Econ 204 Supplement to Section 2.3 Lim Sup and Lim Inf

Definition 1 We extend the definition of sup and inf to unbounded sets as follows:

$$
\begin{aligned}
\sup S & =+\infty \text { if } S \text { is not bounded above } \\
\inf S & =-\infty \text { if } S \text { is not bounded below }
\end{aligned}
$$

Definition 2 [Definition 3.7 in de La Fuente] If $\left\{x_{n}\right\}$ is a sequence of real numbers, we say that $\left\{x_{n}\right\}$ tends to infinity (written $\left\{x_{n}\right\} \rightarrow \infty$ or $\lim _{n \rightarrow \infty} x_{n}=$ $\infty)$ if

$$
\forall_{K \in \mathbf{R}} \exists_{N(K)} n>N(K) \Rightarrow x_{n}>K
$$

Similarly, we say $\lim _{n \rightarrow \infty} x_{n}=-\infty$ if

$$
\forall_{K \in \mathbf{R}} \exists_{N(K)} n>N(K) \Rightarrow x_{n}<K
$$

Definition 3 Consider a sequence $\left\{x_{n}\right\}$ of real numbers. Let

$$
\begin{aligned}
\alpha_{n} & =\sup \left\{x_{k}: k \geq n\right\} \\
& =\sup \left\{x_{n}, x_{n+1}, x_{n+2}, \ldots\right\} \\
\beta_{n} & =\inf \left\{x_{k}: k \geq n\right\}
\end{aligned}
$$

Notice that either $\alpha_{n}=\infty$ for all n; or α_{n} is a decreasing sequence of real numbers, in which case α_{n} tends to a limit (either a real number or $-\infty$) by Theorem 3.1 and Definition 3.7 ; similarly, either $\beta_{n}=-\infty$ for all n; or β_{n} is a increasing sequence of real numbers; in which case β_{n} tends to a limit (either a real number or ∞). Thus, we define

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} x_{n} & =\left\{\begin{array}{cl}
+\infty & \text { if } \alpha_{n}=+\infty \text { for all } n \\
\lim _{n \rightarrow \infty} \alpha_{n} & \text { otherwise }
\end{array}\right. \\
\liminf _{n \rightarrow \infty} x_{n} & =\left\{\begin{array}{cl}
-\infty & \text { if } \beta_{n}=-\infty \text { for all } n \\
\lim _{n \rightarrow \infty} \beta_{n} & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Theorem 4 Let $\left\{x_{n}\right\}$ be a sequence of real numbers. Then

$$
\lim _{n \rightarrow \infty} x_{n}=x \in \mathbf{R} \cup\{-\infty, \infty\}
$$

if and only if

$$
\liminf _{n \rightarrow \infty} x_{n}=\limsup _{n \rightarrow \infty} x_{n}=x
$$

