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Some recommended readings:
Angus Deaton and John Muellbauer, Economics and Consumer Behavior, Cambridge

Press, 1980
Geoffrey Jehle and Philip Reny, Advanced Microeconomic Theory (2nd ed), Addision Wes-

ley, 2001
John Chipman, "Aggregation and Estimation in the Theory of Demand" History of Po-

litical Economy 38 (annual supplement), pp. 106-125.
Kenneth Train. Discrete Choice Methods with Simulation, Cambridge Press 2003.
Kenneth A. Small and Harvey A. Rosen "Applied Welfare Economics with Discrete Choice

Models." Econometrica, 49 (January 1981), pp. 105-130.

1. Review of basic consumer theory
a. Basic assumptions and the demand function.

We start with a choice set X (closed, bounded below); often (though not always) X=R`+,
the positive orthant. Preferences over alternatives in X are represented by u : X → R,
twice continuously differentiable, strictly increasing, strictly quasi concave. (u is s.q.c. if
u(x1) ≥ u(x2)⇒ u(αx1 + (1− α)x2) > u(x2) for α ∈ (0, 1]).

The demand function x(p, I) maps from prices p ∈ R`++ and income I ∈ R+ to a "prefer-
ence maximal choice" x ∈ X :

x(p, I) = arg max
x∈X

u(x) s.t. px ≤ I.

Under the preceding assumptions x(p, I) exists and is well-defined, and is continuous in (p, I)
for all (p, I) such that the interior of the "budget set" = {x ∈ X : px ≤ I} is non-empty.
x(p, I) is also homogeneous of degree 0 (HD0) in (p, I). An interior choice x0 = x(p0, I0)
satisfies the first order conditions:

Du(x0) = λ0p0

p0x0 = I0

for some number λ0 > 0, and the second order conditions

t′D2u(x0)t < 0 for all t 6= 0 with tp0 = 0.

Assuming u(x) is s.q.c., the first order conditions are in fact both necessary and suffi cient to
characterize an interior "preference maximal" choice. (see Jehle and Reny, Theorem 1.4).

Using the implicit function theorem, the derivatives of x(p, I) can be obtained by differen-
tiating the `+ 1 first order conditions w.r.t. the `+ 1 endogenous variables (x, λ). We pursue
this in subsection c.

b. Expenditure and indirect utility functions.
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For p ∈ R`++ and u in the range of u(x), define

e(p, u) = min
x∈X

px s.t. u(x) ≥ u,

and the associated cost-minimizing consumption choice (or "Hicksian demands"):

h(p, u) = arg min px s.t. u(x) ≥ u.

The expenditure function e(p, u) is a an example of a "support function" (see Mas Colell,
Whinston and Green) and is therefore concave and HD1 in prices. Under the previous as-
sumptions on u(x), h(p, u) is a well defined function (i.e., the cost-minimizing choice exists
and is unique) and using a basic fact about support functions, e is therefore differentiable in
p with

Dpe(p, u) = h(p, u). (Sheppard’s lemma).

Another very useful fact is that h(p, u) is HD0 in prices.

The "inverse" of the expenditure function (as a function of u, holding constant p) is the
indirect utility function

v(p, I) = max
x∈X

u(x) s.t. px ≤ I.

With u(x) strictly increasing

v(p, e(p, u)) = u

e(p, v(p, I)) = I.

The indirect utility function v(p, I) is strictly quasi-convex in prices, and HD0 in (p, I). From
the envelope theorem, DVI(p, I) = λ(p, I) (the λ from the first order conditions). We also
have "Roy’s identity":

x(p, I) =
−DVp(p, I)

DVI(p, I)
.

Finally, a very useful relationship:

h(p, u) = x(p, e(p, u)).

This holds identically in p, and assuming x(p, I) is differentiable at some (p0, I0), h is differ-
entiable at (p0, u0) (where u0 = v(p0, I0)) with

∂hi(p
0, u0)

∂pj
=

∂xi(p
0, I0)

∂pj
+
∂xi(p

0, I0)

∂I

∂e(p0, u0)

∂pj

=
∂xi(p

0, I0)

∂pj
+
∂xi(p

0, I0)

∂I
xj(p

0, I0)′.

Re-arranging this we have the "Slutsky decomposition":

∂xi(p
0, I0)

∂pj
=
∂hi(p

0, u0)

∂pj
− ∂xi(p

0, I0)

∂I
xj(p

0, I0).
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The change in the demand for good i with respect to a change in pj consists of two terms: the
"substitution effect" captured by the change in the Hicksian demand, and the "income effect"
which is proportional to the amount of good j originally purchased. The matrix of terms

Sij =
∂xi(p

0, I0)

∂pj
+
∂xi(p

0, I0)

∂I
xj(p

0, I0)

is called the "Slutsky matrix" (and can be defined knowing only the Marshallian demand
functions). The Slutsky decomposition shows that

Sij =
∂hi(p

0, u0)

∂pj
=
∂2e(p0, u0)

∂pi∂pj

has to be symmetric (from Young’s theorem) and negative semi-definite (from concavity of e).

c. Using the expenditure function
The expenditure function has many uses in applied micro. One is in the analysis of changes

in the cost of living. Consider a consumer who is observed in a base year facing prices p0 and
making consumption choices x0. Define u0 = u(x0). When prices change to p1, the consumer
would need minimum income e(p1, u0) to achieve the same utility. So the rise in the "true
cost of living index" is

COL(p1; p0) =
e(p1, u0)

e(p0, u0)
.

The standard Laspayre’s index, on the other hand, is

L(p1; p0) =
p1x0

p0x0
.

Using a second-order expansion for e:

e(p1, u0) ≈ e(p0, u0) + (p1 − p0)′∂e(p
0, u0)

∂p
+

1

2
(p1 − p0)′∂

2e(p0, u0)

∂p∂p′
(p1 − p0)

= p1x0 +
1

2
(p1 − p0)′S(p1 − p0)

where we are using the facts that

e(p0, u0) = p0x0,

∂e(p0, u0)

∂p
= h(p0, u0) = x0,

and that the Slutsky matrix S is just the Hessian of the expenditure function. Combining
terms and substituting we get:

COL(p1; p0) = L(p1; p0) +
1

2

∆p′S∆p

p0x0

and since S is negative semi definite, COL ≤ L, with a gap that depends on the magnitude of
the Slutsky (substitution) terms. (With Leontief preferences S = 0 and the Laspeyre’s index
is exact). The gap is known as the "substitution bias" in the Laspeyre’s index formula. We
can also use this expression to show that when

∆p = λp0 for some positive scalar λ
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(i.e., all prices rise by the same proportion λ) then there is no bias. The reason is that Hicksian
demands are homogeneous of degree 0. By Euler’s theorem, then,

∂h(p0, u0)

∂p′
p0 = 0⇒ Sp0 = 0.

(The Slutsky matrix always has maximal rank n− 1, where n is the number of commodities.
In particular, the original price vector p0 is in the null space of S).

d. Integrability
For an arbitrary "candidate" demand function x(p, I) that has the "right dimensions,"

is homogeneous of degree 0, and is continuously differentiable we can define the matrix of
substitution effects:

S(p, I) = Dpx(p, I) +DIx(p, I) · x(p, I)′

If x(p, I) was generated by a utility maximizing consumer, S(p, I) would have to be symmetric
and n.s.d. The "integrability theorem" says that the converse if true: if you start with a
candidate demand function x(p, I) that has the right dimensions, is homogeneous of degree 0,
and is continuously differentiable, and if the associated S(p, I) matrix is everywhere symmetric
negative semi definite you can "integrate" the demand function to find a utility function that
generates x(p, I). The basic idea is to find a solution to the set of differential equations

∂e(p, u)

∂pj
= xj(p, e(p, u)) ≡ fj(p).

A suffi cient condition for a solution function e(p, u) to exist for a system of p.d.e.’s like this is
that

∂fj(p)

∂pk
=
∂fk(p)

∂pj

(this is known as Frobenius’ theorem). Carrying out the differentiation you will see this
requires Slutsky symmetry for the candidate demand functions. For the solution function
e(p, u) to be a valid expenditure function it has to be concave. This requires that the Slutsky
matrix obtained from the candidate demands is negative semi definite.

e. Derivation of the Slutsky Decomposition from the First Order Conditions
Although it is a little "algebra-intensive" some additional insights can be gained by dif-

ferentiating the first order conditions and looking at the implications for the derivatives of
demand. We will assume for this section that u(x) is "strictly concave" —in particular that
D2u(x) is negative definite. We’ll come back to discuss the "cardinalization" of utility at the
end of the section.

Start with the first order conditions

Du(x) = λp

px− I = 0.

Differentiate w.r.t (p, I) to get an `+ 1 by `+ 1 system of equations:[
D2u(x) p
p′ 0

]
·
[

∂x
∂p′

∂x
∂I

− ∂λ
∂p′ −

∂λ
∂I

]
=

[
λI`,` 0
−x′ 1

]
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where I`,` is the `× ` identity matrix (apologies for the dual use of "I"). Thus[
∂x
∂p′

∂x
∂I

− ∂λ
∂p′ −

∂λ
∂I

]
=

[
D2u(x) p
p′ 0

]−1 [
λI`,` 0
−x′ 1

]
.

Let D2u(x) = U (assumed to be invertible) Then the partitioned inverse formula can be used
to show [

D2u(x) p
p′ 0

]−1
= (p′U−1p)−1

[
(p′U−1p)U−1 − U−1pp′U−1 U−1p

p′U−1 −1

]
With this in hand, it follows that

∂λ

∂I
= (p′U−1p)−1 < 0,

∂x

∂I
=

∂λ

∂I
U−1p,

∂x

∂p′
= λU−1 − λ(

∂λ

∂I
)−1(

∂x

∂I
)(
∂x

∂I
)′ − (

∂x

∂I
)x′.

From the Slutsky equation we know

∂x

∂p′
= S(p, I)− (

∂x

∂I
)x′.

Thus we have shown that

S(p, I) = λU−1 − λ(
∂λ

∂I
)−1(

∂x

∂I
)(
∂x

∂I
)′

the matrix of substitution terms consists of two parts:λU−1 which directly reflects the second
cross-partials of u(x), and a second term that is related to the income effect. (Inspection of
this equation shows that S has to be symmetric: its more work to show it is n.s.d., but it can
be done).

Look back at the first order conditions and suppose we define xF (p, λ) as the choice of x
that satisfies the f.o.c. as we vary p, holding constant λ, i.e., define xF (p, λ) implicitly by:

Du(xF (p, λ)) = λp.

These are known as the "Frisch" (or λ-constant) demands, and play an important role in
the modeling of intertemporal choice. Differentiating w.r.t. prices:

D2u() · ∂x
F

∂p′
= λI`,` ⇒

∂xF

∂p′
= λU−1.

Thus, we can decompose

∂h

∂p′
= S(p, I) =

∂xF

∂p′
− λ(

∂λ

∂I
)−1(

∂x

∂I
)(
∂x

∂I
)′.

Focusing on the (i, j) element, we have:

pj
xi

∂hi
∂pj

=
pj
xi

∂xFi
∂pj
− [

I

λ
(
∂λ

∂I
)]−1(

I

xi

∂xi
∂I

)(
I

xj

∂xj
∂I

)
pjxj
I

σij = fij − ω−1εiεjwj ,
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where σij is the compensated elasticity, fij is the Frisch elasticity, εj is the income elasticity
of demand for good j, wj is the share of the budget spent on good j, and

ω =
I

λ
(
∂λ

∂I
)

is the "income flexibility" of the marginal utility of income. We will show later on that in
intertemporal choice problems with additive separability between periods, ω is related to the
so-called "intertemporal substitution elasticity", a concept that is central to modern macro.

When there is no income effect in the demand for a good, the derivatives of the ordi-
nary (or "Marshallian) demand function, the Hicksian demand function, and the Frisch de-
mand function are all equal. More generally the three are different. For example, suppose
u(x) =

∑`
i=1 vi(xi), "additively separable" preferences. These are widely used in the study

of intertemporal consumption. With additive separability D2u is diagonal, and all the off-
diagonal terms in the matrix of Frish derivatives (= λU−1) are zero. In this case, for i 6= j,
we have

σij = −ω−1εiεjwj .

All the "cross substitution" effects in the compensated demands arise though re-adjustments of
λ. This is why additive separability is so convenient —it means that all the impact of prices of
other goods (or other periods, if each good is consumption in a different period) is channelled
through λ.

There is a "problem" with this decomposition: it is not invariant to transformations of u(x)
(whereas the Slutsky decomposition is invariant). In some contexts this is ok: for example,
in the study of intertemporal consumption under uncertainty, one cannot renormalize the
intertemporal utility function without losing intertemporal separability (and changing the
degree of risk aversion). We will discuss in lecture 3 the relation between risk aversion and
the elasticities of the Frisch demands.

2. Functional form, Aggregation, and Separability
a. The classic aggregation results
A longstanding question in demand theory is how to relate the demand system created by a

collection of consumers to the underlying demands of the individual consumers. In particular,
prior to the availability of micro data, economists asked whether there are assumptions on
preferences such that aggregrate demand is generated by a "representative consumer" with
"rationalizable" preferences. A nice reference is the 2006 paper by Chipman, which is not too
technical but gives a good flavor of the results.

Preferences (�) are homothetic if x1 � x2 ⇔ βx1 � βx2 for any β > 0. With homothetic
preferences there is only 1 indifference curve: any indifference curve is a "radial blow-up" of
any other. It is intuitively obvious but surprisingly hard to prove that the demand system can
be written as x(p, I) = I · h(p, 1) = I · β(p) iff preferences are homothetic. With homothetic
preferences all income elasticities are equal to 1 - a restriction that appears to be false for
many goods. A classic result is that with identical homothetic preferences, aggregate demand
is "as if" there were a single consumer with the same preferences and the total income of all
consumers. (The proof is easy and left as an exercise). A more subtle result is that if different
consumers have different homothetic preferences, and each consumer has a fixed share of total

6



aggregate income (as prices and total income are varied) then aggregate demand is "as if"
there were a single consumer with some homothetic preference ordering (see Chipman).

Preferences are "quasi-homothetic" if they give rise to a demand function of the form:

x(p, I) = α(p) + I · β(p).

The classic example of quasi-homothetic preferences is "Stone-Geary" preferences (please ex-
cuse the re-use of α, β):

u(x1, x2, ...x`) = (x1 − α1)β1(x2 − α2)β2 ...(x` − α`)β` with
∑

j
βj = 1.

These are "translated" Cobb Douglas preferences in which the consumer has "minimum needs"
α1, α2, ...α`. The demand function for good i can be written as

xi(p, I) = αi +
βi
pi

(I − p1α1 − ..p`α`)

while optimal expenditures on good i can be written as

ei(p, I) ≡ pixi(p, I) = piαi + βi(I − p1α1 − ..p`α`)

which is linear in prices and incomes. (Hence, Stone Geary demands are also called the "linear
expenditure system", LES).

If consumer k has quasi-homothetic preferences with demand function

xk(p, Ik) = αk(p) + Ik · β(p),

i.e., a person-specific α(p) function, but indentical β(p) functions, then aggregate demand is

x(p, I) =
∑

k
xk(p, Ik) = α(p) + I · β(p), where

α(p) =
∑

k
αk(p), and I =

∑
k
Ik

Thus aggregate demand is quasi-homothetic. Gorman (1961) showed that quasi-homothetic
demands of the form

x(p, I) = α(p) + I · β(p).

are generated by a consumer with expenditure function

e(p, u) = a(p) + u · b(p), where a(p) and b(p) are HD1 in prices and

βj(p) =
1

b(p)

∂b(p)

∂pj
and

αj(p) =
∂a(p)

∂pj
− βj(p)a(p)

The proof follows by applying Sheppard’s lemma to the conjectured expenditure function,
and using the expressions for aj(p) and bj(p). (See Deaton and Muellbauer exercise 6.3 for
hints on the converse, which is also true). Note that an expenditure function of the form

e(p, u) = a(p) + u · b(p)
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(known as "Gorman polar form") implies an indirect utility function of the form:

v(p, I) = (I − a(p))/b(p).

In the Gorman polar form the function a(p) is a "subsistence spending amount", and b(p)
is a price index that deflates income over and above subsistence. Note that if β(p) (from the
demand function) is restricted to be the same across consumers then b(p) (from the expenditure
function) must the the same across consumers

For the Stone Geary case described above, the expenditure function is
∑

j pjαj + u
∏
j p

βj
j

which is in the Gorman polar form class. If everyone has the same β′s but person-specific α′s
aggregate demand will come from the Stone Geary class with the aggregate α simply summing
the individual α′s.

Homothetic and quasi-homothetic preferences (with the same β(p) function in the demand
equation) are effectively the only ones that aggregate.

b. More on Functional Form
In most modern microeconometric work, the researcher chooses a functional form for u(x)

that incorporates observed and unobserved heterogeneity in a convenient way, and then de-
velops an estimator for unknown parameters of u(x). For example, one could choose Stone
Geary preferences, and allow α to depend on observed characteristics (e.g., family size). It is
not entirely clear how to account for unobserved sources of heterogeneity. In the pre-1980’s
literature it was common to "tack on" error components without really specifying how or
where the errors came from. In the more recent literature a substantial premium is placed on
developing a model that provides a complete description of the data generating process (dgp),
by positing an explicit distribution for the unobserved components..

To illustrate, suppose a sample of data on individuals in different markets is available.
In a given market, everyone pays the same prices (p), and consumer k has incomeIk and
observed expenditure amounts (ek1, e

k
2, ...e

k
` ) on products 1, 2, ...`. The LES model asserts that

the amount spent on good i by consumer k is

eki (p, I) = piα
k
i + βi(I − p1αk1 − ..p`αk` )

We might want to assume that the β′s are constant across the population and allow the α′s to
vary. So for example we could assume αki = Xkθi+ξ

k
i , where (ξk1, ξ

k
2, ...ξ

k
` ) represents a random

vector that is known by consumer k but unobserved by the data analyst (and assumed to have
some distribution across the population) A problem for the LES is that the cost function is
only concave for people who have enough income to "cover" their minimum spending threshold∑

j pjαj : if the ξk′s have unlimited support concavity will be violated (with high probability).
Another problem is that all of the α′s enter into each expenditure equation, leading to a rather
messy model in which the stochastic term in expenditures is a price-weighted average of the
ξk′s.

Rather than model expenditures as a linear function of prices and incomes, in many cases
it is more convenient to model expenditure shares (wi = pixi/I) as functions of the logs of
prices and incomes. This is the approach taken by Deaton and Muellbauer in their famous
"almost-ideal demand system" (known at least originally as the AIDS system). D+M begin
by focusing on a class of expenditure functions that satisfy

log e(p, u) = a(p) + ub(p).
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An initial observation is that this choice gives rise to expenditure share equations of the form

wi = Ai(p) +Bi(p) log I.

(this can be seen by applying Sheppard’s lemma and a little algebra). Running expenditure
shares on the log of total income (or total expenditure) has a long history in applied demand
analysis. D+M propose to use

a(p) = α0 +
∑
j

αj log pj +
1

2

∑
j

∑
k

γ∗jk log pj log pk

b(p) = β0
∏

k
p
βk
k , with∑

j

αj = 1 and
∑
j

γ∗jk =
∑
k

γ∗jk =
∑
j

βj = 0

Substituting the expressions for a(p) and b(p) leads to budget share equations of the form

wi = αi +
∑
j

γij log pj + βi log(
I

P
)

where P is a price index:

logP = α0 +
∑
j

αj log pj +
1

2

∑
j

∑
k

γjk log pj log pk

and γij = (γ∗ij + γ∗ji)/2 = γji.
For many applications D-M note that the price index will be relatively well approximated

by a simple index of the form
logP =

∑
j

wj log pj

With this approximation, estimation is trivial. A question for further thought: how would
you incorporate observed and unobserved heterogeneity into the AIDS system?

3. Discrete Choice Demand Models
In many settings, agents choose among a discrete set of alternatives. In labor economics,

classic examples are: education levels, occupations and location. In IO the classic applications
are to durable goods (cars, appliances). Typically, in labor economics the analyst observes
a set of individuals (i=1..N) their characteristics Xi and the choice j(i) that each made from
the set of alternatives {1, 2, ..J}. In IO it is more often the case that one observes the market
share of choice j —that is, the fraction of all consumers (in a given market) who selected the
jth choice. In some applications we observe the preference rankings that individuals apply to
some subset of choices (e.g., they report their "top three" choices").

The basic idea in discrete choice models is that individual i assigns utility uij to choice
j, and selects the choice with highest utility. The event that i chooses j is denoted by the
indicator dij = 1 (where

∑J
j=1 dij = 1).

The modern literature on discrete choice arises from seminal work by Dan McFadden in
the early 1960s. The idea in this literature is that we (as econometricians) observe some
characteristics of people (like their income and family size) and some characteristics of the
choices (like the price of a given choice) but we admit from the beginning that there is some
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component of preferences that is unobserved by us, which we will treat as random. Thus,
discrete choice models are often called "random utility" models. Utility is not random for the
agents themselves (that is a "post-modern" idea) but is modeled as random.

A good starting point is a model of the utility that agent i assigns to choice j of the form:

uij = Xiβj + Zjγi + εij = vij + εij

which allows individual characteristics Xi to have choice specific effects (the β′js), and the
characteristics of the choices (Zj) to be valued by different agents differently (the γ′is).The
term εij is the unobserved component of tastes that is known to the agent but unknown to the
analyst. Treating {εij} as randomly distributed across the population, we get a probability
statement for the event that i chooses j:

P (dij = 1|Xi, Zj) = P (vij + εij > vik + εik for all k 6= j).

Observations:
(1) only relative utilities matter. If we add θ to every value of vij choices are the same
(2) scale is arbitrary. If we rescale vij → λvij , εij → λεij , choices are the same
(3) uij represents the indirect utility assigned by the agent to choice j. In general, then,

uijshould depend on income and the price of choice j...
(4) a very standard assumption is that there is an underlying quasi-linear direct utility

function of a numeraire good n and the choice characteristics:

U i(n, dij) = αn+ φi(Zj) + εij

If the jth choice has price pj and agent i has income yi the indirect utility of choice j is

uij = α(yi − pj) + φi(Zj) + εij

which (using observation (1)) is equivalent to:

uij = −αpj + φi(Zj) + εij

Quasi-linearity is appropriate for choice over "small" things (like brand of cereal) but is hard
to justify for larger purchases (like cars) and is really problematic for houses. Quasi-linearity
is convenient for calculating "willingness to pay", however. For example, suppose we assume
φi(Zj) = Zjγ (ignoring any heterogeneity in γ for now). Then the marginal willingness to
pay for the kth characteristic in Z is γk/α. When preferences are quasi-linear the demands
for characteristics Z have no income effects. This makes welfare evaluation extremely simple.

Multinomial Logit
The probability statement for the event dij = 1 involves a J-1 dimensional integral. For

up to 3 choices, it is conventional to assume the εij’s are normally distributed. Beyond that,
the probability has to be evaluated by simulation methods. The usual approach for J>3 is
multinomial logit (MNL). This is an extremely convenient form for a host of reasons that we
will be exploring in the remainder of the lecture. A key lesson in structural microeconometrics
is "know your logit".

A random variable ε with support on (−∞,+∞) is distributed as EV-Type I if F(ε)=e−e−ε .
See Imbens and Wooldridge (NBER "What’s New In Econometrics", Lecture 11) for a graph
of the pdf of the EV-I vs. a standard normal. EV-I (a.k.a. Gumbell) has mode at 0, mean
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of τ =0.577 (Euler’s constant) and variance of π2/6 ≈1.65. McFadden showed that when the
random components εij of the indirect utilities associated with different choices are distributed
as independent EV-I’s,

P (dij = 1) =
exp(vij)∑J
k=1 exp(vik)

In the case of only 2 choices, this boils down to a "logit". (A proof is presented in the Imbens-
Wooldridge lecture). Consistent with observation (1) above, if we add a constant to each
element of vij it cancels out of the numerator and denominator of the probability statement.
This is an extremely convenient functional form!

A key feature of MNL is the so-called "IIA" (independence of irrelevant alternatives)
property. If choices are generated by MNL

P (di1 = 1)

P (di2 = 1)
=

exp(vi1)

exp(vi2)

which says that the relative probability of choices 1 and 2 does not depend on the attributes
of the other choices (they are "irrelevant"). This will not hold if a 3rd potential choice is
available that is (say) very close to choice 2 and far away from choice 1. Then, when the 3rd
is available demand for choice 2 will fall relative to 1, whereas when choice 3 is unavailable,
people who would choice 2 or 3 all flock to 2. Some authors (e.g., Luce, 1959) have argued
that if the consumer and choice characteristics are all fully specified then IIA "makes sense".
See McFadden’s Nobel Lecture (AER, 2001) for more on the history of IIA-related reasoning.

In some applications IIA is a critical plus! For example, suppose we want to forecast the
demand for a product that does not exist, but whose characteristics are known. Suppose
demand for products j=1...J are given by a MNL model with uij = Zj(γ0 + γ1Xi) + εij (Here,
we are allowing an interaction between consumer characteristics Xi and product characteristics
Zj —for example, number of seats in a car and number of kids in a family). In this case, if
we can estimate the γ coeffi cients we can predict the demand for product J + 1.

Another place where IIA really helps is in modeling choices when the choice set is very large
(e.g., residential location). Suppose we observe individual i making choice j (e.g., they have
chosen to live in Census tract j in a given metro area). Under IIA, we don’t need to model all
the choices that were potentially available: we can randomly select a subset of other choices
(say, 3 alternatives), combine them with the one that was actually selected, and estimate the
model as if each person had 4 choices and selected 1. This idea (introduced in a paper on
residential choice by McFadden in 1978) is widely used in many applications. (The effi ciency
of this "conditional" likelihood is enhanced by including more alternatives in the choice set).

A third place where IIA helps is in interpreting preference rankings over varying choice
sets (as in H-K-S). Suppose parent i is asked to rank 3 schools in order. IIA says that we
can write the likelihood for the 3 choices as

P (1− 2− 3) = P (1st|3 available)P (2nd|remaining 2).

Combining the previous two ideas, suppose we need to develop a likelihood for the top 3
stated choices over a very large choice set. Then we could augment each person’s 3 choices
with K others, randomly selected, and use a likelihood of the form:

P (1st|1st, 2nd, 3rd,K others)× P (2nd|2nd, 3rd,K others)× P (3rd|3rd,K others).

This would be a convenient way to estimate a model of school choice given an ordered list of
colleges that each student applied to.
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Market Shares
The MNL model aggregates in a very convenient way. Consider a model of choice where

consumer i in market m assigns indirect utility uimj to choice j:

uimj = α(yim − pmj) +Xjβ + ξmj + εimj

= αyim + δmj + εimj , where δmj ≡ Xjβ − αpmj + ξmj .

Here, ξjm represents a shared error component that shifts the demand of all consumers in
market m. Assume in addition that consumer i has the "outside option" of not buying any
of the choices, in which case utility is αyim + εim0 (i.e., δm0 = 0). Assuming that the ε’s are
all EV-I:

P (dimj = 1) =
exp(δmj)∑J
k=0 exp(δmk)

=
exp(δmj)

1 +
∑J

k=1 exp(δmk)
.

If we have data on the fractions of consumers who choose each option in market m, then these
market shares Smj are consistent estimates of the probabilities P (dimj = 1). Thus

logSmj = δmj − log{1 +
J∑
k=1

exp(δmk)}+ sampling error

logSm0 = − log{1 +
J∑
k=1

exp(δmk)}+ sampling error

⇒ log(Smj/Sm0) = δmj = Xjβ − αpmj + ξmj .

So, the simple choice implies that the log of the market share of choice j, relative to the share
in market m who choose the outside option, is linear in characteristics, price, and an error
term that reflects the market-specific preferences of consumers for choice j.
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