therefore, the an�s are Cauchy.

Example 6.2.4:
Are the following statements true or false? Write down your proof or disproof.
(1) Cauchy sequence ) bounded squence
(2) bounded squence ) Cauchy sequence
(3) Convergent squence ) Cauchy sequence
(4) Cauchy sequence ) Convergent squence

Section 6.3 Complete Metric Spaces

� Lecture 5 De�nition 8: A metric space (X; d) is complete if every Cauchy sequence fxng �
X converges to a limit x 2 X.

� Lecture 5 De�nition 8: A Banach space is a normed space which is complete in the metric
generated by its norm.

� Lecture 5 Theorem 9: R is complete with the usual metric (so E1 is a Banach space).

� Lecture 5 Theorem 10: En is complete for every n 2 N
� Lecture 5 Theorem 11: Suppose (X; d) is a complete metric space, Y � X. Then (Y; d) =
(Y; djy) is complete if and only if Y is a closed subset of X.
Note
Why we need the de�nition of completeness? It�s because convergent point (limit point) may
not exist in X. A careful examination of de�nition 5 and de�nition 8 tells us that whether
some sequence is Cauchy depends on how the metric is de�ned rather than the underlying
metric space. But whether a Cauchy sequence converges in a metric space depends on the
de�nition of the metric space.
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Example 6.3.1
Show that (0;1) is not complete.
Solution: The easiest way to show that a metric space is not complete is to �nd a Cauchy
sequence that converges to a limit out of the space. Pick a sequence fxng = 1

n in the
metric space (0;1). fxng is a Cauchy sequence: Given an " > 0, choose N > 1

" , for every
m;n > N , jxm � xnj < maxf 1m ;

1
ng <

1
N < ". And we know it converges to 0. But 0

=2 (0;1), so this metric space is not complete.
Example 6.3.2
Let X denote the set of all bounded �nite and in�nite sequences of real numbers fang1n=1
(hereafter denoted simply as an). De�ne the �distance�between two sequences an and bn
to be: d(an; bn) =

P1
n=1 2

�njan � bnj.
(a). Show that: (X; d) is a metric space.
(b). Show that (X; d) is not complete.
Solution:
(a). Elements of X are sequences of numbers. Put fang; fbng; fcng 2 X. We check
only the triangle inequality as the other two properties of a metric are obviously satis�ed:
d(fang; fbng)+d(fbng; fcng) =

P1
n=1 2

�njan�bnj+
P1

n=1 2
�njbn�cnj =

P1
n=1 2

�n(jan�
bnj + jbn � cnj) �

P1
n=1 2

�njan � cnj = d(fang; fcng), where the last inequality follows
from the usual triangle inequality for the real numbers.
Remark: The assumptions on the space X ensure that the equation de�ning d in fact yields
a function from X to <: For any fang; fbng 2 X, put A1; A2 such that janj � A1; jbnj �
A2 8n. We then obtain: d(fang; fbng) =

P1
n=1 2

�njan � bnj �
P1

n=1 2
�n(janj + jbnj) �P1

n=1 2
�n(A1 +A2) <1.

(b). To show thatX is not complete we will produce a sequence of elements am = famr g1r=1 2
X such that d(am; an) ! 0 as m;n ! 1 and a = farg; ar = limm!1 amr =2 X. In other
words, we will produce a Cauchy sequence of elements of X whose componentwise limits

form an unbounded sequence. De�ne am by setting: amr =

(
r if r < m

m if r � m
Notice that ar = limm!1 a

m
r = r, hence the sequence a = farg formed by the compon-

entwise limits is unbounded and, thus, not an element of X. On the other hand, note that
the sequence of elements am = famr g is a Cauchy sequence in X: Given any � > 0 we will
show that there exists an N(�) such that d(am; an) < � whenever m;n > N(�). Notice that
even though a = farg =2 X, we may still apply the triangle inequality to d as long as all
terms in the inequality arev �nite: d(am; an) � d(am; a) + d(a; an). From the construction
of am = famr g we obtain: d(am; a) =

P1
r=m+1 2

�r�(r �m). The latter sum can be shown
to converge as follows:

1X
r=m+1

2�r(r �m) = 2�m
1X

r=m+1

2�(r�m)(r �m) � 2�m�
1X
r=0

2�r�r = 2�m�4
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The last equality above follows from the fact that
P1

r=0 x
r = 1

1�x , whenever jxj < 1, and
from the fact that d

dx

n
1

1�x

o
= 1

(1�x)2 . We thus obtain: d(a
m; an) � d(an; a) + d(am; a) <

(2�m+2�n)� 43 . Clearly, the RHS tends to zero asm;n!1. Thus, the sequence am = famr g
is Cauchy in X.

Section 6.4 Contraction

� Lecture 5 De�nition 13: Let (X; d) be a nonempty complete metric space. An operator is a
function T : X ! X.

� Lecture 5 De�nition 13: An operator T is a contraction of modulus � if � < 1 and 8x; y 2
X d(T (x); T (y)) � �d(x; y).

� Lecture 5 Theorem 14: Every contraction is uniformly continuous.
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� Lecture 5 Theorem 15 Contraction Mapping Theorem: Let (X; d) be a complete metric
space, T : X ! X a contraction with modulus � < 1. Then T has a unique �xed point x�.
And for every x0 2 X, the sequence de�ned by x1 = T (x0), x2 = T (x1) : : : xn+1 = T (xn)
converges to x�.

Example 6.4.1
Show T (x) = x� 1

x on (0;1) is not a contraction.
Solution:

8x; y 2 (0;1), d(T (x);T (y))d(x;y) =
js�y�( 1x�

1
y )j

jx�yj = 1 + 1
xy > 1 : So we cannot �nd any � < 1 that

quali�es as a contraction.

Example 6.4.2
Let X = C([0; �]; � < 1. Let d(f; g) = fmaxt

��f(t) � g(t)��}. De�ne T : X ! X by

Tf(t) =
R t
0
f(s)ds. Show that T has a unique �xed point.

Solution:
It su¢ ces to show that T is a contraction:

d(Tf; Tg) = maxtjTf(t)� Tg(t)j

= maxtj
Z t

0

f(s) ds�
Z t

0

g(s) dsj

� maxt

Z t

0

jf(s)� g(s)j ds

�
Z �

0

maxtfjf(t)� g(t)jg ds

= ��d(f; g)

4


