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Section 6.1 Properties of Continuous Functions

o Lecture 5 Theorem 1 (Extreme Value Theorem): Let f be a continuous real-valued function
on [a,b]. Then f assumes its minimum and maximum on [a, b]. In particular, f is bounded
above and below.

e Lecture 5 Theorem 2 (Intermediate Value Theorem): Suppose f : [a,b] — R is continuous,
and f(a) < d < f(b). Then there exists ¢ € (a,b) such that f(c) = d.
Example 6.1.1
If f is continuous real-valued function on [a,b], then f([a,b]) is a closed interval.

Solution: The Extreme Value Theorem shows that the range of f is bounded, and the
extrema are attained. Thus there are points ¢ and d in [a, b] such that

flo) = mi= inf f(a)
fd) = Mi= suwp f(a)

z€Ja,b]

Suppose that ¢ < d (the case ¢ > d may be handled similarly by considering the function
—f). Pick any arbitrary point y in (m, M). Since f(z) is continuous on the interval [c, d].
Thus by the Intermediate Value Theorem, there is a point z € (¢, d) such that f(z) = y. This
is true for every point y € (m, M), as well as two end points. Therefore, f([a,b]) = [m, M].

Section 6.2 Cauchy Sequence

e Lecture 5 Definition 6: A sequence {z} in a metric space (X,d) is Cauchy if Ve >
03N(e)n,m > N(e) = d(zp, Tm) <€

e Lecture 5 Theorem 7: Every convergent sequence in a metric space is Cauchy.

Example 6.2.1

(771)" is Cauchy with Euclidean metric.

Show that the sequence {z,} =
Solution 1: Pick an € > 0, choose N > % , for every myn > N, |z, —2,| < |%—#| <
|L+ 1 <2 <e Soitis Cauchy.

Solution 2: We know that {z,,} — 0. All convergent sequences are Cauchy (Theorem 7).
So {z,} is Cauchy.

Example 6.2.2

Show that if z,, and y, are Cauchy sequences from a metric space X, then d(x,,y,) con-
verges.

Solution:

Because X is not necessarily complete, we cannot rely on the convergence of x, and y,,.
The fact that the sequences are Cauchy means that for all € > 0, there exists an N;(e) such
that m,n > N(¢) = d(zm,zn) < € and there exists an Ny(¢) such that m,n > Ny(e) =
d(Ym, yn) < 0. We will use this to show that the sequence d(z, y,) is Cauchy.Then because
d(xn,yn) is in R and R is complete, it must converge.

First let us make note of two facts which come from repeated application of the triangle
inequality:

Ad(Tn,yn) < d(@n,Tm) + A @m, Ym) + A Yms Yn)



Rearranging these (by isolating the expression d(z,, ym) — d(zn, yn)) yields

_(d(xma xn) + d(yma yn)) < d(l‘ma ym) - d(x'm yn) < d(xm; xn) + d(yrm yn)
J
<

‘d(xm, ym) - d(xnv yn)| d(l‘m, xn) + d(yma yn)

Now given ¢ > 0, choose N(¢) > max{N,(5),N,(5)}. Then Vn > N(e) = |d(zm,Ym) —
d(Zn, Yn)| < d(@m, Tn) + d(Ym,Yn) < 5§+ 5 = €. So d(xp,yn) is Cauchy and consequently
converges.

Example 6.2.3

Prove that a sequence of real numbers {a,} converges iff it is Cauchy.

Solution: Assume the sequence is Cauchy. Given £> 0, there exists N(e) such that |a, —
am| <€/2, ¥n,m > N(g). Our first observation is that a Cauchy sequence is a bounded
sequence. In fact, letting € = 1, put M = maxz{|a1|, |az], ..., |[an)|, lany+1] + 1/2}.
Then, M is an upper bound on |a,|, Vn. Since the sequence is bounded we know, by
the Bolzano-Weierstrass Theorem, that there is a subsequence a,,, that converges (to some
limit L). Choose an index N’ such that Vn, > N, |a,, — L| < /2. Then Vn,n, > N =
max{N(g), N'}

lan — L| = |an — an, + an, — L| < |an — an, | + lan, — L] <e

Notice that the first term on the RHS is < €/2 by the fact that the sequence is Cauchy.
The second term is < €/2 because the a,,’s form a convergent subsequence. It follows that
la, —L| <& ¥Yn > N.

Now assume the sequence converges (to some number L). Given €> 0 there exists N(e)
such that whenever n > N(¢), |a, — L| < /2. Let m,n > N(g). We then obtain:

lan — am| =lan — L+ L —ap| <|ap, —L|+|L—an| < ¢

By hypothesis, both terms on the RHS are < ¢/2. Therefore, the a,,’s are Cauchy.

Example 6.2.4:

Are the following statements true or false? Write down your proof or disproof.
(1) Cauchy sequence = bounded squence

(2) bounded squence = Cauchy sequence

(3) Convergent squence = Cauchy sequence

(4) Cauchy sequence = Convergent squence

Section 6.3 Complete Metric Spaces

e Lecture 5 Definition 8: A metric space (X, d) is complete if every Cauchy sequence {z,,} C
X converges to a limit x € X.

e Lecture 5 Definition 8: A Banach space is a normed space which is complete in the metric
generated by its norm.

e Lecture 5 Theorem 9: R is complete with the usual metric (so E' is a Banach space).

e Lecture 5 Theorem 10: E™ is complete for every n € N

e Lecture 5 Theorem 11: Suppose (X,d) is a complete metric space, Y C X. Then (Y,d) =
(Y,d|,) is complete if and only if Y is a closed subset of X.
Note
Why we need the definition of completeness? It’s because convergent point (limit point) may
not exist in X. A careful examination of definition 5 and definition 8 tells us that whether
some sequence is Cauchy depends on how the metric is defined rather than the underlying

metric space. But whether a Cauchy sequence converges in a metric space depends on the
definition of the metric space.



Example 6.3.1

Show that (0, 00) is not complete.

Solution: The easiest way to show that a metric space is not complete is to find a Cauchy
sequence that converges to a limit out of the space. Pick a sequence {xn} % in the
metric space (0,00). {z,} is a Cauchy sequence: Given an ¢ > 0, choose N > 1 for every
m,n > N, |z, — z,| < max{X,1} < L < e And we know it converges fo 0. But 0

¢ (O 00), so this metric space is not complete.
Example 6.3.2

Let X denote the set of all bounded finite and infinite sequences of real numbers {a,, }32 ;
(hereafter denoted simply as a,,). Define the “distance” between two sequences a, and b,
to be: d(an,by) =Y 02, 27 "a, — byl.

n=1
(a). Show that: (X,d) is a metric space.
(b). Show that (X,d) is not complete.
Solution:
(a). Elements of X are sequences of numbers. Put {a,},{b,},{c.} € X. We check
only the triangle inequality as the other two properties of a metric are obviously satisfied:
d({an}, {ba D) +d({ba} {en}) = 301 27 an—bal+ 3300, 2" bu—cal = S0, 2" (|an—
bl + [bn —cnl) > D02, 27" ay, — cn\ = d({an},{cn}), where the last inequality follows
from the usual triangle inequality for the real numbers.
Remark: The assumptions on the space X ensure that the equation defining d in fact yields
a function from X to R: For any {a,},{b,} € X, put Ay, As such that |a,| < Ay, |b,| <
Ay ¥n. We then obtain: d({an},{bn}) = > pey 27" an — bnl < D07 27"(lan] + |by]) <
2211 2771(141 + AQ) < Q.
(b). To show that X is not complete we will produce a sequence of elements a™ = {a"}22, €
X such that d(a™,a™) — 0 as m,n — oo and a = {a,},a, = lim,_0o @ ¢ X. In other
words, we will produce a Cauchy sequence of elements of X whose componentwise limits

n=1

form an unbounded sequence. Define a™ by setting: a;" = {T z.fr =m

m ifr>m
Notice that a, = lim,, . a* = r, hence the sequence a = {a,} formed by the compon-
entwise limits is unbounded and, thus, not an element of X. On the other hand, note that
the sequence of elements ™ = {a} is a Cauchy sequence in X: Given any € > 0 we will
show that there exists an N (e) such that d(a™,a™) < € whenever m,n > N(e). Notice that
even though a = {a,} ¢ X, we may still apply the triangle inequality to d as long as all
terms in the inequality arev finite: d(a™,a™) < d(a™,a) + d(a,a™). From the construction
of a™ = {a™} we obtain: d(a™,a) = o 27"-(r —m). The latter sum can be shown

r=m-+1
to converge as follows:
i 27" (r —m) =2"™ Z 2= (r=m)(p — )<2*m.i 9y =gl
- 3
r=m-+1 r=m-+1 r=0

The last equality above follows from the fact that > - z” whenever |z| < 1, and

1 x?
from the fact that = { L } = T)z We thus obtain: d(a™,a™) < d(a™, a) + d(a™,a) <

1—x
(27m427")-3. Clearly, the RHS tends to zero as m,n — oo. Thus, the sequence a™ = {a!"}
is Cauchy in X.

Section 6.4 Contraction

e Lecture 5 Definition 13: Let (X, d) be a nonempty complete metric space. An operator is a
function T': X — X.

e Lecture 5 Definition 13: An operator T is a contraction of modulus S if # < 1 and Vz,y €
X d(T(z),T(y)) < Bd(z,y).

e Lecture 5 Theorem 14: Every contraction is uniformly continuous.



e Lecture 5 Theorem 15 Contraction Mapping Theorem: Let (X,d) be a complete metric
space, T : X — X a contraction with modulus § < 1. Then T has a unique fixed point x*.
And for every zp € X, the sequence defined by x1 = T'(z¢), 22 = T(21) ... Zpt1 = T(xy)
converges to .

Example 6.4.1
Show T'(z) =z — % on (0, 00) is not a contraction.

Solution:
7 ls=y—(z—3)|
Vz,y € (0,00), d(Té&:Z)(y)) _ y|m_y\

qualifies as a contraction.

=1+%y>1.Sowecannotﬁndanyﬁ<1that

Example 6.4.2

Let X = C([ B, B < 1. Let d(f,g) = {max|f(t) — g(t)|}. Define T : X — X by
fo s)ds. Show that T has a unique fixed point.

Solutlon.

It suffices to show that T is a contraction:

d(Tf, Tg) = max|Tf(t) —Ty(t)|

maxt|/ f(s ds—/ g(s)ds|
maxt/ |f(s)—g(s)|ds

/ maz,{|£(t) — g(t)]} ds
= ﬂdfa )
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