Section 8

Econ 204, GSI: Hui Zheng

Key Words

Separated, Connected, Correspondence, Upper Hemicontinuous Continuous, Lower Hemicontinuous Continuous, Closed-Valued, Compact-Valued, Closed Graph

Section 8.1 Separated and Connected

- Lecture 4 Definition 4: \bar{A} : the closure of A, the smallest closed set containing A (the intersection of all closed sets containing A)
- Lecture 7 Definition 1: Two sets A, B in a metric space are separated if $\bar{A} \cap B=A \cap \bar{B}=\emptyset$.
- Lecture 7 Definition 1: A set in a metric space is connected if it cannot be written as the union of two nonempty separated sets.
- Lecture 7 Theorem 2: A set S of real numbers is connected if and only if it is an interval.
- Lecture 7 Theorem 3: Let X be a metric space, $f: X \rightarrow Y$ continuous. If $C \subseteq X$ is connected, then $f(C)$ is connected.

Example 8.1.1 Let $\left\{S_{i}\right\}, i \in I$, be a collection of connected subsets of a space X. Suppose there exists an $i_{0} \in I$ such that for each $i \in I$, the sets S_{i} and $S_{i_{0}}$ have non-empty intersection. Show that $\cup_{i \in I} S_{i}$ is connected.

Solution:

Assume it is not true. Let U, V be nonempty separated sets in X with $U \cup V=\cup_{i \in I} S_{i}, \bar{U} \cap V=$ $U \cap \bar{V}=\emptyset$. We can show that for every $i, U \cap S_{i}=S_{i}$ or $U \cap S_{i}=\emptyset$. To see this, note that $U \cap \bar{V}=\emptyset \Rightarrow\left(U \cap S_{i}\right) \cap \overline{\left(V \cap S_{i}\right)} \subseteq U \cap \bar{V}=\emptyset$. Similarly, $\overline{\left(U \cap S_{i}\right)} \cap\left(V \cap S_{i}\right)=\emptyset$. Since S_{i} is connected for every i, we have $S_{i} \cap U=\emptyset$ or $S_{i} \cap U=S_{i}$. Similarly, for every i, we also have $V \cap S_{i}=S_{i}$ or $V \cap S_{i}=\emptyset$. Furthermore, since $U, V \neq \emptyset, \quad \exists m, n$ such that $U \cap S_{m}=S_{n}$ and $V \cap S_{n}=S_{n}$. Since $S_{m} \cap S_{i_{0}} \neq \emptyset \Rightarrow U \cap S_{i_{0}} \neq \emptyset \Rightarrow U \cap S_{i_{0}}=S_{i_{0}}$ and similarly we have $V \cap S_{i_{0}}=S_{i_{0}}$. Hence we have $U \cap V \neq \emptyset$. Contradiction.

Example 8.1.2 Prove that if a metric space X contains a non-empty subset $A(A \neq X)$ that is both open and closed, then X is disconnected.
Solution:
We claim that A and A^{c} are separated. Well, A closed implies that $\bar{A}=A$, and A open implies that A^{c} is closed so that $\overline{A^{c}}=A^{c}$ as well. Then $\bar{A} \bigcap A^{c}=A \bigcap A^{c}=A \bigcap \overline{A^{c}}$. Since $X=A \cup A^{c}$, we see that we've written X as the union of two non-empty separated sets, and so X is disconnected.

Example 8.1.3 Suppose that the sets C and D are two non-empty separated subsets of X whose union is $X . Y$ is a connected subset of X. Prove that Y lies entirely within C or D.
Solution:
C and D are separated $\Rightarrow \bar{C} \cap D=\emptyset$. Hence $(\bar{C} \cap Y) \cap(D \cap Y)=\emptyset$ and $(\bar{C} \cap Y) \cup(D \cap Y)=Y$. The same goes for $C \cap Y$ and $\bar{D} \cap Y$. For each of these pairs, both sets being non-empty contradicts the fact that Y is connected. Therefore one of them is empty. Therefore Y lies entirely within C or D.

Example 8.1.4 Show that if S is a connected subset of X, then so is its closure \bar{S}.
Solution:
By contradiction. Suppose \bar{S} is not connected, then \exists two nonempty disjoint sets A and B s.t. $\bar{A} \cap B=A \cap \bar{B}=\phi$ and $\bar{S}=A \cup B$. But since S is connected and $S \subseteq \bar{S} \Longrightarrow S$ should be in either A or B, as a result of the Example 8.1.3. Without loss of generality, suppose $S \subseteq A . \Longrightarrow$ $\bar{S} \subseteq \bar{A}$. However, since $\bar{A} \cap B=\phi \Longrightarrow \bar{S} \cap B=\phi$. But we know $\bar{S}=A \cup B$ and B is nonempty, so $\bar{S} \cap B \neq \phi$. Contradiction.

Section 8.2 Correspondence

- Lecture 7 Definition 5: A correspondence $\Psi: X \rightarrow Y$ is a function from X to 2^{Y}.
- Lecture 7 Definition 9: Let $X \subseteq E_{n}, Y \subseteq E_{m}$. Suppose $\Psi: X \rightarrow Y$ is a correspondence.
Ψ is upper hemicontinuous (uhc) at $x_{0} \in X$ if, for every open set $V \supseteq \Psi\left(x_{0}\right)$, there is an open set U with $x_{0} \in U$ such that $\Psi(x) \subseteq V$ for every $x \in U \cap X$.
Ψ is lower hemicontinuous (lhc) at $x_{0} \in X$ if, for every open set V such that $\Psi\left(x_{0}\right) \cap V \neq \emptyset$, there is an open set U with $x_{0} \in U$ such that $\Psi(x) \cap V \neq \emptyset$ for every $x \in U \cap X$.
Ψ is continuous at $x_{0} \in X$ if it is both uhc and lhc at x_{0}.
Ψ is closed (has closed graph) if its graph $\{(x, y): y \in \Psi(x)\}$ is a closed subset of $X \times E^{m}$.

Example 8.2.1 Determine whether the following functions "jump upward" or "jump downward'?

The top two are functions that "jump upward"
The bottom two are functions that "jump downward".
A function "jumps up" at the point x_{0} means that the function value suddenly gets bigger when the x approaches x_{0} from some direction- "explodes" the limit.
In comparison, a function "jumps down" at the point x_{0} means that the function value suddenly gets smaller when the x approaches x_{0} from some direction - "implodes" in the limit.

Example 8.2.2 Determine whether the following correspondences are uhc, lhc, or neither?

The top two are uhc;
The middle two are lhc.
The bottom left is uhc
The bottom right is neither uhe nor lhe.

Section 8.3 Upper Hemicontinuous

- Definition 11 Suppose $X \subseteq E_{m}, Y h \subseteq E_{n}$. A correspondence $\Psi: X \rightarrow Y$ is called closed-valued if $\Psi(x)$ is a closed subset of En for all $\mathrm{x} ; \Psi$ is called compact-valued if $\Psi(x)$ is compact for all x.
- Theorem 10 Let $X \subseteq E_{m}, Y \subseteq E_{n}, f: X \rightarrow Y$ a function. Let $\Psi(x)=f(x)$ for all $x \in X$. Then $\Psi(x)$ is uhc if and only if f is continuous.
- Theorem 12 (Not in de la Fuente) Let $X \subseteq E_{m}, Y \subseteq E_{n}$, and $\Psi: X \rightarrow Y$ is a correspndence. • If Ψ is closed-valued and uhc, then Ψ has closed graph. If Y is compact and Ψ has closed graph, then Ψ is uhc.
- Theorem 13 (11.2) Suppose $X \subseteq E_{m}, Y \subseteq E_{n}$. A compact-valued correspondence $\Psi: X \rightarrow Y$ is uhc at $x_{0} \in X$ if and only if, for every sequence $x_{n} \rightarrow x_{0},\left\{x_{n} \subseteq X\right\}$, and every sequence $\left\{y_{n}\right\}$ such that $y_{n} \in \Psi\left(x_{n}\right)$, there is a convergent subsequence $\left\{y_{n_{k}}\right\}$ such that $\lim y_{n_{k}} \Psi\left(x_{0}\right)$.

Example 8.3.1 Let $X \subseteq \mathbf{E}^{n}, Y \subseteq \mathbf{E}^{m}$. A correspondence $\Psi: X \rightarrow Y$. Show that $W=\{x \in X$: $V \supseteq \Psi(x)\}$ is open in X for each open set V in Y if and only if Ψ is uhc.

Solution:

\Rightarrow : We have to find a valid U for every open set $V \supseteq \Psi\left(x_{0}\right)$. In this question, just take W as U. Then for every open set $V \supseteq \Psi\left(x_{0}\right)$, we know that there exists a set W which satisfies three properties: (1). W is open. (2) $x_{0} \in W$ (3) $\forall x \in U \cap X \Rightarrow V \supseteq \Psi(x)$. Hence Ψ is uhc. $\Longleftarrow: \forall w \in W \Rightarrow \Psi(w) \subseteq V$. Since Ψ is uhc, there is an open set U with $w \in U$ such that

$$
V \supseteq \Psi(x) \text { for every } x \in U \cap X
$$

And since U is open, we can find a small ball $B_{\varepsilon}(w)$ such that $B_{\varepsilon}(w) \subseteq U$, and for every $x \in B_{\varepsilon}(w)$ we have $V \supseteq \Psi(x) \Rightarrow x \in W$ by the definition of W. Therefore, $B_{\varepsilon}(w) \subseteq W$ thus W is open.

Example 8.3.2 Consider an economy with two goods, x and y. Fix the price of good y equal to 1 , and fix the consumer's income equal to I. Let p be the price of good x. Show that the budget set of consumer $B(p)=\{x \geq 0, y \geq 0, p x+y \leq I\}$ is an upper hemicontinuous correspondence for $p \in(0, \infty)$.

Solution:
Use theorem 12 in Lecture 7 to finish the proof. To use theorem 12 we have to show that the correspondence has closed graph and Y is compact. First we show that the correspondence has closed graph: Let $p_{n} \rightarrow p \in(0, \infty),\left(x_{n}, y_{n}\right) \in B\left(p_{n}\right),\left(x_{n}, y_{n}\right) \rightarrow(x, y)$. We need to show that $(x, y) \in B(p)$. Note: $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ means $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. We know that for every n, $p_{n} x_{n}+y_{n} \leq I$, so $p x+y=\lim \left(p_{n} x_{n}+y_{n}\right) \leq I$. We also have $x=\lim x_{n} \geq 0$ and $y=\lim y_{n} \geq 0$, so $(x, y) \in B(p)$, therefore B has closed graph.
Now we show that Y is compact. Since uhc is a pointwise property, we consider an arbitrary point $p \in(0, \infty)$, and find $a, b \in(0, \infty)$ such that $p \in(a, b)$. Then for all $q \in[a, b], B(q) \subseteq$ $\left\{x \geq 0, x \leq \frac{I}{a}, y \geq 0, y \leq I\right\}$, which is closed and bounded in \mathbf{R}^{2} hence compact. So, according to Theorem 12 in Lecture 7, B is uhc at p

