Section 6

Econ 204, GSI: Hui Zheng
Key words
Extreme Value Theorem, Intermediate Value Theorem, Monotonically Increasing, Completeness, Contraction Mapping Theorem, Cauchy Sequence

Section 6.1 Properties of Continuous Functions

- Lecture 5 Theorem 1 (Extreme Value Theorem): Let f be a continuous real-valued function on $[a, b]$. Then f assumes its minimum and maximum on $[a, b]$. In particular, f is bounded above and below.
- Lecture 5 Theorem 2 (Intermediate Value Theorem): Suppose $f:[a, b] \rightarrow R$ is continuous, and $f(a)<d<f(b)$. Then there exists $c \in(a, b)$ such that $f(c)=d$.

Example 6.1.1

If f is continuous real-valued function on $[a, b]$, then $f([a, b])$ is a closed interval.
Solution: The Extreme Value Theorem shows that the range of f is bounded, and the extrema are attained. Thus there are points c and d in $[a, b]$ such that

$$
\begin{aligned}
& f(c)=m:=\inf _{x \in[a, b]} f(x) \\
& f(d)=M:=\sup _{x \in[a, b]} f(x)
\end{aligned}
$$

Suppose that $c \leq d$ (the case $c>d$ may be handled similarly by considering the function $-f)$. Pick any arbitrary point y in (m, M). Since $f(x)$ is continuous on the interval $[c, d]$. Thus by the Intermediate Value Theorem, there is a point $x \in(c, d)$ such that $f(x)=y$. This is true for every point $y \in(m, M)$, as well as two end points. Therefore, $f([a, b])=[m, M]$.

Section 6.2 Cauchy Sequence

- Lecture 5 Definition 6: A sequence $\{x\}$ in a metric space (X, d) is Cauchy if $\forall \varepsilon>$ $0 \exists N(\varepsilon) n, m>N(\varepsilon) \Rightarrow d\left(x_{n}, x_{m}\right)<\varepsilon$
- Lecture 5 Theorem 7: Every convergent sequence in a metric space is Cauchy.

Example 6.2.1

Show that the sequence $\left\{x_{n}\right\}=\frac{(-1)^{n}}{n}$ is Cauchy with Euclidean metric.
Solution 1: Pick an $\varepsilon>0$, choose $N>\frac{2}{\varepsilon}$, for every $m, n>N,\left|x_{m}-x_{n}\right|<\left|\frac{(-1)^{m}}{m}-\frac{(-1)^{n}}{n}\right| \leq$ $\left|\frac{1}{m}+\frac{1}{n}\right|<\frac{2}{N}<\varepsilon$. So it is Cauchy.
Solution 2: We know that $\left\{x_{n}\right\} \rightarrow 0$. All convergent sequences are Cauchy (Theorem 7). So $\left\{x_{n}\right\}$ is Cauchy.

Example 6.2.2

Show that if x_{n} and y_{n} are Cauchy sequences from a metric space X, then $d\left(x_{n}, y_{n}\right)$ converges.

Solution:

Because X is not necessarily complete, we cannot rely on the convergence of x_{n} and y_{n}. The fact that the sequences are Cauchy means that for all $\varepsilon>0$, there exists an $N_{x}(\varepsilon)$ such that $m, n \geq N_{x}(\varepsilon) \Rightarrow d\left(x_{m}, x_{n}\right)<\varepsilon$ and there exists an $N_{y}(\varepsilon)$ such that $m, n \geq N_{y}(\varepsilon) \Rightarrow$ $d\left(y_{m}, y_{n}\right)<0$. We will use this to show that the sequence $d\left(x_{n}, y_{n}\right)$ is Cauchy.Then because $d\left(x_{n}, y_{n}\right)$ is in \mathbf{R} and \mathbf{R} is complete, it must converge.
First let us make note of two facts which come from repeated application of the triangle inequality:

$$
\begin{aligned}
d\left(x_{n}, y_{n}\right) & \leq d\left(x_{n}, x_{m}\right)+d\left(x_{m}, y_{m}\right)+d\left(y_{m}, y_{n}\right) \\
d\left(x_{m}, y_{m}\right) & \leq d\left(x_{m}, x_{n}\right)+d\left(x_{n}, y_{n}\right)+d\left(y_{n}, y_{m}\right)
\end{aligned}
$$

Rearranging these (by isolating the expression $\left.d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right)\right)$ yields

$$
\begin{aligned}
-\left(d\left(x_{m}, x_{n}\right)+d\left(y_{m}, y_{n}\right)\right) & \leq d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right) \leq d\left(x_{m}, x_{n}\right)+d\left(y_{m}, y_{n}\right) \\
& \Downarrow \\
\left|d\left(x_{m}, y_{m}\right)-d\left(x_{n}, y_{n}\right)\right| & \leq d\left(x_{m}, x_{n}\right)+d\left(y_{m}, y_{n}\right)
\end{aligned}
$$

Now given $\varepsilon>0$, choose $N(\varepsilon)>\max \left\{N_{x}\left(\frac{\varepsilon}{2}\right), N_{y}\left(\frac{\varepsilon}{2}\right)\right\}$. Then $\forall n \geq N(\varepsilon) \Rightarrow \mid d\left(x_{m}, y_{m}\right)-$ $d\left(x_{n}, y_{n}\right) \left\lvert\, \leq d\left(x_{m}, x_{n}\right)+d\left(y_{m}, y_{n}\right)<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon\right.$. So $d\left(x_{n}, y_{n}\right)$ is Cauchy and consequently converges.

Example 6.2.3

Prove that a sequence of real numbers $\left\{a_{n}\right\}$ converges iff it is Cauchy.
Solution: Assume the sequence is Cauchy. Given $\varepsilon>0$, there exists $N(\varepsilon)$ such that $\mid a_{n}-$ $a_{m} \mid<\varepsilon / 2, \quad \forall n, m>N(\varepsilon)$. Our first observation is that a Cauchy sequence is a bounded sequence. In fact, letting $\epsilon=1$, put $M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots,\left|a_{N(1)}\right|,\left|a_{N(1)+1}\right|+1 / 2\right\}$. Then, M is an upper bound on $\left|a_{n}\right|, \forall n$. Since the sequence is bounded we know, by the Bolzano-Weierstrass Theorem, that there is a subsequence $a_{n_{k}}$ that converges (to some limit L). Choose an index N^{\prime} such that $\forall n_{k}>N^{\prime},\left|a_{n_{k}}-L\right|<\varepsilon / 2$. Then $\forall n, n_{k}>N=$ $\max \left\{N(\varepsilon), N^{\prime}\right\}$

$$
\left|a_{n}-L\right|=\left|a_{n}-a_{n_{k}}+a_{n_{k}}-L\right| \leq\left|a_{n}-a_{n_{k}}\right|+\left|a_{n_{k}}-L\right|<\varepsilon
$$

Notice that the first term on the RHS is $<\epsilon / 2$ by the fact that the sequence is Cauchy. The second term is $<\varepsilon / 2$ because the $a_{n_{k}}$'s form a convergent subsequence. It follows that $\left|a_{n}-L\right|<\varepsilon \forall n>N$.
Now assume the sequence converges (to some number L). Given $\varepsilon>0$ there exists $N(\varepsilon)$ such that whenever $n>N(\varepsilon),\left|a_{n}-L\right|<\varepsilon / 2$. Let $m, n>N(\varepsilon)$. We then obtain:

$$
\left|a_{n}-a_{m}\right|=\left|a_{n}-L+L-a_{m}\right| \leq\left|a_{n}-L\right|+\left|L-a_{m}\right|<\varepsilon
$$

By hypothesis, both terms on the RHS are $<\varepsilon / 2$. Therefore, the a_{n} 's are Cauchy.

Example 6.2.4:

Are the following statements true or false? Write down your proof or disproof.
(1) Cauchy sequence \Rightarrow bounded squence
(2) bounded squence \Rightarrow Cauchy sequence
(3) Convergent squence \Rightarrow Cauchy sequence
(4) Cauchy sequence \Rightarrow Convergent squence

Section 6.3 Complete Metric Spaces

- Lecture 5 Definition 8: A metric space (X, d) is complete if every Cauchy sequence $\left\{x_{n}\right\} \subseteq$ X converges to a limit $x \in X$.
- Lecture 5 Definition 8: A Banach space is a normed space which is complete in the metric generated by its norm.
- Lecture 5 Theorem 9: \mathbf{R} is complete with the usual metric (so E^{1} is a Banach space).
- Lecture 5 Theorem 10: E^{n} is complete for every $n \in \mathbf{N}$
- Lecture 5 Theorem 11: Suppose (X, d) is a complete metric space, $Y \subseteq X$. Then $(Y, d)=$ $\left(Y,\left.d\right|_{y}\right)$ is complete if and only if Y is a closed subset of X.
Note
Why we need the definition of completeness? It's because convergent point (limit point) may not exist in X. A careful examination of definition 5 and definition 8 tells us that whether some sequence is Cauchy depends on how the metric is defined rather than the underlying metric space. But whether a Cauchy sequence converges in a metric space depends on the definition of the metric space.

Example 6.3.1

Show that $(0, \infty)$ is not complete.
Solution: The easiest way to show that a metric space is not complete is to find a Cauchy sequence that converges to a limit out of the space. Pick a sequence $\left\{x_{n}\right\}=\frac{1}{n}$ in the metric space $(0, \infty) .\left\{x_{n}\right\}$ is a Cauchy sequence: Given an $\varepsilon>0$, choose $N>\frac{1}{\varepsilon}$, for every $m, n>N,\left|x_{m}-x_{n}\right|<\max \left\{\frac{1}{m}, \frac{1}{n}\right\}<\frac{1}{N}<\varepsilon$. And we know it converges to 0 . But 0 $\notin(0, \infty)$, so this metric space is not complete.

Example 6.3.2

Let X denote the set of all bounded finite and infinite sequences of real numbers $\left\{a_{n}\right\}_{n=1}^{\infty}$ (hereafter denoted simply as a_{n}). Define the "distance" between two sequences a_{n} and b_{n} to be: $d\left(a_{n}, b_{n}\right)=\sum_{n=1}^{\infty} 2^{-n}\left|a_{n}-b_{n}\right|$.
(a). Show that: (X, d) is a metric space.
(b). Show that (X, d) is not complete.

Solution:
(a). Elements of X are sequences of numbers. Put $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\} \in X$. We check only the triangle inequality as the other two properties of a metric are obviously satisfied: $d\left(\left\{a_{n}\right\},\left\{b_{n}\right\}\right)+d\left(\left\{b_{n}\right\},\left\{c_{n}\right\}\right)=\sum_{n=1}^{\infty} 2^{-n}\left|a_{n}-b_{n}\right|+\sum_{n=1}^{\infty} 2^{-n}\left|b_{n}-c_{n}\right|=\sum_{n=1}^{\infty} 2^{-n}\left(\mid a_{n}-\right.$ $b_{n}\left|+\left|b_{n}-c_{n}\right|\right) \geq \sum_{n=1}^{\infty} 2^{-n}\left|a_{n}-c_{n}\right|=d\left(\left\{a_{n}\right\},\left\{c_{n}\right\}\right)$, where the last inequality follows from the usual triangle inequality for the real numbers.
Remark: The assumptions on the space X ensure that the equation defining d in fact yields a function from X to \Re : For any $\left\{a_{n}\right\},\left\{b_{n}\right\} \in X$, put A_{1}, A_{2} such that $\left|a_{n}\right| \leq A_{1},\left|b_{n}\right| \leq$ $A_{2} \forall n$. We then obtain: $d\left(\left\{a_{n}\right\},\left\{b_{n}\right\}\right)=\sum_{n=1}^{\infty} 2^{-n}\left|a_{n}-b_{n}\right| \leq \sum_{n=1}^{\infty} 2^{-n}\left(\left|a_{n}\right|+\left|b_{n}\right|\right) \leq$ $\sum_{n=1}^{\infty} 2^{-n}\left(A_{1}+A_{2}\right)<\infty$.
(b). To show that X is not complete we will produce a sequence of elements $a^{m}=\left\{a_{r}^{m}\right\}_{r=1}^{\infty} \in$ X such that $d\left(a^{m}, a^{n}\right) \rightarrow 0$ as $m, n \rightarrow \infty$ and $a=\left\{a_{r}\right\}, a_{r}=\lim _{m \rightarrow \infty} a_{r}^{m} \notin X$. In other words, we will produce a Cauchy sequence of elements of X whose componentwise limits form an unbounded sequence. Define a^{m} by setting: $a_{r}^{m}= \begin{cases}r & \text { if } r<m \\ m & \text { if } r \geq m\end{cases}$
Notice that $a_{r}=\lim _{m \rightarrow \infty} a_{r}^{m}=r$, hence the sequence $a=\left\{a_{r}\right\}$ formed by the componentwise limits is unbounded and, thus, not an element of X. On the other hand, note that the sequence of elements $a^{m}=\left\{a_{r}^{m}\right\}$ is a Cauchy sequence in X : Given any $\epsilon>0$ we will show that there exists an $N(\epsilon)$ such that $d\left(a^{m}, a^{n}\right)<\epsilon$ whenever $m, n>N(\epsilon)$. Notice that even though $a=\left\{a_{r}\right\} \notin X$, we may still apply the triangle inequality to d as long as all terms in the inequality arev finite: $d\left(a^{m}, a^{n}\right) \leq d\left(a^{m}, a\right)+d\left(a, a^{n}\right)$. From the construction of $a^{m}=\left\{a_{r}^{m}\right\}$ we obtain: $d\left(a^{m}, a\right)=\sum_{r=m+1}^{\infty} 2^{-r} \cdot(r-m)$. The latter sum can be shown to converge as follows:

$$
\sum_{r=m+1}^{\infty} 2^{-r}(r-m)=2^{-m} \sum_{r=m+1}^{\infty} 2^{-(r-m)}(r-m) \leq 2^{-m} \cdot \sum_{r=0}^{\infty} 2^{-r} \cdot r=2^{-m} \cdot \frac{4}{3}
$$

The last equality above follows from the fact that $\sum_{r=0}^{\infty} x^{r}=\frac{1}{1-x}$, whenever $|x|<1$, and from the fact that $\frac{d}{d x}\left\{\frac{1}{1-x}\right\}=\frac{1}{(1-x)^{2}}$. We thus obtain: $d\left(a^{m}, a^{n}\right) \leq d\left(a^{n}, a\right)+d\left(a^{m}, a\right)<$ $\left(2^{-m}+2^{-n}\right) \cdot \frac{4}{3}$. Clearly, the RHS tends to zero as $m, n \rightarrow \infty$. Thus, the sequence $a^{m}=\left\{a_{r}^{m}\right\}$ is Cauchy in X.

Section 6.4 Contraction

- Lecture 5 Definition 13: Let (X, d) be a nonempty complete metric space. An operator is a function $T: X \rightarrow X$.
- Lecture 5 Definition 13: An operator T is a contraction of modulus β if $\beta<1$ and $\forall x, y \in$ $X d(T(x), T(y)) \leq \beta d(x, y)$.
- Lecture 5 Theorem 14: Every contraction is uniformly continuous.
- Lecture 5 Theorem 15 Contraction Mapping Theorem: Let (X, d) be a complete metric space, $T: X \rightarrow X$ a contraction with modulus $\beta<1$. Then T has a unique fixed point $x *$. And for every $x_{0} \in X$, the sequence defined by $x_{1}=T\left(x_{0}\right), x_{2}=T\left(x_{1}\right) \ldots x_{n+1}=T\left(x_{n}\right)$ converges to $x *$.

Example 6.4.1

Show $T(x)=x-\frac{1}{x}$ on $(0, \infty)$ is not a contraction.
Solution:
$\forall x, y \in(0, \infty), \frac{d(T(x), T(y))}{d(x, y)}=\frac{\left|s-y-\left(\frac{1}{x}-\frac{1}{y}\right)\right|}{|x-y|}=1+\frac{1}{x y}>1$. So we cannot find any $\beta<1$ that qualifies as a contraction.

Example 6.4.2

Let $X=C\left([0, \beta], \beta<1\right.$. Let $d(f, g)=\left\{\max _{t}|f(t)-g(t)|\right\}$. Define $T: X \rightarrow X$ by $T f(t)=\int_{0}^{t} f(s) d s$. Show that T has a unique fixed point.
Solution:
It suffices to show that T is a contraction:

$$
\begin{aligned}
d(T f, T g) & =\max _{t}|T f(t)-T g(t)| \\
& =\max _{t}\left|\int_{0}^{t} f(s) d s-\int_{0}^{t} g(s) d s\right| \\
& \leq \max _{t} \int_{0}^{t}|f(s)-g(s)| d s \\
& \leq \int_{0}^{\beta} \max _{t}\{|f(t)-g(t)|\} d s \\
& =\beta \cdot d(f, g)
\end{aligned}
$$

