


1 Introduction

Reflecting the widespread concern over the potential fragility of parametric methods, a growing literature

considers the identification and estimation of nonparametric regression models with endogenous regressors

(e.g., Blundell and Powell (2003); Chesher (2003); Altonji and Matzkin (2005); Florens et al. (2009); Im-

bens and Newey (2009)). The most general of these models allow both the observed regressors and the

unobserved errors to enter an underlying structural function in an arbitrary way. Building on methods for

additive models (e.g., Heckman and Robb (1985)) most recent studies follow a control function approach.

Conditioning on a suitable control function, the regressor of interest is independent of the unobserved errors,

and a variety of non-parametric methods can be used to estimate the associated causal effects. The control

function approach relies on the existence of one or more “instruments”– variables that are assumed to be

independent of the errors in the regression function. Identification hinges on the validity of the independence

assumption, in much the same way that identification in a linear simultaneous equations model depends on

orthogonality between the instrumental variables and the additive structural error terms.

In some applied contexts, however, it is difficult to find candidate instruments that satisfy the necessary

independence assumptions. The problem is particularly acute when the regressor of interest is a policy

variable that is mechanically determined by a behaviorally endogenous assignment variable. The level

of unemployment benefits, for example, is typically set by a formula that depends on previous earnings.

In such settings it is arguably impossible to identify individual characteristics that affect the level of the

policy variable and yet are independent of underlying heterogeneity in preferences and/or opportunities.

Nevertheless, a common feature of many policy rules is the existence of a “kink”, or series of kinks, in the

formula that relates the assignment variable to the policy variable. In the case of unemployment benefits,

for example, a typical formula provides a fixed fraction of pre-job-loss earnings, subject to a maximum rate.

Likewise, the income tax system in most countries is piece-wise linear, with progressively higher tax rates

at each kink point. As has been noted in recent studies by Guryan (2003), Nielsen et al. (forthcoming), and

Simonsen et al. (2009), the existence of a kinked policy rule holds out the possibility for identification of the

effect of the policy variable, even in the absence of traditional instruments. In essence, the idea is to look

for an induced kink in the outcome variable that coincides with the kink in the policy rule, and relate the

relative magnitudes of the two kinks. While this “regression kink design” (RKD) is potentially attractive,

an important concern is the endogeneity of the assignment variable. As noted by Saez (forthcoming), for
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example, a kink in the marginal tax schedule would be expected to lead to “bunching” of taxpayers at the

level of income associated with the kink. Such endogenous sorting could lead to a non-smooth distribution of

unobserved heterogeneity around the kink-point, confounding inferences based on a regression kink design.

This paper establishes the conditions under which the behavioral response to a formulaic policy variable

like unemployment benefits or the marginal tax rate can be identified within a general class of nonparamet-

ric regression models. We show that, in the context of a fully nonparametric regression with non-additive

errors, the regression kink design can identify what Altonji and Matzkin (2005) have called the “local aver-

age response” to the policy variable, or equivalently the “treatment on the treated” parameter characterized

by Florens et al. (2009). The key condition for identification is that conditional on the unobservables, the

density of the assignment variable is smooth – continuously differentiable – at the kink-point in the policy

rule. We show that this “smooth density” condition rules out extreme forms of endogenous sorting, which

might arise when agents can deterministically manipulate the value of the assignment variable used in the

policy formula, while allowing for many other forms of endogeneity in the assignment variable. We also

show that the smooth density condition generates strong predictions for the distribution of predetermined

covariates among the population of agents located near the kink point. In particular, the conditional distribu-

tion functions of observed covariates that are determined prior to the policy variable should have continuous

derivatives with respect to the assignment variable at the kink point. Thus, we show that, as in a regression

discontinuity design (see Lee and Lemieux (forthcoming)), the validity of the regression kink design can be

tested.

Using administrative data from the Unemployment Insurance (UI) system in the state of Washington

in 1988, we apply a regression kink approach to estimate the average impact of a marginal increase in

weekly UI benefits on total benefits paid, and the duration of UI receipt. We find little evidence that the

density of base period earnings (the assignment variable) is discontinuous at the threshold associated with

the maximum benefit rate; we also find that the means of key covariates generally have smooth derivatives

with respect to the assignment variable, consistent with a valid RK Design. Our estimates suggest that a

$1 increase in the benefit amount leads to a 0.04 week increase in the duration of UI receipt and a $18

rise in total benefits paid. These numbers translate into a 1.6 week increase in the duration of insured

unemployment in response to a 10 percentage point increase in the UI replacement rate – an estimate that

is similar in magnitude to the estimate by Meyer (1990), but somewhat larger in magnitude than estimates

reported by Hamermesh (1977) or Moffitt and Nicholson (1982).
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The paper is organized as follows. Section 2 discusses parameters of interest and identification in the

Regression Kink Design. Section 3 then describes the institutional details of the UI system in the state of

Washington, as background for our empirical analysis, which we present in Section 4. Section 5 concludes.

2 Nonparametric Regression and the Regression Kink Design

2.1 Background

We begin with some background on the existing literature. Consider the model

Y = y(B,V,W ) (1)

where Y is an outcome, B is a continuous regressor of interest, V is another covariate that enters the model,

and W is an unobservable, non-additive error term. This is a particular case of the model considered by

Imbens and Newey (2009); there are two observable covariates and interest centers on the effect of B on

Y .1 As is understood in the literature, this formulation allows for completely unrestricted heterogeneity

in the responsiveness of Y to B. In the case where B is binary, the model is equivalent to a potential

outcomes framework where the “treatment effect” of B for a particular individual is given by Y1−Y0 =

y(1,V,W )− y(0,V,W ).

One natural benchmark object of interest in this setting is the “average structural function” (ASF), as

discussed in Blundell and Powell (2003):

ASF (b,v) =
∫

y(b,v,w)dG(w) ,

where G(·) is the c.d.f. of W . This gives the average value of Y that would occur if the entire population

(as represented by the unconditional distribution of W ) was assigned to a particular value of the pair (b,v).

Florens et al. (2009) call the derivative of the ASF with respect to the continuous treatment of interest the

“average treatment effect” (ATE), which is a natural extension of the average treatment effect familiar in the

binary treatment context.

1In Imbens and Newey (2009), W is considered to have unknown dimension. We, too, can allow for that generality.
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A closely related construct is the “treatment on the treated” (TT) parameter of Florens et al. (2009):

T Tb (b,v) =
∫

∂y(b,v,w)
∂b

dG(w|b,v) .

As noted by Florens et al. this is equivalent to the “local average response” (LAR) parameter of Altonji and

Matzkin (2005). The TT (or equivalently the LAR) gives the average effect of a marginal increase in b at

some specific value of the pair (b,v), holding fixed the distribution of the unobservables at G(·|b,v).

Recent studies, including Florens et al. (2009) and Imbens and Newey (2009) have proposed methods

that use an instrumental variable Z to identify causal parameters such as TT or LAR. An appropriate instru-

ment Z is assumed to influence B, but is, at the same time, independent of the non-additive errors in the

model. Chesher (2003) observes that such independence assumptions may be “strong and unpalatable”, and

hence considers using local independence of Z to identify local effects.

As mentioned in the introduction, there are some important contexts – particularly when the regressor of

interest is a policy variable that is a deterministic function of a behaviorally endogenous variable – where no

instruments can plausibly satisfy the independence assumption, either globally or locally. In the framework

of equation (1), consider the case where B represents the level of unemployment benefits available to a newly

unemployed worker, Y represents the duration of unemployment, and V represents pre-job-loss earnings.

Assume (as in many institutional settings) that unemployment benefits are computed as a fixed fraction of

V up to some maximum weekly benefit. Conditional on V there is no variation in the benefit level, so model

(1) is not non-parametrically identified. One could try to get around this fundamental non-identification by

treating V as an error component that is correlated with B. But in this case, any variable that is independent

of V will, by construction, be independent of the regressor of interest B, so it will not be possible to find

instruments for B, holding constant the policy regime.

Despite this circumstance, it may still be possible to exploit the kinked benefit rule to identify a causal

effect of B on Y , in a similar spirit to the regression discontinuity design of Thistlethwaite and Campbell

(1960). The idea is that if B exerts a causal effect on Y , and there is a kink in the deterministic relation

between B and V at v = v0 (the lowest level of earnings at which the individual receives the maximum

benefit rate) then we should expect to see an induced kink in the relationship between Y and V at v = v0.

This identification strategy has been employed in a few empirical studies. Guryan (2001), for example,

uses kinks in state education aid formulas as part of an instrumental variables strategy to study the effect
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of public school spending.2 More recently, Simonsen et al. (2009) use a kinked relationship between the

total expenditure on prescription drugs and the marginal price to study the price sensitivity of demand

for prescription drugs. Nielsen et al. (2009), who introduce the term “Regression Kink Design” for this

approach, use a kinked student aid scheme to identify the effect of direct costs on college enrollment. Nielsen

et al. (2009) make precise the assumptions needed to identify the causal effects in the additive model

Y = τB+g(V )+ ε,

where B = b(V ) is a deterministic (and continuous) function of V with a kink at v = 0. Nielsen et al. (2009)

show that if g(·) and E [ε|V = v] have derivatives that are continuous in v at v = 0, then

τ =
lim

v→0+

∂E[Y |V=v]
∂v − lim

v→0−
∂E[Y |V=v]

∂v

lim
v→0+

∂b(v)
∂v − lim

v→0−
∂b(v)

∂v

.

The expression on the right hand side of this equation – the RKD estimand – is simply the change in slope

of the conditional expectation function E [Y |V = v] at the kink point (v = 0), divided by the change in the

slope of the deterministic assignment function b(·) at 0.3

2.2 Necessary and Sufficient Conditions for RKD in a Non-Separable Model

As background for our main results we first specify the necessary and sufficient conditions for an RKD

to identify marginal effects in a general nonseparable model, in the same way Hahn et al. (2001) formally

established the identifying assumptions for Thistlethwaite and Campbell (1960)’s RD design in the hetero-

geneous treatment effects, potential outcomes framework.

Proposition 1. For the nonseparable model (1), B = b(V ) , where b(·) is continuous but has discontinuous

derivative at 0, let g(w|v) be the density of w conditional on v. If ∀w i) ∂y(b,v,w)
∂b is continuous in v at v = 0,

ii) ∂y(b,v,w)
∂v is continuous in v except possibly at v = 0, iii) ∂g(w|v)

∂v is continuous in v except possibly at v = 0,

2Guryan (2003) describes the identification strategy as follows: “In the case of the Overburden Aid formula, the regression
includes controls for the valuation ratio, 1989 per-capita income, and the difference between the gross standard and 1993 education
expenditures (the standard of effort gap). Because these are the only variables on which Overburden Aid is based, the exclusion
restriction only requires that the functional form of the direct relationship between test scores and any of these variables is not the
same as the functional form in the Overburden Aid formula.”

3In an earlier working paper version, Nielsen et al. (2008) provide similar conditions for identification for a less restrictive,
additive model, Y = g(B,V )+ ε .
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then a necessary and sufficient condition for

limv→0+
∂E[Y |V=v]

∂v − limv→0−
∂E[Y |V=v]

∂v

limv→0+ b′ (v)− limv→0− b′ (v)
=
∫

y1 (b(0) ,0,w)g(w|0)dw≡ T Tb (b(0) ,0)

is that ∂E[y(b,V,W )|V=v]
∂v

∣∣∣
b=b(v)

is continuous in v at v = 0

To see this, consider the partial derivative of the conditional expectation function E [Y |V = v]≡E [y(B,V,W ) |V = v]

at v 6= 0,

∂E [y(b(V ) ,V,W ) |V = v]
∂v

=
∫

∂ (y(b(v) ,v,w)g(w|v))
∂v

dw

=
∫ (

y1 (b(v) ,v,w)b′ (v)+ y2 (b(v) ,v,w)
)

g(w|v)+ y(b(v) ,v,w)
∂g(w|v)

∂v
dw

= E [y1 (b(V ) ,V,W ) |V = v]b′ (v)+
∫

y2 (b(v) ,v,w)g(w|v)+ y(b(v) ,v,w)
∂g(w|v)

∂v
dw

= E [y1 (b(V ) ,V,W ) |V = v]b′ (v)+
∂E [y(b,V,W ) |V = v]

∂v

∣∣∣∣
b=b(v)

By taking the difference between the right and left limits of this expression, we obtain the result that

limv→0+
∂E[y(b(V ),V,W )|V=v]

∂v − limv→0−
∂E[y(b(V ),V,W )|V=v]

∂v

limv→0+ b′ (v)− limv→0− b′ (v)
= E [y1 (b(0) ,0,W ) |V = 0]

if and only if ∂E[y(b,V,W )|V=v]
∂v

∣∣∣
b=b(v)

is continuous in v at v = 0.4

Intuitively, a marginal increase in V induces an effect on Y through b, but also via the functional de-

pendence of y(B,V,W ) on V , and via the changing distribution of unobserved heterogeneity (reflected in

g(w|v)). Only when the latter two effects evolve smoothly as V reaches the kink point will the change in the

derivative ∂E[y(b(V ),V,W )|V=v]
∂v isolate the causal effect of b on Y . Formally, condition for the smoothness of

∂E[y(b,V,W )|V=v]
∂v

∣∣∣
b=b(v)

can be seen in the equation

∂E [y(b,V,W ) |V = v]
∂v

∣∣∣∣
b=b(v)

=
∫

y2 (b(v) ,v,w)g(w|v)+ y(b(v) ,v,w)
∂g(w|v)

∂v
dw.

It is clear that continuity of y2 (b(v) ,v,w) and ∂g(w|v)
∂v in v at v = 0 will satisfy the condition for identification.

That is, it is sufficient that the “direct” marginal impact of v on Y is continuous in v, and that the conditional

4Note that i) is required for the marginal effect to be well-defined at the point b(0), ii) and iii) are required in order to evaluate
the integrand ∂ (y(b(v),v,w)g(w|v))

∂v .
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density of the unobservables W change smoothly with respect to V .

While the assumption that the derivative of the density g(w|v) is continuous in v may seem like a mild

restriction, it is important to emphasize that in many potential applications of the RKD idea, the assignment

variable V is an endogenous behavioral outcome. If agents can strategically select a value of V , then we

might be concerned that the density of the unobservables may exhibit non-smooth behavior near the kink

point.

Arguably the most important development in recent applications of the regression discontinuity design

is the recognition that when the assignment variable is endogenously chosen, inferences from an RD design

may be rendered invalid (see e.g., the discussion in Lee and Lemieux (forthcoming), and the theoretical

treatments in McCrary (2008) and Lee (2008)). Recent RD analyses (for example, Urquiola and Verhoogen

(2009)) therefore devote much attention to the possibility of endogenous sorting on the assignment variable.

Nevertheless, Lee (2008) shows that when agents have only imprecise control over the assignment variable,

a regression discontinuity design can still deliver valid inferences. Our goal is to illuminate the same set

of issues for the regression kink design. Thus, our primary contribution is to characterize a broad class of

models for which the RK design will isolate quasi-experimental variation in the treatment of interest, and

– like a randomized experiment or an RD design – allow for empirical tests of the model’s validity. As

an illustration of the general principles involved, we sketch two different economic models of behavioral

responses to unemployment benefits: one that satisfies the conditions for a valid RKD, and one that does

not. Finally, we apply these ideas to evaluate the validity of a RKD analysis of the effect of unemployment

benefits on the duration of unemployment among job losers in the state of Washington. Given the results of

this analysis we go on to use an RKD to estimate the impact of marginal increases in benefit generosity on

employment outcomes and UI claim behavior.

2.3 Defining Causal Effects in an Ideal Randomized Setting

Since our goal is to characterize a class of models for which the RKD isolates quasi-experimental or “as

good as randomized” variation in a regressor of interest, we first briefly review the statistical implications

of running an idealized experiment in which the regressor is randomly assigned. This benchmark will serve

as a basis for comparison in the sections to follow when we investigate the RK estimator in the context of

non-random treatment assignment.

To envision a randomized scenario that corresponds to a regression kink design setting, a continuous
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treatment variable is called for. This is different from a classical randomized experiment in which agents

are assigned to either a treatment group or a control group.

Let (Y,X ,B,V ) be observable random variables, where Y denotes the outcome of interest, B is the

treatment assignment variable, and X (a vector) and V (a scalar) are variables that are determined prior to

B, in that order. The random variable V will play the role of the assignment variable in the RK Design

described below. We denote the density of B conditional on V,W as fB|V,W (·|·, ·) and the marginal density of

B as fB (·).

Definition. Let W characterize the “type” of the individual, with c.d.f. G(w). All individuals with the same

value of W are identical. Conditional on W , however, the distribution of V may be non-degenerate. Let

Y ≡ y(B,V,W ), y1(b,v,w)≡ ∂y(b,v,w)
∂b , and X ≡ x(W ), where y(·, ·, ·) and x(·) are real-valued functions.

As in Lee (2008), there is no loss of generality in assuming that W is one-dimensional. To give a

concrete example, W could represent potential earnings capacity, X could be the level of schooling at the

time of applying for UI benefits, and V could represent pre-job-loss earnings. Non-degeneracy of V could

arise from pure “randomness” in the determination of pre-job-loss earnings.

Note that there is no loss in generality in excluding X from the structural function y(·, ·, ·) . The variables

X could be included as a separate argument, but we are not interested in the marginal effects of X . Thus, we

consider the “reduced-form” function y(·, ·, ·), for which the impact of W is defined to include any indirect

effects through X . Note that so far, our setup corresponds to a standard unrestricted non-separable model,

except that we have made clear that X is determined before V , which is determined before B. This ordering

implies that B cannot enter the function x(·).

Condition 2a y1(b,v,w) exists for all (b,v,w) ∈ R3, is integrable with respect to dG(w) for all b ∈ R,

and is continuous in b for all w.

Condition 2b (Randomized Treatment Assignment) fB|V,W (b|v,w) = fB(b) for all (b,v,w) ∈ R3.

This condition describes a simple assignment mechanism that is the continuous analogue of a classical

randomized experiment. In particular, each individual faces the same probability of receiving any level of

the treatment variable.
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In the context of an unemployment benefit example, we have in mind the following experiment. For each

individual, regardless of pre-job-loss earnings, we randomize the weekly benefit amount they can receive

and then observe the outcome Y (for example, Y could measure the duration of insured unemployment).

A natural function of interest in this setting is E [y1 (B,V,W ) |B = b,V = v], which represents the average

response of Y to a marginal increase in benefits, for a particular pair (b,v). This function could be averaged

over the distribution of V (conditional on B) to obtain E [y1 (B,V,W ) |B = b], which is the average response

of Y to a marginal increase in B at a particular value of b .

The key implications of this assignment mechanism are summarized in the following proposition.

Proposition 2. If Condition 2a and Condition 2b hold, then

(a) Pr(W 6 w|B = b) = Pr(W6w) ∀w ∈ R and ∀b in the support of B.

(b) ∂E[Y |B=b,V=v]
∂b = E[y1(b,V,W )|V = v] ≡ AT Eb|v = T Tb|v =

∫
y1(b,v,w) fV |W (v|w)

fV (v) dG(w) ∀b in the sup-

port of B.

(c) Pr(X 6 x0|B = b) = Pr(X 6 x0) ∀x0 ∈ R and ∀b in the support of B.

The proof of Proposition 2 is in the Appendix. Part (a) states the intuitive consequence of randomized

experiment: the distribution of “all other pre-determined factors” is the same, regardless of the level of the

treatment B. Part (b) establishes that the partial derivative of E [Y |B = b,V = v] with respect to b identifies

the AT E parameter at b (at V = v). AT Eb|v is also equivalent to the T T at b, since in this randomized exper-

iment, the distribution of W conditional on B is the same as the unconditional distribution of W , as stated

in (a). Part (b) also shows that the average derivative is actually a weighted average across all individuals,

where the weights fV |W (v|w)
fV (v) reflect the relative likelihood that a particular type of individual (identified by

a value of w) will have V = v. It is also possible to average AT Eb|v over the marginal distribution of V to

obtain the unconditional AT E of E[y1(b,V,W )].

Part (c) of the proposition is the most distinctive implication of randomized variation in B. If each

agent has the same probability law for B, then the distribution of the pre-determined covariates, X , will

be identical for any value of B. Thus, the empirical validity of Conditions 2a and 2b can be tested using

baseline covariates. This is analogous to the conventional “test for randomization” that is often employed

in randomized controlled trials, whereby the analyst tests that the distributions of the baseline covariates

among the treatment and control groups are statistically similar.
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2.4 Local Random Assignment From a Regression Kink Design

2.4.1 Identification

We now consider the case where the regressor of interest, B, is mechanically determined as a function of

the assignment variable V . We show that if the assignment rule has a kink at V = 0 then: (a) RKD can

identify the same T Tb|v parameter that is identified by the above randomized experiment; and (b) the validity

of the RKD can be tested by examining the properties of the conditional distribution of the predetermined

covariates Pr(X ≤ x0|V = v) at v = 0.

The random variables are determined in the same sequence as in the experiment: first the pre-determined

variables X , then V , and then B. This time, however, B is determined according to the deterministic rule

B = b(V ). Formally,

Definition. Let (V,W ) be a pair of random variables (with W unobservable, V observable), where the dis-

tribution of W is given by the c.d.f G(w), and the distribution and density of V conditional on W are given

by the c.d.f. FV |W (v|w) and p.d.f. fV |W (v|w). Let B≡ b(V ), let Y ≡ y(B,V,W ), and X ≡ x(W ). Also, define

y1(b,v,w)≡ ∂y(b,v,w)
∂b and y2(b,v,w)≡ ∂y(b,v,w)

∂v .

Condition 3a. (Regularity) y(·, ·, ·) and x(·) are real-valued functions. y1(b,v,w) is continuous in b and

y2(b,v,w) is continuous in v for all b, v and w.

Relative to the experimental setting, this condition requires that the direct marginal impact of V on Y is

smooth.

Condition 3b. (First Stage) b(·) is a known function, everywhere continuous and is continuously dif-

ferentiable on (−∞,0) and (0,∞), but lim
v→0+

b′(v) 6= lim
v→0−

b′(v). In addition, fV |W (0|w) is strictly positive for

w ∈ A, where
∫

A dG(w) > 0.

Condition 3c, (Smooth Density) FV |W (v|w) is twice continuously differentiable in v at v = 0 for every

w. That is, ∂ fV |W (v|w)
∂v , the derivative of the conditional probability density function fV |W (v|w) is continuous

in v for all w.
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This is the key assumption that is required for a valid RK Design. As in Lee (2008), this condition rules

out precise manipulation of the assignment variable. But whereas in an RD context continuity of fV |W (v|w)

in v is sufficient for valid inferences, in the RK design we need to have a continuous derivative of fV |W (v|w)

with respect to v. As we show in the next Section, there are reasonable economic models that predict that

the smooth density condition will hold, even though agents have some control over the assignment variable

V , and other models where it will not hold. This underscores the need to be able to empirically test the

implications of this assumption.

Proposition 3. If Conditions 3a, 3b and 3c hold, then:

(a) Pr(W 6 w|V = v) is continuously differentiable in v at v = 0 ∀w.

(b)
lim

v→0+
∂E[Y |V=v]

∂v − lim
v→0−

∂E[Y |V=v]
∂v

lim
v→0+

∂b(v)
∂v − lim

v→0−
∂b(v)

∂v

= E[y1(b0,0,W )|V = 0] =
∫

y1(b0,0,w) fV |W (0|w)
fV (0) dG(w) = T Tb0|0 where b0 =

b(0).

(c) Pr(X 6 x0|V = v) is continuously differentiable in v at v = 0 ∀x0.

Proposition 3 is analogous to Proposition 2, and its proof is in the Appendix. Part (a) states that the

rate of change in the probability distribution of individual types with respect to the assignment variable V is

continuous at V = 0.5 This leads directly to part (b): as a consequence of the smoothness in the underlying

distribution of types around the kink, the change in the slope of E [Y |V = v] at v = 0 divided by the change

in slope in b(V ) at the kink point delivers identification of T Tb0|0. This is the same parameter identified

by the randomized experiment above, except that it is evaluated at B = b0 and V = 0.6 The weights in the

weighted average interpretation T Tb0|0 are also the same as for the experimentally identified T Tb|v. Note that

in contrast to the case of the randomized experiment, T Tb|v is in general different from AT Eb|v, due to the

potentially systematic relation between B and W . It should also be clear that Conditions 3a, 3b, and 3c will

satisfy the necessary condition of Proposition 1.

Finally, and most importantly, Proposition 3c, which is analogous to Proposition 2c, states that under the

required conditions for a valid RKD, any pre-determined variable X should have a c.d.f. that is continuously

5Note also that (a) implies Proposition 2(a) in Lee (2008), i.e., the continuity of Pr(W 6 w|V = v) at v = 0 for all w. This is a
consequence of the stronger smoothness assumption we have imposed on the conditional distribution of V on W .

6Technically, the T T and LAR parameters do not condition on V . But in the case where there is a one-to-one relationship
between B and V , then the trivial integration over the (degenerate) distribution of V conditional on B = b0 will imply that T Tb0|0 =
T Tb0 ≡ E [y1 (b0,V,W ) |B = b0], which is literally the T T and LAR parameters discussed in Florens et al. (2009) and Altonji and
Matzkin (2005), respectively. In our application to unemployment benefits, B and V are not one-to-one, since beyond V = 0, B is at
the maximum benefit level. In this case, T Tb will in general be discontinuous with respect to b at b0; for B < b0, T Tb = T Tb|v, but
for B = b0, T Tb0 =

∫
T Tb0|v fV |B (v|b0)dv. In this case, the RKD estimand identifies limb↑b0 T Tb.
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differentiable (i.e., no kink) with respect to V . It is important to emphasize that this prediction is stronger

than the requirement for a valid RD that the distribution of X is continuous with respect to V . In particular,

showing that there is a similar distribution of baseline covariates in a neighborhood just to the left and just

to the right of V = 0 is not enough to verify the prediction of Proposition (3c). Instead, what is needed

is evidence on the smoothness of the conditional distribution, based on comparisons of the slope of the

conditional expectation function (or the conditional quantile function) of X given v.

2.4.2 Discussion of the Smooth Density Condition–Illustration With a Simple Labor Supply Model

We now use a simple behavioral model of labor supply responses to variation in the unemployment benefit

rate to illustrate the substantive content of the smooth density condition (Condition 3c) that is required for

valid RK design. We begin with an example where Condition 3c is violated. In this example, sorting is “too

extreme” to satisfy the smooth density assumption. Consider a group of workers who are initially employed

in a temporary (or seasonal) job. At the beginning of period 1, workers know that the job will end after one

period, and that during the second (and final) period they will receive unemployment insurance benefits that

depend on their first-period earnings. In period 1 they earn an exogenous hourly wage w and consume their

entire wage income. In period 2, they receive an unemployment benefit b that is based on their first period

income (I): b(I) = min(γI, b̄), where γ ∈ (0,1) represents the replacement rate and b̄ represents a maximum

benefit rate (both of which are constant). For simplicity we assume that there is no possibility of finding

another job in period 2, and that unemployment benefits are the only source of second period income.

Workers can choose how many hours h ∈ [0,1] to work in period 1. Workers differ by the relative

weight that they assign to consumption versus leisure in their within-period utility functions. We denote the

utility function for a worker of type α as uα(consumption,leisure). We assume that workers have complete

knowledge of the mapping b(·) before starting to work in period 1. A worker of type α solves the following

problem:

max
h

uα(wh,1−h)+βuα(b(wh),1)

where β > 0 is a discount factor.

Consider a Cobb-Douglas utility function: uα(consumption, leisure)≡ log(consumption)+α log(leisure).
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This parametrization leads to the optimal choices:

h∗ =



1+β

1+α+β
if 1+β

1+α+β
< k

1
1+α

if 1
1+α

> k

k otherwise

where k = b̄
γw is the location of the kink when we plot b (benefits) against h (labor supplied in period 1).

The relationship between h∗ and α is plotted in Figure 1 for the case where w = 1000, γ = 0.5, b̄ = 350 and

β = 0.5.

As shown in the graph, individuals with α ∈ [0.43,0.64] will all choose h∗ = k = 0.7. Assuming that

α is smoothly distributed on (0,1), this means that a discrete mass of workers will sort to the kink. In

general, then, the density of optimal hours, fh∗(h), will have a discontinuous derivative at h = k, reflecting

the fact that the derivative of the inverse mapping from α to h∗ is different from the left and right at h∗ = k.7.

Consequently, the derivative of the density of baseline earnings I (the assignment variable) conditional on α

(the latent unobservable) will not be the same on the two sides of the kink, violating Condition 3c.

Next we consider a variant of the model in which Condition 3c is satisfied. Suppose that in period

1 workers do not know the precise location of the kink-point k , but instead have a prior represented by

the density fk(k) for 0 < k < 1, with associated c.d.f. FK (k). In this case, uncertainty over the location

of the kink translates into uncertainty over b, and the worker only knows that his or her benefit will be

b = min(γwh,γwk) for each potential value of k. Given these prior beliefs the worker maximizes expected

utility:

log(wh)+α log(1−h)+β

∫
(log(γwh)1[h<k] + log(γwk)1[h>k]) fK(k)dk,

which can be simplified to:

log(wh)+α log(1−h)+β{log(γwh)(1−FK(h))+
h∫

−∞

log(γwk) f (k)dk}.

It can be shown that the first order condition for an optimal hours choice in period 1 has the form:

1−h∗−αh∗+β (1−h∗)(1−FK(h∗)) = 0.

7It is (1+β ) 1−c
c from the left and 1−c

c from the right.
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The derivative of the optimal hours choice as a function of the worker’s type is:

dh∗

dα
=− h∗

(1+α)+β (1−FK(h∗))+β (1−h∗) fK(h∗)
.

The denominator of this expression is strictly positive, and dh∗
dα

is continuous in α at every α and h∗ that sat-

isfy the first order condition. Assuming that α is smoothly distributed, h∗ will then be smoothly distributed,

as will baseline earnings I = wh∗. Thus, under the assumption that agents have a smooth prior on the loca-

tion of the kink, Condition 3c will hold. The lack of information among workers rules out the extreme form

of sorting in the first example and ensures that there is a smooth mapping from the underlying heterogeneity

to the assignment variable.

3 Unemployment Insurance in Washington State: Background and Data

3.1 The Washington Reemployment Bonus Experiment

In this section we use a regression kink approach to estimate the marginal effect of unemployment bene-

fits on claimant behavior for a sample of individuals in the Washington Reemployment Bonus Experiment

(WREB). The WREB was a randomized experiment conducted during 1988 to study the responses of unem-

ployment insurance (UI) claimants to alternative incentive schemes. Specifically, the experiment provided

different lump sum bonus amounts to claimants who found a job within alternative time-limits. A total of

15,534 claimants participated in the experiment, of whom 12,452 were assigned to one of the six treatment

groups (3 different bonus amounts × 2 different time-limits) and 3,082 were assigned to the control group.

All participants were subject to the same (standard) provisions of the Washington UI system for determining

their benefit amounts. To the extent that the bonus provisions may have interacted with the effects of the

benefit level, our analysis – which ignores the bonus aspect of the experiment – provides estimates of the

marginal impact of higher UI benefit levels averaged across the 7 experimental regimes (6 treatment regimes

and 1 control regime).
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3.2 UI Institutions in Washington State

3.2.1 Benefit Determination Rules

In Washington, as in other US states, UI entitlement is based on a formula that depends on labor market

activities in the period before the start of the claim. The Washington formula uses earnings in a “base year”,

defined as either (i) the first four of the last five completed calendar quarters, or (ii) the last four completed

calendar quarters, immediately preceding the start of the claim. Provided that an individual had enough

earnings (and, uniquely to the Washington system, worked a minimum of 680 hours) in the base year, he or

she is eligible to draw benefits over a year-long period (the so-called “benefit year”). The individual’s benefit

amount is 1/50 of total wages earned in the two highest-earning quarters of the base period. Thus, for an

individual with constant weekly earnings of $I over the base year, the benefit amount is 26/50× I u 0.52I.

The benefit amount is subject to a maximum (which was $205/week in the first 6 months of the experimental

period, and $209/week in the second half) as well as a minimum (which we ignore by eliminating the small

fraction of claimants affected by this provision). Claimants also face a ceiling on the total amount of benefits

claimed, which cannot exceed the lesser of 30×their weekly benefit amount, or one-third of their base-year

earnings. This ceiling determines the maximum number of weeks of UI they can draw.

Formally, the benefit rules can be summarized as follows. Let b denote “weekly benefit amount”,

Totalbene f its denote “total benefits payable” and Maxduration denote “weeks of unemployment benefit

entitlement”. Let Q1, Q2, Q3 and Q4 be the quarterly earnings in the four quarters of the base period,

ranked in order of earnings, so Q1 and Q2 are the two highest among the four. The rules that determine b,

Totalbene f its and Maxduration in the first half of 1988 (the definition is analogous for the last two quarters

of 1988) are summarized as follows:

b =


Q1+Q2

50 if Q1+Q2
50 < 205

205 if Q1+Q2
50 > 205

Totalbene f its = min(30 ·b,
Q1 +Q2 +Q3 +Q4

3
)

Maxduration =
Totalbene f its

b
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Define r ≡ Q3+Q4
Q1+Q2

∈ [0,1] and V ≡Q1 +Q2. Then with some simplification we can re-write the rules as:

b =


V
50 if V < 10,250

205 if V > 10,250

Totalbene f its =



3
5V if V < 10,250 and r > 4

5

1
3V (1+ r) if V < 10,250 and r < 4

5

6,150 if V > 10,250 and r > 4
5

1
3V (1+ r) if V > 10,250 and r < 4

5

Maxduration =



30 if V < 10,250 and r > 4
5

1
3(1+ r) ·50 if V < 10,250 and r < 4

5

30 if V > 10,250 and r > 4
5

1
3(1+ r) · V

205 if V > 10,250 and r < 4
5

Notice that for claimants with r ≥ 4
5 , Totalbene f its “top out” at the same point as b; as a result

Maxduration is exactly 30 weeks, regardless of V . For claimants with r < 4
5 , however, Totalbene f its =

1
3V (1 + r) for all values of V . Since Maxduration = Totalbene f its

b , and b flattens out once V reaches 10,250,

there is an “upward” kink in the relation between Maxduration and V at V = 10,250 for people with r < 4
5 .

Naturally, having two endogenous regressors that are kinked at the same point will make it impossible

to distinguish between the independent effects of b and Maxduration. But since the kink in Maxduration is

entirely driven by the kink in b, we can still obtain estimates of the “reduced-form” effect of b. This reduced

form effect arises through two channels: the direct effect of b on the outcome of interest, and an indirect

effect through Maxduration. That is, the identified marginal effect is from manipulating b, while holding

constant the other aspects of the rules determining Totalbene f its and Maxduration.
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3.3 Data Issues

3.3.1 Data Source and Variables

Our data are derived from the public use file of the WREB, which combines information from several ad-

ministrative data sources. Most of the variables, including wage earnings, UI benefits, and demographic

characteristics, come from the Benefit Automated System and the WAGE database provided by the Wash-

ington State Employment Security Department (WSESD). Also included in the file are variables on local

labor market conditions provided by the Labor Market and Economic Analysis Branch of the WSESD. The

assignment variables that are crucial to the evaluation of the re-employment bonus experiment come from

the Participant Tracking System of the WREB, and will not be used in our analysis. Details on the the

construction of the data file can be found in Spiegelman et al. (1992).

The variables relevant for our study are:

• Earnings: quarterly earnings from the first quarter of 1985 to the last quarter of 1989.

• Unemployment Insurance: date of UI claim; b; Totalbene f its; Maxduration; Net UI payment for

every week in the benefit year.

• Baseline covariates: age, gender, race, education, one-digit SIC code of base year employer, Job

Service Center where the claim was filed.

Table 1 reports summary statistics for these variables for the analysis sample that we describe below.

3.3.2 Adjusting Base Period Earnings for Changes in the Maximum Weekly Benefit

The maximum weekly benefit amount increased from $205 to $209 beginning July 1, 1988. To facilitate a

pooled analysis using data for the entire year, we adjust V (the sum of earnings in the two highest quarters)

for claimants who filed after July 1, 1988 by subtracting $200 (=$4 per week ×50 weeks) from the sum of

their two highest-quarter earnings. With this adjustment, the kink in the benefit rule is at the same point

(V = 10,250) for all claimants in the sample. The formulaic relationship between b and the adjusted value

of V is shown in Figure 2. (The Figure also shows the minimum weekly benefit rate, which we ignore in our

empirical analysis by eliminating very low-earning claimants). Note that although the relationship has the

same kink point for claimants in the two halves of the year, the benefit rates (as a function of V ) are slightly

higher for claimants from the second half. Estimated treatment effects from the pooled sample therefore
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represent an average of the marginal effects for these two levels of benefits. If the marginal effects are the

same, then the pooled data will yield more efficient estimates.

3.3.3 Measurement Error in Base Period Earnings

In principle, a plot of the actual weekly benefit amounts received by claimants against their normalized

base period earnings should replicate Figure 2. In practice, the empirical relationship (depicted in Figure

3) shows deviations from the UI benefit rules. Out of 15,534 claimants in our overall sample, some 8%

(1,249 cases) have benefit amounts that appear to deviate from the formula (this group also includes a

small number of claimants with missing data for three or four quarters in the baseline). Figure 4a plots the

histogram of the differences between the actual and predicted values of the weekly benefit amount b. Since

92% of observations have a deviation of precisely 0, the figure is not very informative: Figure 4b shows

the histogram after excluding the 0′s, and suggests that the deviations are slightly left-skewed (i.e, actual

benefits tend to be a little lower than predicted, on average). Further investigation revealed that the likely

source of the discrepancy between actual and predicted benefits arises because the benefit system data files

incorporate an unedited version of quarterly earnings in the base period, whereas the benefit formula uses a

verified measure of earnings.8

Under the presumption that the benefit rate b was correctly computed from actual earnings, it is possible

to correct the measure of V by inverting the benefit formula. After this correction procedure the only

remaining deviations arise from the 90 observations whose actual weekly benefit is at the maximum level

($205 for the claims filed in the first half of 1988, $209 for those filed in the second half of 1988) but

whose reported value of V is below the kink point ($10,250). For simplicity we drop these cases from our

main analysis sample. The relationship between b and V in the analysis sample is shown in Figure 3b and

(by construction) follows the predicted pattern of Figure 2 exactly.9 A minor complication arises because

there is an unusual mass of claimants with filing dates in July 1988 who have values of b = $205, even

though though the maximum benefit rate had increased to $209 effective July 1. These claims were most

likely processed according to the rules for the first half of the year. Accordingly, we assume that claimants

from July 1988 whose actual benefit amount is $205/week, but whose predicted benefit exceeds $205, were

8According to Ken Kline at the Upjohn Institute, if an applicant’s earnings do not match the amount in the system database,
then the employer is contacted for verification in order to calculate UI benefit. But the system database, which we use, is not
subsequently updated with the correct information.

9We have performed empirical analyses on both the “raw” data and on the corrected sample, and the results do not differ
substantially. We report results from the corrected sample below.
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processed according to the rules before June 30, 1988.

4 Empirical Results from the RKD Analysis

4.1 Outcomes of Interest

We focus on three main outcomes associated with the effect of changes in weekly UI benefits: the total

amount of UI payments received over the benefit year; the total number of weeks of UI claimed; and the

duration of the initial unemployment (claim) spell. Our definition of the initial spell is borrowed directly

from Spiegelman et al. (1992): this spell starts with the so-called waiting week (a week during which no

payments are received) and ends when there is a gap of at least two weeks in the receipt of benefits.

The effect of an increase in the weekly benefit amount b on total UI system costs (per claimant) is of

great policy interest in itself. It is important to emphasize, however, that a finding of a significant effect

for this outcome does not necessarily imply that higher benefits induce a behavioral response among UI

claimants. Even in the absence of any behavioral response, an increase in weekly benefits paid to some

group will lead to an increase in total UI benefits that is proportional to the average number of weeks of UI

claimed. Thus, a kink in the relationship between total UI payments and base earnings at the point where

weekly benefits are capped will in part reflect the purely mechanical relationship between the benefit amount

and the cost of payments.

It is tempting to interpret the effect of the weekly benefit amount on the number of weeks of UI claimed,

or on the length of the initial spell, as a purely behavioral response. In the case of Washington’s UI sys-

tem, however, a straightforward RKD analysis will not isolate a purely behavioral effect on either of these

outcomes. The reason is that for claimants with r = Q3+Q4
Q1+Q2

< 4
5 there is a kink in the relationship between

Maxduration (the maximum number of weeks of UI available) and base period earnings V (see Section

3.2.1). For this subgroup (who represent approximately 60% of claimants in the WREB), a small increase

in V when V is to the left of the kink-point in the benefit formula leads to a higher benefit rate b, but no

increase in Maxduration. In contrast, a small increase in V to the right of the kink-point leads to both an

increase in b and an increase in Maxduration. Thus, a comparison of the slopes of the relationship between

V and the duration of UI claims on either side of the kink-point combines a behavioral response and a me-

chanical entitlement effect. To isolate the behavioral component, we consider artificially censoring the data

on the right so that the relationship between the censored maximum duration and V is smooth. Specifically,
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consider a maximum potential benefit duration measure Maxdurationsmooth that is constructed by applying

the formula for Maxduration that prevails on the left side of the kink to all claimants:

Maxdurationsmooth =


30 r > 4

5

1
3(1+ r) ·50 r < 4

5

.

If we conduct an analysis using the number of weeks of benefits claimed (or the duration of the initial UI

claim) censored at Maxdurationsmooth, we potentially eliminate the mechanical entitlement effect and isolate

the behavioral impact of the change in UI benefits.10 To evaluate the validity of this simple approach we

plotted mean weeks of actual UI entitlement against the value of V for a set of discrete bins (30 different

bins of $500 each, equally distributed on the two sides of the kink point). We then compared this to a

plot of censored entitlements, censoring actual entitlements at MaxdurationSmooth. Whereas uncensored

mean entitlements show a pronounced kink at V = 10,250, the relationship between censored entitlements

and base period earnings is smooth (see Figure 5), suggesting that the censoring approach will work. We

therefore focus on five “outcomes of interest” in our empirical analysis: total UI payment received, weeks of

UI claimed, the duration of the initial UI spell, and censoring-adjusted versions of the latter two outcomes.

4.2 Graphical Presentation

An attractive feature of a Regression Kink Design is that the results from the analysis can be summarized

graphically, in a fashion similar to the way that results from a Regression Discontinuity Design are typically

presented. In particular, one can plot the means of the outcomes of interest, as well as the means for the

predetermined covariates, against the assignment variable V (base period earnings) and look for potential

kinks around the kink-point in the formula that maps the assignment variable to the regressor of interest.

For such a presentation we need to divide the range of V into suitable “bins.” Given the modest sample sizes

available, we use $500 bins.11 We also limit attention to observations with V ∈ [2750,17750], resulting in a

10In practice we use Maxdurationsmooth =

{
30 r > 0.74
ceiling[ 1

3 (1+ r) ·50] r 6 0.74
to incorporate the effect of the way that rounding

is implemented in the Washington State UI system. For example, when Totalbene f its/b = 29.1, a claimant is entitled to 30 weeks
of benefits: he or she can receive full weekly benefits for the first 29 weeks of claim and one tenth of the weekly benefit amount
in the 30th week. There are also claimants for whom weeks of UI received are greater than Maxduration. This happens when a
claimant receives partial benefits during a week when he or she is working part-time while on claim. For simplicity we do not cap
the weeks of UI claimed (or initial spell length) at Maxdurationsmooth for these claimants.

11Lee and Lemieux (forthcoming) present a formal procedure for choosing bin size, based on goodness-of-fit tests which evaluate
the fit of simple models with bin dummies. A bin size of 500 is the largest that passes the two tests suggested by Lee and Lemieux
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graphical analysis with 15 bins on each side of the kink-point (V = 10250).12

Proposition 3 establishes that there are two key testable implications of a valid RK design. First, the

density of the assignment variable V has to be continuously differentiable at the kink-point. Second, the

conditional expectations (and conditional quantile functions) of any baseline covariates have to be continu-

ously differentiable at the threshold. As in a RDD, these testable conditions can be visually examined. We

proceed by plotting the number of observations in each bin, and the mean values of the covariates for the

claimants in each bin, against base period earnings.

Figure 6 presents a plot of the “density” of V (i.e., the histogram across the 30 bins).13 The histogram

is somewhat bumpy, with a drop between 15th bin (to the left of the kink) and the 16th bin (to the right),

although the drops at other points (e.g., between the 9th and 10th bins, or between the 17th and 18th bins) are

similar in magnitude.

Next we examine plots of the conditional means of age, education, gender, race, region, and industry for

different values of V . All of these covariates were presumably determined before the claimant’s base period

earnings. The results are shown in Figures 7(a) through 6(e). As a simple indicator of region we use the

fraction of claimants who filed for UI at a Job Service Center in Western Washington.14

Inspection of the pattern of the “dots” in Figures 7(a)-7(e) leads us to conclude that the conditional means

of the covariates evolve smoothly across the kink-point in the benefit determination schedule. The evolution

of mean education (Figure 7(b)) shows some evidence of a kink in the neighborhood of V = 7250, but

around the critical kink-point (V = 10250) it appears to evolve relatively smoothly. On balance there is no

strong visual evidence of discontinuities in ∂E[X |V = v]/∂v at the kink-point. We evaluate the smoothness

of the distributions of the covariates more formally in the next section.

The relative smoothness in the conditional means of the covariates around the kink point becomes even

more apparent when compared with the patterns for the outcome variables in Figures 9(a)-9(d). For all five

outcomes there is a clearly discernible change in the slope of the relationship with V at the kink-point in

the benefit formula. In each case the outcome variable is increasing in V to the left of the threshold and

decreasing in V to the right of the threshold. Notice that this is true for total UI benefits (Figure 8(a)) which

incorporates both a mechanical and behavioral effect of weekly benefits, as well as in the censored versions

(forthcoming) for all the dependent variables in our analysis.
12Outside of the range [2750,17750] the sample sizes per bin are very small.
13Since our interest is in evaluating the smoothness of the density function we do not display the more conventional “smoothed”

histogram.
14At the time of the WREB the state had 21 Job Service Centers, 14 of which are located in Western Washington.

21



of weeks of UI claimed (Figure 8(d)) and the duration of the initial claim (Figure 8(e)), which incorporate

only a behavioral component. In the following section, we present the numerical estimates of the change in

slopes based on simple parametric specifications.

4.3 Estimation Results

4.3.1 Empirical Specification

In empirically implementing the RKD estimator, we follow two complementary approaches. For our first

approach we follow Lee and Lemieux (forthcoming) and estimate parametric polynomial models of the

form:

E [Y |V = v] = α0 +
p

∑
p=1

[αp(v− k)p +βp(v− k)p ·D] where |v− k|6 h (2)

where k = $10250 (the kink point), D = 1[V>k], an indicator for the event that base period earnings exceeds

the kink-point, the α’s and the β ’s are polynomial coefficients, p is the maximum polynomial order, and

h is the bandwidth that determines the window [k− h,k + h] within which the sample is selected.15 In this

approach the change in the derivative of the conditional expectation function – the numerator of the RK

estimand – is given by the coefficient β1. Since the slope of the benefit function b(V ) changes from 1
50 to 0

at the kink point, the denominator of the RK estimand is − 1
50 and so we multiply β̂1 by −50 to obtain the

T Tb effect of b on Y .

We present a sensitivity analysis, choosing several levels of h ranging from h = 1000 to h = 7500.

For each bandwidth choice we vary p from 1 to 3 and report the order of the polynomial preferred by

the Aikaike Information Criterion (AIC). As suggested in Lee and Lemieux (forthcoming), we also run an

additional “unrestricted” model in which we include a set of dummy variables which indicate consecutive

intervals (of width 500) in V , and compute a goodness-of-fit test that compare the polynomial model to the

dummy variable specification. Within this framework we can also easily probe the sensitivity of the results

to inclusion of the baseline covariates, by adding these as additional regressors.

15Note that this specification imposes continuity in the conditional expectation function at the kink-point. We have also estimated
all models allowing for a potential discontinuity (by including D as a separate regressor). Estimates of the change in the slope at
the kink-point are very similar, and the implied “jumps” in the conditional expectation function are never statistically significant.
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4.3.2 RKD Estimates

Table 2 reports RKD estimates using the baseline specification (2) and Table 3 shows that the results are

robust to the inclusion of baseline covariates. For each table, we include point estimates of β̂1 and robust

standard errors for each of the regressions. We also report the p-values from the Goodness-of-Fit tests

including the bin dummies. Results for bandwidths of h = 7500, h = 2500 and h = 1000 are reported. For

each bandwidth, we report the coefficient from regressions up to a third order polynomial.

In general, within the bandwidths we consider, the AIC suggests a linear specification, with the excep-

tion being that a quadratic is chosen by the AIC for “total weeks claimed”. It is also true that the linear

specification is not considered too restrictive relative to a model that includes bin dummies: none of the

p-values are less than 0.05 in any of the specifications. The most precise estimates of the effect of a dollar

increase in benefit on total UI received are around $17 to $18, while for the point estimates for “Total Weeks

Claimed” are around 0.04 of a week. Note that for the bandwidth of 7500, the inclusion of quadratic terms

causes the point estimate to fall and become statistically insignificant, although a 0.04 effect could not be

ruled out at conventional levels of significance. By comparison, the effects are less sensitive to the inclu-

sion of second order terms for the “Initial Spell Length” variable. As expected, the magnitude of the point

estimates increase slightly when we artificially censor the data to isolate the purely behavioral impact of the

benefit on the weeks claimed and initial spell variables.

As we might expect, the estimates become less precise as we shrink the bandwidth, and when it becomes

1000, the standard errors are much larger relative to the point estimates, even for “Total UI Received”, which

is the most striking kink displayed in our figures. Although we report the point estimates and corresponding

p-values for the specification tests for all of these permutations, we focus on the first, second, and fourth

rows of Table 2 as our preferred specifications, and believe at a minimum that these models are the least

likely to be over-fit. The pattern of results in Table 3 – where we include baseline covariates – are similar

both qualitatively and quantitatively, with the estimated standard errors being slightly smaller, and the point

estimates being sometimes higher and sometimes lower, but not by a significant amount, depending on the

outcome and specification.

We benchmark our estimates against three studies from the UI literature. Hamermesh (1977) concludes

that "the best estimate–if one chooses a single figure–is that a 10-percentage point increase in the gross

replacement rate leads to an increase in the duration of insured unemployment of about half a week when
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labor markets are tight." Moffitt and Nicholson (1982) find that that a 10-percentage point increase in the

replacement rate was associated with about a one week increase in the average length of unemployment

spells, while the estimate of Meyer (1990) is around one and a half weeks in response to a 10-percentage

point increase in replacement rate.

In our setting, a $1 increase in the weekly benefit amount for the population near V = 10,250 corre-

sponds to about a 0.25 percentage point increase in the UI replacement rate16. Since our estimates indicate

roughly a 0.04 increase in insured spells, this implies that the response to a 10 percentage point increase in

replacement rate would be an increase in insured unemployment duration by about 0.04 ∗ (10/0.25) = 1.6

weeks, which is of a similar magnitude as the estimate in Meyer (1990).

4.3.3 Testing for Kinks in the Density of Baseline Earnings and Conditional Expectation of Covari-

ates

To provide an estimate of a potential kink in the density of V at the threshold, we follow the approach

of McCrary (2008) and first collapse the data into equal-sized bins of width 500. The collapsed data set

contains 30 observations as we restrict the sample to V ∈ [2750,17750]. The two key variables in the

collapsed data set are: the number of original observations in each bin Nbin and the baseline earnings amount

each bin is centered around, Vbin. We then regress Nbin on polynomials of (Vbin−k) and the interaction term

1[Vbin>k](Vbin− k) where k = 10,250 is the kink-point. Because of the small number of observations, we do

not interact 1[Vbin>k] with higher order polynomial terms of (Vbin−k). A fourth order polynomial does a good

job fitting the data with an R2 = 0.99. As suggested by Figure 7, the coefficient on the interaction term is

statistically insignificant (a t-statistic of -0.78).

Table 4 is the analogy to Table 2, except that the dependent variables are the baseline covariates. If

the RKD is valid, and the assumption of a smooth density of V is reasonable, then we expect not to see

systematic evidence of kinks. If we again focus on the first, second, and fourth rows, as we did for Tables

2 and 3, we find that most of the point estimates are statistically insignificant at conventional levels. For

the dummy variable indicating the Job Service Center was in western Washington, the point estimates are

significant for the linear and quadratic specifications. On the other hand, the specification tests clearly reject

those polynomial orders, and the AIC suggests a third order polynomial (third row), and in that row the point

16The weekly earnings for the claimants with V = 10,250 are about $10,250/26 = $394. So a $1 increase is equivalent to an
increase in the replacement rate of $1/$394 = 0.25 percentage point.
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estimate is insignificant. In a similar way, the goodness-of-fit statistics for mean Education – for which the

point estimates are statistically significant – are rejected at the .10 level. Finally, the point estimates for

White are statistically significant in the first and second rows, but not in the third and fourth rows. On

balance, if we evaluate the specifications in Tables 2 and 3 and Table 4 with a similar standard of needing

to both pass the goodness-of-fit statistic at the .10 level and be chosen by the AIC, we see that almost all of

the covariates exhibit no significant kink, while the effects on the outcomes are most striking for “Total UI

Received” and “Initial Spell Length”.

5 Conclusion

This paper considers the identification of marginal effects in nonparametric models of endogenous regressors

with nonseparable errors, using the Regression Kink Design. In this context, we establish the necessary

condition for identification, which is, loosely speaking, that “all other factors” are evolving smoothly – in

the sense of a continuous derivative – with respect to the assignment variable. The problem with such an

assumption, is that it involves a statement about the distribution of unobservables, which can be difficult to

justify and – given the unobservability of these factors – impossible to test.

Our main contribution is to characterize a class of models that are instead based on an assumption about

the distribution of an observable variable, V . In particular, the assumption is that for each agent, the density

of V is continuously differentiable at the kink-point. This assumption may follow naturally from models of

the underlying behavior. In our context, we have outlined an illustrative model that would suggest the smooth

density condition would be violated, and another model in which it would be satisfied. Most importantly, our

characterization of a valid RK Design also generates the testable prediction that pre-determined covariates

will have a distribution that is “smooth” with respect to V in the kink-point.

Applying these ideas to a study of UI claimant behavior in the state of Washington, we find evidence

consistent with a valid RK Design, and estimates of the impact of a marginal increase in the benefit level

on insured unemployment spells that are in the higher range of magnitudes found in the existing literature.

In ongoing research, we are investigating the asymptotic properties of non-parametric estimators of the RK

Design.
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Appendix

Proofs

Proof of Proposition 2:

(a) From Condition 2a, we have that fB,W,V (b,w,v)
fW,V (w,v) = fB(b) ∀b,w,v. Therefore, fB,W,V (b,w,v)= fB(b) fW,V (w,v).

Integrating both sides with respect to v gives us fB,W (b,w) = fB(b) fW (w), and consequently fB|W (b,w) =

fB(b). Thus,

Pr(W 6 w|B = b) =
w∫
−∞

fW |B(w′|b)dw′

=
w∫
−∞

fB|W (b|w′)
fB(b)

dG(w′)

=
w∫
−∞

dG(w′)

= Pr(W 6 w).

(b) Condition 2b allows the interchange of differentiation and integration in

∂E[Y |B = b]
∂b

=
∫ ∫

∂

∂b
[y(b,v,w) fV,W |B(v,w|b)]dvdw.

Applying the Bayes Rule and invoking Condition 2a, we have

∫ ∫
∂

∂b
[y(b,v,w) fV,W |B(v,w|b)]dvdw =

∫ ∫
∂

∂b
[y(b,v,w)

fB|V,W (b|v,w)
fB(b)

]dFV,W (v,w)

=
∫ ∫

∂

∂b
[y(b,v,w)]dFV,W (v,w)

= E[y1|B = b]

(c) The proof is analogous to (a).

Proof of Proposition 3:
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(a)

∂

∂v
Pr(W 6 w|V = v) =

∂

∂v

w∫
−∞

fV |W (v|w′)

fV (v)
dG(w′)

=
w∫
−∞

∂

∂v
fV |W (v|w′)

fV (v)
dG(w′)

Since we assume that fV |W (v|w′) is continuously differentiable in v at 0 for all w′, ∂

∂v Pr(W 6 w|V = v)

is continuous at 0.

(b) On the numerator,

lim
v→0+

∂E[Y |V = v]
∂v

= lim
v→0+

∂

∂v

∫
y(b(v),v,w)

fv|w(v|w)
f (v)

dG(w)

= lim
v→0+

∫
∂

∂v
y(b(v),v,w)

fv|w(v|w)
f (v)

dG(w)

= lim
v→0+

∫
[y1(b(v),v,w)

∂b(v)
∂v

+ y2(b(v),v,w)]
fv|w(v|w)

f (v)
dG(w)+

lim
v→0+

∫
y(b(v),v,w)

∂

∂v
fv|w(v|w)

f (v)
dG(w)

= lim
v→0+

∂b(v)
∂v

∫
y1(b(v),v,w)

fv|w(v|w)
f (v)

dG(w)+

lim
v→0+

∫
y2(b(v),v,w)

fv|w(v|w)
f (v)

+ y(b(v),v,w)
∂

∂v
fv|w(v|w)

f (v)
dG(w)

Similarly,

lim
v→0−

∂E[Y |V = v]
∂v

= lim
v→0−

∂b(v)
∂v

∫
y1(b(v),v,w)

fv|w(v|w)
f (v)

dG(w)+

= lim
v→0−

∫
y2(b(v),v,w)

fv|w(v|w)
f (v)

+ y(b(v),v,w)
∂

∂v
fv|w(v|w)

f (v)
dG(w)

By Conditions 3a and 3c, we have

lim
v→0+

∫
y2(b(v),v,w) fv|w(v|w)

f (v) + y(b(v),v,w) ∂

∂v
fv|w(v|w)

f (v) dG(w)

= lim
v→0−

∫
y2(b(v),v,w) fv|w(v|w)

f (v) + y(b(v),v,w) ∂

∂v
fv|w(v|w)

f (v) dG(w)
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and therefore,

lim
v→0+

∂E[Y |V = v]
∂v

− lim
v→0−

∂E[Y |V = v]
∂v

= lim
v→0+

∂b(v)
∂v

∫
y1(b(v),v,w)

fv|w(v|w)
f (v)

dG(w)− lim
v→0−

∂b(v)
∂v

∫
y1(b(v),v,w)

fv|w(v|w)
f (v)

dG(w)

Conditions 3a, 3b and 3c together guarantee that we can write

lim
v→0+

∂b(v)
∂v

∫
y1(b(v),v,w)

fv|w(v|w)
f (v)

dG(w)− lim
v→0−

∂b(v)
∂v

∫
y1(b(v),v,w)

fv|w(v|w)
f (v)

dG(w)

= ( lim
v→0+

∂b(v)
∂v
− lim

v→0−

∂b(v)
∂v

)
∫

y1(b(0),0,w)
fv|w(0|w)

f (0)
dG(w).

Condition 3b guarantees that lim
v→0+

∂b(v)
∂v − lim

v→0−
∂b(v)

∂v is nonzero, and hence we have

lim
v→0+

∂E[Y |V=v]
∂v − lim

v→0−
∂E[Y |V=v]

∂v

lim
v→0+

∂b(v)
∂v − lim

v→0−
∂b(v)

∂v

= E[y1(b(0),0,w)|V = 0].

(c) The proof is analogous to (a).
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Figure 1: The Relationship between h* and α in the Behavioral Model in Section 2.4.2. 

 

In the behavioral model, h* is the labor supply in the first period and α indicates 
the relative share of leisure in the Cobb-Douglas utility function. This figure 
indicates that for a range of α, agents will “bunch” on h*=0.7. 
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Figure 2: Weekly Benefit Amount Determination Rule in Washington State in 1988 

WBA as a Function of Normalized Baseline Wage 

 

The rule that determines weekly benefit amount is different in the two halves of 1988.  The top 
line corresponds to the rule after June 30, 1988, and the bottom line corresponds to the rule 
before June 30, 1988.  

The baseline earnings, v, is defined as the sum of the two highest quarterly earnings in the base 
year. It is normalized here by subtracting $200 from the baseline earnings of claimants who filed 
in the second half of 1988. According to the normalized rules, there is a kink in the relationship 
between WBA and V at $10,250 for all UI claimants in 1988. 
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Figure 3a: Scatter Plot of Weekly Benefit Amount versus Baseline Earnings from Raw Data 

 

Figure 3b: Scatter Plot of Weekly Benefit Amount versus Baseline Earnings from Imputed Data 

 

Baseline earnings are the sum of the two highest quarterly earnings in the base year. They are 
normalized here so that the higher kink takes place at $10,250 (the vertical line) for all claimants 
who filed in 1988. The normalization procedure is described in section 3.3.2 and the caption of 
Figure 2.   

The figures above are restricted to the observations whose baseline earnings are less than 
$30,000 for ease of visual inspection. 



Figure 4a: Histogram of Differences between Actual and Predicted WBA in Raw Sample 

 

Figure 4b: Histogram of Differences between Actual and Predicted WBA in Raw Sample 
Conditional on Differences Not Being Zero 

 

 Note that the histogram of differences for the imputed sample would simply be a 
point mass at 0. 



 

Each black point represents the local average of the actual maximum duration of UI 
payments over the benefit year in each baseline earnings bin. Each grey point represents 
the local average of the censoring corrected maximum duration of UI payments over the 
benefit year in each baseline earnings bin. See Section 4.1 for the construction of the 
censoring adjusted Max Duration measure. 

The baseline earnings bins are of size 500 and are centered at multiples of 500.The 
vertical line corresponds to the kink point in weekly benefit amount determination: 
baseline earnings of $10,250.  

 



 

Each point represents the number of observations in each bin of baseline              
earnings. The bins are of size 500 and are centered at multiples of 500.The 
vertical line corresponds to the kink point in weekly benefit amount 
determination: baseline earnings of $10,250. 

 



 

 

Each point in 7(a) represents the local average of the age for claimants in each      
baseline earnings bin, and likewise in 7(b) the years of educational attainment. 
The baseline earnings bins are of size 500 and are centered at multiples of 500. 
The vertical line corresponds to the kink point in weekly benefit amount 
determination: baseline earnings of $10,250. 

 



 

 

 

Each point in 7(c) represents the fraction of males for claimants in each baseline 
earnings bin, and likewise in 7(d) the fraction of whites. The bins are of size 500 
and are centered at multiples of 500.  The vertical line corresponds to the kink 
point in weekly benefit amount determination: baseline earnings of $10,250. 



 

Each point in 7(e) represents the local average of the fraction of claimants who            
filed at a job service center in Western Washington in each baseline             
earnings bin. The bins are of size 500 and are centered at multiples of 500. The                
vertical line corresponds to the kink point in weekly benefit amount 
determination: baseline earnings of $10,250. 



 

 

Each point in 8(a) represents the local average of the total UI benefit received 
over the benefit year for claimants in each baseline earnings bin, and likewise in 
8(b) the weeks of UI payment claimed. The bins are of size 500 and are centered 
at multiples of 500. The vertical line corresponds to the kink point in weekly 
benefit amount determination: baseline earnings of $10,250. 

 



 

 

Each point in 8(c) represents the local average of the length of the initial spell in            
the benefit year for claimants in each baseline earnings bin, and likewise in 8(d)            
the weeks of UI payment claimed, censoring adjusted. See section 4.1 for a 
discussion of the censoring adjustment procedure. The bins are of size 500 and are       
centered at multiples of 500. The vertical line corresponds to the kink point in         
weekly benefit amount determination: baseline earnings of $10,250. 



 

 

Each point in 8(e) represents the local average of the length of initial spell, 
censoring adjusted, for claimants in each baseline earnings bin. See section 4.1 for 
a discussion of the censoring adjustment procedure. The baseline earnings bins 
are of size 500 and are centered at multiples of 500. The vertical line corresponds 
to the kink point in weekly benefit amount determination: baseline earnings of 
$10,250. 

 

 



 

 

Each point in 9(a) represents the local average of the total UI benefit received             
over the benefit year in each bin of baseline earnings, controlling for covariates, 
and likewise in 9(b) the weeks of UI claimed. The earnings bins are of size 500 
and are centered at multiples of 500. The vertical line corresponds to the kink 
point in weekly benefit amount determination: baseline earnings of $10,250. 

 



 

 

Each point in 9(c) represents the local average of the initial spell length         
controlling for covariates in each bin of baseline earnings, and likewise in 9(d) the 
length of the weeks of UI claim, censoring adjusted, controlling for covariates. 
The earnings bins are of size 500 and are centered at multiples of 500. The 
vertical line corresponds to the kink point in weekly benefit amount 
determination: baseline earnings of $10,250. 



 

 

Each point in 9(e) represents the local average of the censoring adjusted length of 
the initial spell, and controlling for covariates, in the benefit year in each bin of 
baseline earnings. See section 4.1 for a discussion of the censoring adjustment 
procedure. The earnings bins are of size 500 and are centered at multiples of 500. 
The vertical line corresponds to the kink point in weekly benefit amount 
determination: baseline earnings of $10,250.  



Variable Mean SD Min Median Max N

Baseline Earnings 9610.58 7176.64 828.53 7900.15 173406.10 15444

Weekly Benefit Amount 152.92 51.90 55 160 209 15444

Maximum Insured Unemployment Duration 26.86 4.17 10 30 30 15444

Total Unemployment Benefit Received During Benefit Year 2044.34 1868.74 0 1512 6488 15444

Number of Weeks claimed for Unemployment Benefit 14.09 10.80 0 13 51 15444

Length of Initial Spell in Weeks 11.28 10.72 0 7 52 15444

No. of Weeks claimed for Unemployment Benefit, Censoring Adjusted 13.98 10.69 0 13 51 15444

Length of Initial Spell in Weeks, Censoring Adjusted 11.26 10.69 0 7 52 15444

Age 36.24 11.27 15.7 34.2 87.9 15444

Male 0.608 0.488 0 1 1 15444

White 0.839 0.367 0 1 1 15444

Education 12.355 2.674 1 12 19 15444

Claimant filed at a Job Service Center in Western Washington 0.701 0.458 0 1 1 15444

Note that the initial spell includes the waiting week, but the total number of weeks claimed for unemployment benefit does not.

Table 1: Summary Statistics



                       Table 2: RK estimates for  Outcomes of Interest: Baseline Specification

Bandwidth
Polynomial of 

Order
Total UI 
Received

Total Weeks 
Claimed

Initial Spell 
Length

Total Weeks 
Claimed

Intial Spell 
Length

7500 One 18.1 0.0441 0.0415 0.0461 0.0423
N=13605 (0.9) (0.0049) (0.0049) (0.0048) (0.0048)

[0.396] [0.091] [0.301] [0.080] [0.302]

Two 16.8 0.0050 0.0343 0.0138 0.0365
(3.3) (0.0187) (0.0188) (0.0185) (0.0187)

[0.514] [0.394] [0.378] [0.417] [0.385]

Three 23.9 0.0867 0.1196 0.0968 0.1197
(8.4) (0.0462) (0.0467) (0.0458) (0.0466)

[0.675] [0.602] [0.711] [0.642] [0.702]
Optimal Poly 
Order (AIC) 1 2 1 2 1

2500 One 17.0 0.0296 0.0489 0.0370 0.0496
N=4426 (4.3) (0.0234) (0.0238) (0.0232) (0.0238)

[0.732] [0.700] [0.490] [0.690] [0.489]

Two 36.1 0.1397 0.2041 0.1398 0.2044
(17.6) (0.0947) (0.0973) (0.0940) (0.0972)

[0.847] [0.844] [0.542] [0.848] [0.533]

Three 74.2 0.3718 0.4215 0.3803 0.4180
(43.2) (0.2317) (0.2382) (0.2303) (0.2380)

[0.940] [0.932] [0.716] [0.942] [0.704]
Optimal Poly 
Order (AIC) 1 1 1 1 1

1000 One 28.9 0.1133 0.1603 0.1181 0.1605
N=1786 (17.2) (0.0909) (0.0936) (0.0905) (0.0935)

[0.984] [0.985] [0.909] [0.986] [0.908]

Two 143.9 0.6556 0.9708 0.6420 0.9676
(68.3) (0.3644) (0.3746) (0.3631) (0.3745)

[0.495] [0.735] [0.867] [0.774] [0.871]

Three 53.6 0.1747 0.0046 0.1665 0.0116
(173.6) (0.9067) (0.9301) (0.9038) (0.9300)
[0.207] [0.401] [0.425] [0.422] [0.426]

Optimal Poly 
Order (AIC) 1 1 1 1 1

Censoring Adjusted 

For each polynomial-bandwidth specification, the first row reports the RKD estimate, the second row the robust 
standard error, and the third row the p-value from the Goodness of Fit test. For each bandwidth, the optimal order 
of polynomial is indicated. 



Bandwidth
Polynomial of 

Order
Total UI 
Received

Total Weeks 
Claimed

Initial Spell 
Length

Total Weeks 
Claimed

Intial Spell 
Length

7500 One 18.1 0.0450 0.0370 0.0469 0.0378
N=13605 (0.8) (0.0048) (0.0047) (0.0048) (0.0047)

[0.325] [0.139] [0.332] [0.139] [0.334]

Two 16.7 0.0082 0.0255 0.0170 0.0277
(3.3) (0.0182) (0.0181) (0.0180) (0.0180)

[0.570] [0.374] [0.382] [0.397] [0.383]

Three 22.2 0.0709 0.1050 0.0807 0.1052
(8.1) (0.0450) (0.0447) (0.0445) (0.0446)

[0.698] [0.515] [0.627] [0.553] [0.612]
Optimal Poly 
Order (AIC) 1 2 1 2 1

2500 One 16.0 0.0234 0.0390 0.0307 0.0397
N=4426 (4.2) (0.0227) (0.0226) (0.0225) (0.0226)

[0.818] [0.745] [0.421] [0.729] [0.417]

Two 31.1 0.1167 0.1740 0.1169 0.1743
(17.1) (0.0921) (0.0923) (0.0913) (0.0922)

[0.786] [0.728] [0.396] [0.737] [0.384]

Three 50.8 0.2472 0.2098 0.2563 0.2061
(42.1) (0.2257) (0.2263) (0.2242) (0.2261)

[0.847] [0.779] [0.479] [0.798] [0.464]
Optimal Poly 
Order (AIC) 1 1 1 1 1

1000 One 21.0 0.0696 0.0872 0.0741 0.0872
N=1786 (16.9) (0.0890) (0.0891) (0.0886) (0.0890)

[0.864] [0.785] [0.957] [0.801] [0.956]

Two 130.1 0.5439 0.7429 0.5290 0.7397
(66.8) (0.3544) (0.3544) (0.3527) (0.3543)

[0.264] [0.401] [0.841] [0.442] [0.845]

Three 45.1 0.1718 -0.0188 0.1608 -0.0107
(168.7) (0.8740) (0.8740) (0.8704) (0.8738)
[0.077] [0.147] [0.280] [0.160] [0.281]

Optimal Poly 
Order (AIC) 1 1 1 1 1

Censoring Adjusted  
Table 3: RK estimates for  Outcomes of Interest: Specification with Covariates

For each polynomial-bandwidth specification, the first row reports the RKD estimate, the second row the robust 
standard error, and the third row the p-value from the Goodness of Fit test. For each bandwidth, the optimal order 
of polynomial is indicated. 



Bandwidth
Polynomial of 

Order Age Education Male White West

7500 One 0.0017 0.0108 -0.0002 0.0007 0.0011
N=13605 (0.0047) (0.0011) (0.0002) (0.0001) (0.0002)

[0.145] [0.074] [0.000] [0.891] [0.003]

Two -0.0249 0.0146 -0.0009 0.0014 0.0029
(0.0177) (0.0041) (0.0008) (0.0006) (0.0007)
[0.196] [0.099] [0.202] [0.916] [0.011]

Three 0.0320 -0.0035 -0.0025 0.0014 0.0002
(0.0429) (0.0100) (0.0019) (0.0014) (0.0017)
[0.203] [0.372] [0.320] [0.904] [0.074]

Optimal Poly 
Order (AIC) 1 1 2 1 3

2500 One -0.0021 0.0068 -0.0009 0.0008 0.0012
N=4426 (0.0215) (0.0049) (0.0010) (0.0007) (0.0009)

[0.733] [0.115] [0.281] [0.967] [0.372]

Two -0.0513 0.0114 -0.0009 -0.0003 0.0049
(0.0860) (0.0198) (0.0040) (0.0027) (0.0035)
[0.491] [0.084] [0.186] [0.701] [0.330]

Three -0.1272 0.0708 -0.0212 0.0023 0.0117
(0.2052) (0.0477) (0.0097) (0.0066) (0.0085)
[0.378] [0.381] [0.620] [0.437] [0.581]

Optimal Poly 
Order (AIC) 1 1 1 1 1

1000 One -0.0511 0.0280 -0.0073 0.0008 0.0064
N=1786 (0.0808) (0.0190) (0.0039) (0.0026) (0.0034)

[0.122] [0.399] [0.066] [0.156] [0.085]

Two -0.1687 0.0236 -0.0273 0.0063 0.0011
(0.3199) (0.0766) (0.0152) (0.0104) (0.0132)
[0.122] [0.355] [0.055] [0.154] [0.605]

Three -0.3036 -0.1795 0.0476 -0.0222 -0.0018
(0.8119) (0.1892) (0.0392) (0.0251) (0.0333)
[0.078] [0.764] [0.298] [0.392] [0.521]

Optimal Poly 
Order (AIC) 1 1 1 1 2

For each polynomial-bandwidth specification, the first row reports the RKD estimate, the second row the robust 
standard error, and the third row the p-value from the Goodness of Fit test. For each bandwidth, the optimal order 
of polynomial is indicated. "West" indicates that the Job Service Center at which the claimant files a claim is in 
western Washington. 

Table 4: RK Estimates for  Covariates
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