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The building block of labor demand is a production function

f(x1, x2, ...xn)

where xj is the input of "factor" j (say hours of work by some skill group). We
usually assume that f has constant returns to scale (CRS). This means that in
a competitive industry the scale of individual firms is undefined - firms per se
are unimportant. What we can measure and analyze is industry-wide demand.
As you may recall in the two-input case with CRS the shape of isoquants is
summarized by the elasticity of substitution. Technically this is defined as

σ = −
d log(x1x2 )

d log( f1f2 )
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where f(x1, x2) = y (i.e., the derivative is along an isoquant). Since f1
f2
is the

slope of the isoquant, this is the proportional change of the relative use of the
two factors x1 and x2 per percent change in the slope of the isoquant (which,
under cost-minimization, would be their relative factor prices).

It can be shown that

σ =
f1f2
f f12

.

A simple version of the proof follows. To begin note that with CRS, we have
that f1 and f2 are both HD0. So

x1f11 + x2f12 = 0

x1f21 + x2f22 = 0.

Also,
f = x1f1 + x2f2.

Now define s as the slope of the isoquant at a point:

s =
f1(x1, x2)

f2(x1, x2)

log s = log f1(x1, x2)− log f2(x1, x2)

d log s = [
f11
f1
− f21

f2
]dx1 + [

f12
f1
− f22

f2
]dx2

= [−x2
x1

f21
f1
− f21

f2
]dx1 + [

f12
f1
+
x1
x2

f12
f2
]dx2

= [
−f2f21x2 − f21f1x1

x1f1f2
]dx1 + [

f2f12x2 + f12f1x1
x1f1f2

]dx2

=
−f12
f1f2

[f1x1 + f2x2]
dx1
x1

+
f12
f1f2

[f1x1 + f2x2]
dx2
x2

=
−f12f
f1f2

[
dx1
x1
− dx2

x2
] =
−f12f
f1f2

d log[
x1
x2
] =
−1
σ
d log[

x1
x2
].

Thus
d log[x1x2 ]

d log s
= −σ.

The classic examples are Cobb-Douglas (σ = 1) and the "CES"

f(x1, x2) = (αx
−ρ
1 + (1− α)x−ρ2 )−1/ρ

which has σ = 1/(1 + ρ).
It is a lot easier in most cases to work with the cost function C(w1, w2, y).

With CRS this has the form

C(w1, w2, y) = µ(w1, w2)y
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where µ() is the "unit cost" function. We will show that:

σ =
C1C2
C C12

.

To do so, start with Sheppard’s Lemma

x1 = C1(w1, w2, y)

x2 = C2(w1, w2, y)

Now Cj is HD0 in input prices, so we can write:

x1 = C1(
w1
w2
, 1, y) = g(

w1
w2
, y)

x2 = C2(
w1
w2
, 1, y) = h(

w1
w2
, y)

Also

C11 =
∂x1
∂w1

=
1

w2
g1(

w1
w2
, y), C21 =

∂x2
∂w1

=
1

w2
h1(

w1
w2
, y).

Now fixing y:
log

x1
x2
= log g(

w1
w2
, y)− log h(w1

w2
, y)

so

σ = −

(
w1
w2

)
d log

(
x1
x2

)
d
(
w1
w2

) = −w1
w2

(
g1
g
− h1

h

)

= −w1
w2

(
w2C11
g
− C21w2

k

)
= −w1C11

C1
+
w1C21
C2

Now w1C11 + w2C12 = 0 since C1 is HD0. Substituting we get

σ =
w1C21
C2

+
w2C12
C1

=
C12(w1C1 + w2C2)

C1C2
=
C12C

C1C2

using the fact that C is HD1 in input prices.

Another useful fact:

∂x1
∂w2

= C12

⇒ w2
x1

∂x1
∂w2

=
w2C12
x1

=
C12C

C1C2

w2C2C1
Cx1

= σ
w2x2
C

= σs2 (1)
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here s2 = input 2′s cost share. Also

w1
∂x1
∂w1

+ w2
∂x1
∂w2

= 0

⇒ ∂x1
∂w1

w1
x1
= −σs2 = −(1− s1)σ

This says that in the 2-input case the output-constant elasticity of demand for
an input is the product of (1− s) and σ.

Finally, with more than 2 inputs we define the partial elasticity of substitu-
tion

σij =
CijC

CiCj
.

Note that

xi = Ci(w, y)⇒ εij ≡
∂xi
∂wj

wj
xi
= Cij

wj
xi
=
CijC

CiCj

wjCiCj
xiC

= σijsj

which is a multi-factor generalization of (1).

Marshall’s Rules
Let’s consider a competitive industry with CRS and a cost function C(w, y) =

µ(w)y. Industry output is priced at p = µ(w), and there is a downward slop-
ing demand curve for the industry’s output y = D(p). We are going to show
the "classic" connection between the elasticity of demand for an input by the
industry and three key parameters: η the elasticity of product demand, σij the
partial elasticities of substitution, and sj the cost shares.

We start with

xi = yµi(w)

⇒ log xi = log y + logµi(w)

⇒ ∂ log xi
∂wj

=
∂ log y

∂ log p

d log p

∂wj
+
µij(w)

µi(w)

= −η d logµ(w)
∂wj

+
µij(w)

µi(w)

= −η
µj(w)

µ(w)
+
µijyCjC

µiyCjC

Therefore

wj
∂ log xi
∂wj

=
wjµj(w)y

µ(w)y
+
wjCijCjC

CiCjC

= −ηwjCj
C

+ σij
wjCj
C

= −ηsj + σijsj
= εij − ηsj
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Now let’s consider the own-price effect:

∂ log xi
∂ logwi

= εii − ηsi.

Finally, consider the 2-input case, so εii = −(1− si)σ. Then

∂ log xi
∂ logwi

= −(ηsi + σ(1− si))

which says that in the 2-input case the own-price demand elasticity is a combi-
nation of the final product demand elasticity (a "scale" effect) and the elasticity
of substitution (a "substitution" effect).
To understand the scale effect, note that when p =MC = µ(w)

∂ log p

∂wj
=

µj(w)

µ(w)

wj
∂ log p

∂wj
=

wjµj(w)y

µ(w)y
=
wjxj
C

= sj .

Thus when wj rises by 1%, industry selling price rises by sj%, and this chokes
off demand by ηsj%.

The "standard model" of the demand side in labor economics is one in which
all firms have CRS and pay the same prices for all factors. In this model firms
per se do not matter: in fact the number and size of firms is indeterminant.
In trade theory and IO there is considerable interest in models with a lot of
heterogeneity across firms (e.g., Melitz, 2003). In these models different firms
have different levels of productivity. Less productive firms survive because they
produce differentiated products which consumers are willing to buy (though less
productive firms are smaller). On the labor side, all firms pay the same wages,
so the heterogeneity in firms does not matter directly. An important and
growing area of work in labor economics focuses on the impact of firms. The
starting point for this work is the recognition that "who you work for matters".
See the presentation for the "Vancouver School of Economics" in Sept. 2013
(on the class web site) that tries to summarize some of the older ideas and new
thrusts in this area.

Some Functional Forms
Cobb Douglas —often used for modeling labor and capital in contexts where

the assumption that σ = σKL = 1 is not too crazy:

y = f(K,L) = ALαK1−α

Note that labor’s share is α which is constant. This used to be approximately
correct. However, over the 2000’s, labor’s share has fallen from the "histori-
cal" value of about 65% to about 58%. See Fleck, Glaser and Sprague, "The
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Compensation-Productivity Gap": A Visual Essay" Monthly Labor Review Jan-
uary 2011 (Figure 5 is attached). Note that in any CRS 2-input production
function

f(x1, x2) = x1f(1, x2/x1) = x1g(x2/x1)

⇒ f(x1, x2)x1 = g(x2/x1).

In the C-D case we get
y/L = A(K/L)1−α

which says that with fixed A "labor productivity" (y/L, the average product
of labor) is a concave function of K/L. With C-D we get

∂y

∂L
= αA(K/L)1−α

so marginal product is just a constant times average product. These equations
are widely used as a starting point for understanding productivity trends.
CES - often used to study high/low skill labor:

f(x1, x2) = (αx
−ρ
1 + (1− α)x−ρ2 )−1/ρ.

Many textbooks (e.g. Silberberg) have a section on the derivation of the CES
from the differential equation

d log(x1x2 )

d log( f1f2 )
= −σ, a constant

a problem that was solved by Arrow et al (ReStat, 1961). With the CES as
defined here:

σ =
1

1 + ρ

CES with ρ = 0 is Cobb Douglas. CES with ρ→ −1 (from above) has σ →∞
which is the linear isoquant case. CES with ρ → ∞ has σ → 0, which is
Leontief.

Relative Demand and the Relative Wage Structure
The "demand-supply and wage inequality" literature operates with two key

assumptions:
(1) at any point in time there is a national production function y = f(K,L1, L2, ...)

that determines the relative productivity of different skill groups
(2) supply of each skill group is predetermined (and hence exogenous to

"current technoology shocks").
The same basic setup is used to address the effects of immigration on the

wages of different groups, at both the national and local levels. Under assump-
tions (1) and (2), the structure of the relative demand for different skill groups
entirely determines the relative wage structure. The key questions are:

how are skill groups defined?
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how do we parameterize the degree of substitutability between groups?
how does capital fit in?

We will discuss the "standard" theoretical framework for this analysis, which
makes 3 assumptions:
1. y = f(K,h(L1, L2...)) with f(K,L) = ALαK1−α

2. the return to capital (r) is exogenous
3. h(L1, L2...) has a nested CES structure
Under the first two assumptions, we have

∂y

∂K
= (1− α)ALαK−α = r

⇒ K = L

(
(1− α)A

r

)1/α
and

y

K
=

r

(1− α)

This means that K adjusts to match the overall supply of "labor units" L,
keeping y/K constant, and keeping K/L on a trend path that is driven by
the rate of growth of t.f.p. Figures 2 and 3 from Ottaviano and Peri (2011)
suggest this is a reasonable assumption at the national level. At the local level
(or for "small open economies" that take the price of capital as exogenous) these
assumptions are even more plausible. Substituting for K we get

y = ALαK1−α = A1/α(
1− α
r

)
1−α
α L

which is linear in L. Thus,under these assumptions we can ignore capital.1

To analyze the effects of relative supply or relative technology changes (i.e.,
the part of technology embedded in h()) we need to specify the labor aggregator
function. A good starting point is a 2-group CES model:

L = h(L1, L2) = (θ1L
σ−1
σ

1 + θ2L
σ−1
σ

1 )
σ
σ−1

where θ1 and θ2 are possibly trending over time.2 The marginal product of
group 1 is

h1(L1, L2) = θ1L
−1
σ
1 (θ1L

σ−1
σ

1 + θ2L
σ−1
σ

1 )
1

σ−1 = θ1L
−1
σ
1 L

1
σ .

Likewise
h2(L1, L2) = θ2L

−1
σ
2 L

1
σ ,

1There is another (generally older) literature which works with general 3-factor production
functions y = f(K,L‘, L2). In this setting you can also impose the assumption that the
marginal product of capital is set to some exogenous r.

2Sometimes people write the CES as h(L1, L2) = (θ1L
ρ
1+θ2L

ρ
1)

1
ρ , which is the same as the

expression in the text with ρ = σ−1
σ
. This implies that σ = 1

1−ρ . Note that ρ < 1⇐⇒ σ > 0.

The limiting case ρ→ −∞ (σ = 0 ) is Leontief. The limiting case ρ→ 1 (σ →∞) is linear.
The case ρ = 0 (σ = 1) is Cobb Douglas.
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and assuming w1/w2 = h1/h2 (i.e., MRTS=relative wage) we have:

log
w1
w2

= log
θ1
θ2
− 1
σ
log

L1
L2
.

The slope of the relative demand curve is − 1
σ , which is 0 if the two types

are perfect substitutes, and something larger otherwise. This simple model is
widely used to discuss "skill biased technical change" (SBTC).

In the "traditional" SBTC literature (e.g., Katz and Murphy, 1992) it is
assumed that

log
θ1t
θ2t

= a+ bt+ et

leading to a model for the relationship of relative wages to relative supplies:

log
w1t
w2t

= a+ bt− 1
σ
log

L1t
L2t

+ et. (2)

Freeman (1976) and Katz and Murphy (1992) estimate models of this form, us-
ing 2 "types" of labor - high-school equivalents and college equivalents. Dropouts
are assumed to be perfect substitutes for HS graduates with a relative effi ciency
of (roughly) 70%. Post-graduates are assumed to be perfect substitutes for
college graduates with a relative effi ciency of (roughly) 125%. People with 1-3
years of college are assumed to represent 1/2 unit of HS labor and 1/2 unit of
college labor. (There are different conventions about whether supply should
be based on the total numbers of adults in each education group, or total em-
ployees. There are also different ways to combine men and women). The
"magic number" is 1

σ = 0.7, which implies σ = 1.4 (See KM, equation 19, page
69). It has turned out to be hard to get a model like (1) to work as well as it
did in KM’s study (and in Freeman, 1976) when the sample is extended to the
1990s and 2000’s. Katz and Goldin (2008) present some estimates that have
trend breaks in the last two decades and manage to get estimates in the range
of 1σ = 0.7.

Card and Lemieux (2001) generalize the 2-skills model by introducing a
nested CES:

h(.) = (θHH
σ−1
σ + θLL

σ−1
σ )

σ
σ−1 (3)

H =

∑
j

αjH
σA−1
σA

j


σA
σA−1

L =

∑
j

βjL
σA−1
σA

j


σA
σA−1

Here Hj is the number of workers in the "high" education group in age group j,
and similarly Lj is the number of workers in the "low" education group in age
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group j. The new parameter σA measures the degree of substitutability across
age (or experience) groups (which is implicitly set to infinity in the traditional
SBTC literature). This model is motivated by the observation (CL, Figures I,
II) that in US, UK and Canada the rise in the college high-school wage gap is
mainly driven by changes for young workers, and by the realization that since
the late 1970s the relative growth rate in educational attainment of consecutive
cohorts has stalled in all 3 countries (CL, Figure III). The argument in CL is
that the "twisting" of the age profile of relative returns in their Figure II was
caused by the slowdown in the growth of relative supply among young workers
that is slowly working its way through the age distribution.
Differentiating (2) w.r.t. Lj and Hj and re-arranging terms it is easy to

derive a generalization of (1) of the form:

log
wHjt
wLjt

= log
θHt
θLt

+ log
αj
βj
− 1
σ
log

Ht

Lt
− 1

σA

(
log

Hjt

Ljt
− log Ht

Lt

)
(4)

(CL, equation 8b). This says that for age group j the percentage gap in wages
between H and L workers in period t depends on log θHtθLt

, the aggregate index of
"skill biased" tech-change, on the aggregate relative supply of H and L workers,
log HtLt , on an age-group specific relative productivity effect log

αj
βj
(which we

are assuming in (3) does not vary over time) and on the deviation between the
relative supply of H workers in age group j and the overall relative supply.
There are a number of interesting implications of (3):
1. if log HjtLjt

− log HtLt is constant over time then the Freeman-Katz-Murphy
model is still OK, and provides a valid estimate of 1σ . Empirically the relative
supply gaps were pretty stable over time in the US until the late 1970s which
may explain why Freeman’s analysis looks so good.

2. the relative supply of educated workers in age group j is (largely) de-
termined by the choices when the people who are currently age j were finishing
school. That suggests a simple model like:

log
Hjt

Ljt
= λt−j + φj

where λc is a cohort effect (and we measure age by years since age 20, and index
cohorts by the calendar year they reached age 20) and φj is an age effect that
is constant across cohorts and time. Substituting this into (3) yields a model
with age, time and cohort effects:

log
wHjt
wLjt

= log
θHt
θLt

+ log
βj
αj
− 1

σA
φj −

(
1

σ
− 1

σA

)
log

Ht

Lt
− 1

σA
λt−j (5)

Notice that the cohort effects drop out if 1
σA
= 0: so evidence of cohort effects

is simple evidence of imperfect substitution across age groups.
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3. Using (2) the relative wage of any 2 age groups (j, j′) in the same educa-
tion class can be written as:

log
wHjt
wHj′t

= log
αj
αj′
− 1

σA

(
log

Hjt

Hj′t

)
log

wLjt
wLj′t

= log
βj
βj′
− 1

σA

(
log

Ljt
Lj′t

)
.

Thus the coeffi cient 1
σA

can be estimated by relating the relative wages of dif-
ferent age groups in the same education class to their relative supplies, and a
set of relative effi ciency parameters. CL get estimates for 1

σA
in the range of

0.2 or a little smaller (see also Ottaviano and Peri, 2011). (Note too that it
would be pretty easy to have different values for σA for the different education
groups).

4. How do you estimate a 2-level nested CES? As you can see from (3),
this is somewhat complicated by the fact that the aggregate supply indexes Ht

and Lt are "model-based": you need to know the parameters αj , βj and σA to
construct these indexes. An easy way is to proceed in two steps. Step 1 focuses
on estimating σA , using observation 3 above. Notice that once you normalize
one of the effi ciency parameters for each education group (e.g., α1 = β1 = 1)
you also get estimates of αj and βj for the other groups. Using these and the
estimate of σA we construct the "effective" supply indexes:

Ht =

∑
j

αjH
σA−1
σA

jt


σA
σA−1

Lt =

∑
j

βjL
σA−1
σA

jt


σA
σA−1

.

If you examine expressions like these you will see that when 1
σA
≈ 0.2 the

exponents inside the parentheses are numbers like 0.8 and the numbers outside
are numbers like 1.25. In this range

Ht ≈
∑
j

αjHjt, Lt ≈
∑
j

βjLjt.

So sometimes people "cheat" by using simple supply aggregates rather than
"model consistent" aggregates.
In the second step we estimate (3) on age-group/time-period observations,

using the estimates ofHt and Lt,and some assumption on the time series process
for log θHtθLt

. This yields estimates of 1σ and
1
σA
. The latter can be compared to the

estimate obtained in the first step to provide a consistency check of the process.
In general, with multiple nests, we can proceed in the same way: start at the
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lowest level of aggregation and estimate the lowest-level substitution parameter,
and the relative effi ciency parameters, then construct the supply indexes for the
next level and work backwards up the nesting structure.

5. Anderson and Moroney (1994) show that when you have a nested CES,
the Allen partial elasticity of substitution3 between two inputs in the same nest
is related to the within-nest substitution effect and the between-nest effect. In
the contex of (2) they show that for any two age groups i and j with high
education:

σAlleni,j =
1

sH
(σA − sLσ)

and for any two groups with low education

σAlleni,j =
1

sL
(σA − sHσ)

where sL and sH are the cost shares of the L and H groups. If σA is small
relative to σ this means that two groups in the same nest can be complements
(which cannot happen in a 1-level CES, where all groups are substitutes). In
a two-nest model like CL’s, σA is quite a bit smaller than σ and so people in
the same education group in different age classes are Allen-complements, which
might make economic sense.

II. Generalizations of the 2-nest model.
a) Multiple education classes.
One immediate issue that arises in thinking about (3) is whether we need

more education groups. For example, with K education groups we get:

h(.) = (

K∑
k=1

θkE
σ−1
σ

k )
σ
σ−1 (6)

Ek =

∑
j

αkjE
σA−1
σA

kj


σA
σA−1

where Ek represents the supply of people in education group k. Let’s consider
2 groups k = 1 and k = 2. Then a variant of (3) will imply a model for the
relative wages of people of age group j in education groups 1 and 2 of the form:

log
w2jt
w1jt

= log
θ2t
θ1t

+ log
α2j
α1j
−
(
1

σ
− 1

σA

)
log

E2t
E1t
− 1

σA
log

E2jt
E1jt

(7)

Suppose however that we’ve made a mistake and groups 1 and 2 are really
perfect substitutes. Then the relative wages of people of age group j in groups

3Recall σAlleni,j ≡ CijC

CiCj
. For a regular CES the Allen elasticity for two different inputs is

just the elasticity of substitution.
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1 and 2 should be constant:

log
w2jt
w1jt

= k

(potentially we could allow k to vary by age group). This provides a way
to think about how to define the right grouping structure: we group together
workers whose relative wages are constant over time (or across local markets, if
we are focusing on spatial variation in wages).
An interesting application is to the classification of lower-education groups.

One view is that dropouts and high school graduates are 2 different skill groups.
An alternative (widely used in the SBTC literature) is that dropouts and HS
grads are perfect substitutes. The latter implies that the HS graduation pre-
mium is constant (over time and across markets) - a prediction that seems
remarkably true. See Figure 6 from "Is the New Immigration Really So Bad?",
Ottaviano and Peri (forthcoming, Table 5), and Goldin and Katz (2008, chapter
8). This has important implications for interpreting the effect of immigration,
since many immigrants (50% or more) have very low education. If they compete
with a broader skill group that includes HS graduates their effect (especially on
natives with less than a high school education) is substantially diffused.

b) Immigration
A second important application of the relative supply-demand apparatus is

to the analysis of the effects of immigration. George Borjas (QJE, 2003) used
a variant of the CL model with 4 education groups (dropouts, HS grads, some
college, BA+) and argued that immigration has had a pretty big effect on the
wages of the least-educated natives. (He estimates a model like (5), then does
some simulations, accounting for the presence of immigrants in various education
and age cells. He focuses on simulations in which the capital stock is fixed
and imposes an estimate of σ across four education groups —assumptions that
arguably over-state the effects of immigration). More recent work, including
Ottaviano and Peri (forthcoming) has differed from Borjas in 3 ways:
1. in the simulations capital is allowed to vary endogenously
2. in the estimation, careful attention is paid to the number and definition

of education groups
3. a third substitution parameter —between immigrants and natives with

the same age and education —is introduced and estimated.
Ottaviano and Peri extend the 2-level model to a 3-level model:
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h(.) = (

K∑
k=1

θkE
σ−1
σ

k )
σ
σ−1

Ek =

∑
j

αkjE
σA−1
σA

kj


σA
σA−1

Ekj =

(
2∑

n=1

λkjn E
σn−1
σn

kj,n

) σn
σn−1

(8)

Here Ekj,n is the number of natives (n = 1) or immigrants (n = 2) in education-
age cell kj. Using this structure is easy to show that the relative wage of
immigrants versus natives in a particular cell is given by:

log
wkj2,t
wkj1,t

= log
λkj2

λkj1
− 1

σn
log

Ekj,2t
Ekj,1t

Models that ignore the final nest are implicitly assuming σn = ∞. Ottaviano
and Peri (Table 2) provide estimates of 1

σn
in the range of 0 to -.09. They get

larger estimates for low-educated groups (-.07 to -.09), and smaller estimates
for highly educated groups (close to 0 for college grads). One can easily think
of explanations for this pattern. While 1

σn
is small, it turns out to matter

for simulating the net effects of immigration, since even a modest value for 1
σn

implies that more of the impact of immigrants in a given skill (age/education)
group is concentrated among immigrants, and less "spills over" to natives.
Ottaviano and Peri give a general version of a nested CES model with N

nests n = 1...N (their equation 6), and show the associated generalization of
equation (3). They also show the general expressions for the implied effects of
a change in the supply of 1 type of workers on the level of wages for workers
of other types. When the nests are ordered so the intra-nest substitution
elasticities are strictly increasing (so the top nest has the smallest value of σn)
they show that an increase in the supply of one type at the bottom of the nesting
structure has a negative effect on all groups who are in the same type in nest 1,
and a positive effect on all groups who are in the opposite type in nest 1. (The
"top nest" dominates).

Exercise: derive Ottaviano and Peri’s expressions (9) and (10).

II. Modeling Labor Demand with a Traded Sector
The analysis of the effects of relative supply on relative demand is substan-

tially different when an economy has the possibility of "exporting" some (or
all) of its excess labor in some skill group. A full analysis of the various trade
models would take many lectures - it is worthwhile to read through Johnson
and Stafford’s Handbook paper at some point.
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The classic Hecksher-Olin (HO) model assumes that each industry uses a
different combination of input factors, and that the number of traded industries
is at least as big as the number of input factors. In this setting there is a region
of relative factor endowments (the cone of diversification) such that changes in
relative supply of different skill groups have no effect on wages but are simply
accomodated by shifts in the size of different sectors. Card and Lewis try to
evaluate the importance of inter-industry shifts in "absorbing" different fractions
of high school dropouts across different urban labor markets using the following
setup. Let Nd

c represent the number of dropout workers in city c, and let Nc
represent the total number of workers in the city. Then the share of dropout
workers in city c is:

sdc =
Nd
c

Nc

=
1

Nc

∑
i

Nd
ic

=
∑
i

Nd
ic

Nic
× Nic
Nc

=
∑
i

λics
d
ic

where Nd
ic is the number of dropouts employed in industry i in city c, Nic is

total employment in industry i and city c, λicis industry i′s employment share
in city c, and sdic is the "dropout intensity" of industy i in city c. In the HO
case sdic = sdi : dropout intensity is constant across cities and all that varies is
the share of the different industries. Its not hard to form the decomposition:

sdc − sd =
∑
i

(λic − λi)sdi +
∑
i

(sdici − sdi )λi +
∑
i

(λic − λi)(sdici − sdi )

= Bc +Wc + Ic

where Bc is the "between industry" component of adjustment,Wc is the "within
industry" component of adjustment, and Ic is the "interaction effect". Card-
Lewis estimate these components for each city using 2000 census data. Then
they consider regression models of the form

Bc = aB + bB(sdc − sd) + eBc
Wc = aW + bW (sdc − sd) + eWc
Ic = aI + bI(sdc − sd) + eIc

By construction bB + bW + bI = 1. So we can think of bB as the "share" of
the total absorption of the excess fraction of dropout workers in city c that is
attributable to between-industry shifts. Its also useful to plot Bc,Wc, Ic against
sdc − sd. See figures 11-13 from Card-Lewis. The estimates across 150 larger

14



MSA’s are:

bB = .22

bW = .76

bI = .02

Card-Lewis also show that out of the 0.22 total between-industry component
0.09 comes from agriculture, 0.05 from textiles and apparel, and 0.03 from low-
skill services. (You may be surprised to learn that agriculture is important for
MSA-level employment. However, many MSA’s are counties with a substantial
agricultural presence (like Sonoma County and other counties in CA and TX).
Arguably the variation in dropout shares accounted by agriculture represents
reverse causality: because there is more agriculture in some areas, low-skilled
workers are drawn to the areas.

Other Models
Kuhn and Wooten (1991) consider a model with 3 factors (think of these

as 2 types of labor and capital) and 3 goods, 2 of which are traded and one of
which is non-traded. We’ll outline a simplified version of their model with:

2 sectors: one traded, one untraded
2 types of labor
capital, which is freely mobile at an exogenous price.

In this model the tradeable sector can adjust to partially export away excess
supplies of one of the types of labor.

Supply of both types of labor is perfectly inelastic: the total supply of un-
skilled labor is Nu, while the total supply of skilled labor is Ns. In addition to
labor, industry 1 and industry 2 use capital, which is available at an exogenous
price r. Both industries are assumed to have constant returns to scale and to
be perfectly competitive. The cost functions of the two industries depend on
the wages of unskilled and skilled labor, wu and ws, and on the price of capital:

C1(wu, ws, r, y1) = y1c
1(wu, ws, r)

C2(wu, ws, r, y2) = y2c
2(wu, ws, r)

where c1 and c2 are the unit cost functions. Finally, it is assumed that both
unskilled and skilled workers have Cobb-Douglas preferences, and that unskilled
workers spend a fraction αu of their income on the local good, while skilled
workers spend a fraction αs on the local good.

Equilibrium in the labor market requires:

y1c
1
u(wu, ws, r) + y2c

2
u(wu, ws, r) = Nu

y1c
1
s(wu, ws, r) + y2c

2
s(wu, ws, r) = Ns.
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Both sectors are competitive so equilibrium prices are p1 and p2 where:

c1(wu, ws, r) = p1

c2(wu, ws, r) = p2

Sector 2 is traded so p2 is fixed. Sector 1 is local so with Cobb-Douglas demands
from the local workers4 we require:

y1 = αuwuNu/p1 + αswsNs/p1.

We have 5 equations in 5 unknowns (wu, ws, y1, y2, p1) , with exogenous vari-
ables Nu, Ns, p2, r. One nice feature of this model is “scale invariance”: starting
from an initial equilibrium, if the supplies of unskilled and skilled labor are both
increased by x percent, then a new equilibrium is established at the original
wages and prices, with y1 and y2 both increased by x percent. An implication
of scale invariance is that relative wages and the relative size of the two sectors
in the local economy are only affected by changes in the relative supplies of
labor.

To analyze the effects of a shift in labor supply, begin by differentiating the
labor market equilibrium conditions. After some manipulation, the resulting
equations can be written as

dlogNu = λ1udlogy1 + λ2udlogy2 + euudlogwu + eusdlogws (10a)

dlogNs = λ1sdlogy1 + λ2sdlogy2 + esudlogwu + essdlogws (10b)

where dlogx = dx/x is the log differential of x, the coeffi cients λ1u, λ2u, λ1s, λ2s
represent the fractions of unskilled or skilled workers initially employed in sector
1 or 2 (with λ1u + λ2u = 1;λ1s + λ2s = 1), and the coeffi cients euu, eus, esu, ess
satisfy:

euu = λ1ue
1
uu + λ2ue

2
uu

eus = λ1ue
1
us + λ2ue

2
us

esu = λ1se
1
su + λ2se

2
su

ess = λ1se
1
ss + λ2se

2
ss

where eijg represents the output-constant elasticity of demand for labor of skill
group j with respect to the wage of group g in sector i. (Thus, euu for example,
is the effective elasticity of demand for unskilled labor w.r.t. its own wage —a
weighted average of the elasticities in the 2 sectors).
These equations in turn can be solved for the proportional changes in output:

dlogy1 = ϕ1udlogNu + ϕ1sdlogNs + ζ1udlogwu + ζ1sdlogws (11a)

dlogy2 = ϕ2udlogNu + ϕ2sdlogNs + ζ2udlogwu + ζ2sdlogws (11b)

4Note that we are ignoring any other forms of income (in particular capital income)
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where

ϕ1u = λ2s/(λ1u − λ1s)
ϕ1s = −λ2u/(λ1u − λ1s)
ζ1u = (−λ2seuu + λ2uesu)/(λ1u − λ1s)
ζ1s = (−λ2seus + λ2uess)/(λ1u − λ1s)

with parallel expressions for ϕ1u, ϕ2u, ζ1u, ζ2u.
5 The coeffi cients (ϕ1u, ϕ1s, ϕ2u, ϕ2s)

represent the so-called "Rybcznski" effects of changes in factor endowments on
sectoral outputs (for more on this, read Kuhn and Wooten). These are the
effects that would be observed if wages were unaffected by shifts in labor supply
— as would occur if both sectors were traded and we were inside the cone of
diversification. If the export sector (sector 2) is relatively skill-intensive, for
example, then λ1u > λ1s and therefore ϕ1u > 0 and ϕ1s < 0. Ignoring wage
adjustments, an increase in Nu causes an increase in output in the sector that is
more intensive in unskilled labor, whereas an increase in Ns causes a reduction
in output in that sector. Also, note that ϕ1s = 1 − ϕ1u, reflecting the scale
invariance property of the model.
The next step is to differentiate the marginal cost equations, yielding the

standard equations relating the share-weighted changes in input prices to the
changes in output prices:

θ1udlogwu + θ1sdlogws = dlogp1 (12a)

θ2udlogwu + θ2sdlogws = 0, (12b)

where θ1u = wuN1u/p1y1 is unskilled labor’s share in sector 1, etc. Finally,
differentiating the untraded good’s equilibrium condition leads to:

dlogy1 = S1u[dlogNu + dlogwu] + S1s[dlogNs + dlogws]− dlogp1, (13)

where S1u is the share of output from sector 1 consumed by unskilled labor, and
S2u = 1− S1u is the share consumed by skilled labor.
Combining (10a), (11a), (11b), and (12) leads to an equation that can be

solved for the change in the unskilled wage as a function of the changes in the
supplies of unskilled and skilled labor:

dlogwu = πuudlogNu + πusdlogNs

where

πuu = (S1u − ϕ1u)/M
πus = (S1s − ϕ1s)/M
M = [θ1u − S1u + ζ1u]− (θ2u/θ2s)× [θ1s − S1s + ζ1s].

5These expressions are derived by writing equations (12) in matrix form:
dlogN = Λd log y+Ed logw, and solving dlogy = Λ−1dlogN −Λ−1Edlogw, where Λ is the

matrix of λij terms (i = 1, 2; j = u, s) and E is the matrix of ejg terms (j = u, s; g = u, s).
The determinant of Λ is λ1uλ2s − λ2uλ1s = λ1u − λ1s.
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The effects of shifts in relative labor supply on the wages of skilled workers
can be derived using equation (11b). Thus:

dlogws = πsudlogNu + πssdlogNs

where πsu = −(θ2u/θ2s)πuu and πss = −(θ2u/θ2s)πus. These two can be sub-
stituted into the system to derive effects on output and employment in the two
sectors. Table 1, at the end of the lecture, shows the simulated effect of an
increase in unskilled labor supply under 2 simple choices for the technologies of
the 2 sectors.
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5. Labor share of nonfarm business sector output, first quarter 1947–third quarter 2010
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 Labor share is the portion of output that employers spend on labor costs (wages, salaries, and benefits) 
valued in each year’s prices. Nonlabor share—the remaining portion of output—includes returns to capital, 
such as profits, net interest, depreciation, and indirect taxes.

 Labor share averaged 64.3 percent from 1947 to 2000. Labor share has declined over the past decade, falling 
to its lowest point in the third quarter of 2010, 57.8 percent. The change in labor share from one period to 
the next has become a major factor contributing to the compensation–productivity gap in the nonfarm busi-
ness sector.
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Kingdom before leveling off. The parallel movements in the 
United States and Canada are especially striking, and suggest 
that whatever forces led to the slowdown in the intercohort trend 
in educational attainment were common to the two nations.'' 

An important feature of Figure IV is that the timing of the 

17. The 1945-1949 cohort in  the United States seems to have slightly higher 
educational attainment than would be predicted given earlier and later cohorts 
and the pattern in Canada. This may be an effect of draft avoidance behavior by 
men in this cohort, who entered college to avoid service during the Vietnam war. 
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Figures 
 

Figure 1: Alternative nesting models 
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Tables 
Table 1:  

Immigration and Changes in Native Wages: Education-Experience groups, 1990-2006 
Column 1: 
Education 

Column 2: 
Experience 

Column 3: 
Percentage change 
in hours worked in 
the group due to 
new immigrants 
1990-2006  

Column 4: 
Percentage 
change in 
weekly wages, 
Natives, 1990-
2006 

No High School Degree (ND) 

1 to 5 years 8.5% 0.7% 
6 to 10 years 21.0% -1.5% 
11 to 15 years 25.9% 0.6% 
16 to 20 years 31.0% 1.6% 
21 to 25 years 35.7% 1.3% 
26 to 30 years 28.9% -1.6% 
31 to 35 years 21.9% -8.8% 
36 to 40 years 14.3% -10.1% 
All Experience groups 23.6% -3.1% 

High School Degree (HSD) 

1 to 5 years 6.7% -5.3% 
6 to 10 years 7.7% -1.6% 
11 to 15 years 8.7% -1.4% 
16 to 20 years 12.1% 1.8% 
21 to 25 years 13.0% 0.6% 
26 to 30 years 11.8% -0.9% 
31 to 35 years 11.0% -2.0% 
36 to 40 years 9.3% -4.0% 
All Experience groups 10.0% -1.2% 
 

Low Education (ND+HSD) All Experience groups 13.2% -1.5% 
    

Some College Education (SCO) 

1 to 5 years 2.6% -5.4% 
6 to 10 years 2.6% -2.0% 
11 to 15 years 3.9% 0.1% 
16 to 20 years 6.2% 0.6% 
21 to 25 years 8.4% -2.5% 
26 to 30 years 12.0% -3.1% 
31 to 35 years 12.3% -3.8% 
36 to 40 years 12.7% -3.0% 
All Experience groups 6.0% -1.9% 

College Degree (COD) 

1 to 5 years 6.8% 0.4% 
6 to 10 years 12.2% 6.5% 
11 to 15 years 13.7% 14.2% 
16 to 20 years 12.2% 17.3% 
21 to 25 years 17.5% 9.1% 
26 to 30 years 24.4% 4.3% 
31 to 35 years 26.1% 1.7% 
36 to 40 years   
All Experience groups 14.6% 9.3% 
 

High Education (SCO+COD) All Experience groups 10.0% 4.5% 
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Table 2 
Estimates of the coefficient (-1/σN)  

National Census and ACS, U.S. data 1960-2006 
Specification (1)

No Fixed 
Effects

(2)
With FE 

(3)
Not weighted 

with FE

(4)
No Fixed 
Effects

(5)
With FE 

(6)
Not weighted 

with FE
Wage Sample: All workers, weighted by hours

 
Full time workers only

Estimates of (-1/σN   )
Men 
 

-0.053***
(0.008) 

-0.033**
(0.013) 

-0.045***
(0.013) 

-0.063**
(0.005) 

-0.048***
(0.010) 

-0.059***
(0.012) 

Women 
 

-0.037***
(0.009) 

-0.058***
(0.017) 

-0.067***
(0.016) 

-0.050***
(0.007) 

-0.066***
(0.014) 

-0.071***
(0.012) 

Pooled Men and Women 
 

-0.032***
(0.008) 

-0.024*
(0.015) 

-0.026**
(0.15) 

-0.044***
(0.006) 

-0.037***
(0.012) 

-0.038**
(0.013) 

Men, Labor supply measured as 
employment 

-0.057**
(0.007)

0.027**
(0.014)

0.030**
(0.015)

-0.066***
(0.006)

-0.040**
(0.012)

-0.041**
(0.014)

Separate estimates of (-1/σN  ) by Education Group
Men, No degree -0.073***

(0.007)
-0.070***

(0.010)
-0.070***

(0.009)
-0.085***

(0.004)
-0.084**
(0.006)

-0.081**
(0.007)

Men, High School Graduates -0.089***
(0.016)

-0.090***
(0.020)

-0.093***
(0.018)

-0.097***
(0.013)

-0.099***
(0.015)

-0.100***
(0.015)

Men, Some College education -0.071**
(0.024)

-0.060
(0.035)

-0.070*
(0.034)

-0.077**
(0.023)

-0.068*
(0.033)

-0.075**
(0.034)

Men; College Graduates -0.017
(0.026)

0.006
(0.042)

0.019
(0.030)

-0.024
(0.027)

-0.009
(0.041)

-0.0150
(0.029)

Separate estimates of (-1/σN  ) by Experience Group
Men, 0-10 years of experience 
 

-0.012
(0.018) 

-0.14***
(0.028) 

-0.15**
(0.030) 

-0.037**
(0.014) 

-0.151***
(0.020) 

-0.157***
(0.031) 

Men, 11-20 years of experience 
 

-0.044**
(0.011) 

-0.061***
(0.014) 

-0.066**
(0.013) 

-0.050***
(0.011) 

-0.068***
(0.014) 

-0.073***
(0.014) 

Men, 21-30 years of experience 
 

-0.073**
(0.008) 

-0.052**
(0.022) 

-0.058**
(0.017) 

-0.077***
(0.007) 

-0.059**
(0.022) 

-0.066***
(0.018) 

Men, 31-40 years of experience 
 

-0.094**
(0.013) 

-0.065**
(0.014) 

-0.063**
(0.016) 

-0.096***
(0.013) 

-0.064***
(0.015) 

0.060**
(0.018) 

 
Note: Each cell reports the estimate of the parameter -1/σN. from specification (12) in the text. Method of estimation is Least Squares. In parenthesis we report the 
heteroskedasticity-robust standard errors, clustered over the 32 education-experience groups. In specification 1, 2, 4 and 5 we weight each cell by its employment. FE (fixed 
Effects) include Education by Experience plus time effects in Rows one to four, Experience fixed effects are included in rows 5 to 8 and Education fixed Effects are in  rows 9-
12..***= significant at 1% level; **=significant at 5% level; *= significant at 10% level. 
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Table 3 
Estimates of (-1/σEXP)  

(National Census and ACS U.S. data 1960-2006) 
 

Structure of the nest 
 

Model A and B Model C Model D

 (1) (2) (3) (4) 
Estimated coefficient: (-1/σEXP) (-1/σEXP) (-1/σY-O) (-1/σEXP) 
Men 
Labor Supply is Hours worked 

-0.16***
(0.05) 

-0.19** 
(0.08) 

-0.31* 
(0.15) 

-0.30***
(0.06) 

Women 
Labor Supply is Hours worked 

-0.05
(0.05) 

0.08* 
(0.045) 

-0.14 
(0.12) 

-0.01
(0.06) 

Pooled Men and Women 
Labor Supply is Hours worked 

-0.14***
(0.04) 

-0.17** 
(0.06) 

-0.28** 
(0.12) 

-0.23***
(0.05) 

Men 
Labor Supply is Employment 

-0.13***
(0.05) 

-0.18** 
(0.08) 

-0.26* 
(0.12) 

-0.22***
(0.06) 

Cells: Education-experience-
year 

Education-experience-year Education-Young/Old-
year 

Experience-year 

 Effects Included Education by Year and
Education by Experience

Education-Young-Year, 
Education-Old-Year and 
Education by Experience 

Education- Year  
and 

Education-Young/Old 

Experience effects and 
year effects 

Observations 192 192 96 48
 
 

Note: Each cell reports the estimates from a different regression that implements equation (7) in the text for the appropriate characteristics 
and using the appropriate aggregate and fixed effects. The method of estimation is 2SLS using immigrant workers’ hours as instrument 
for total workers’ hours. Cells are weighted by their employment. Standard errors are heteroskedasticity robust and clustered at the 
education-experience level for columns 1 and 2, at the education-young/old level for column 3 and at the experience level for column 4.  
*, **, *** = significant at the 10, 5 and 1% level.  
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Table 4 

Estimates of (-1/σEDU) 
(National Census and ACS, U.S. data 1960-2006) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Each cell reports the estimates from a different regression that implements (7) in the text using the appropriate wage as dependent variable and labor 
aggregate as explanatory variable and the appropriate fixed effects. The method of estimation is 2SLS using immigrant workers as instrument for total 
workers in the relative skill group. Cells are weighted by their employment. Standard errors are heteroskedasticity robust and clustered at the education 
level for columns 1 and (2), and at the education-experience level for column 3 and 4.  
 *, **, *** = significant at the 10, 5 and 1% level.  

 
 
 
 
 

 

 Model A  Model D 

Specification: 
 
 
 
 
 
 

(1)
With education-
specific  FE and 

trends 

(2)
With education-

specific  trends only 

(3) 
With experience-

year FE 

(4) 
With 

experience-
year, education-
experience and 
education-year  

FE 
Men 
Labor Supply is Hours worked 

-0.16 
(0.12) 

-0.28** 
(0.10) 

-0.22* 
(0.12) 

-0.04 
(0.03) 

Women 
Labor Supply is Hours worked 

-0.16 
(0.15) 

-0.34** 
(0.14) 

-0.25** 
(0.11) 

-0.02 
(0.04) 

Pooled Men and Women 
Labor Supply is Hours worked 

-0.15 
(0.10) 

-0.30** 
(0.11) 

-0.23** 
(0.11) 

-0.02 
(0.03) 

Men 
Labor Supply is employment 

-0.17 
(0.10) 

-0.43** 
(0.16) 

-0.28** 
(0.09) 

-0.03 
(0.03) 

Cells Education-Year Education-Year Education-
Experience-years 

Education-
Experience-years 

Fixed Effects Included: Education-specific 
effects, Education-
specific trends and Year 
effects

Education-specific 
trends and Year effects 

Experience by year 
only 

Experience by 
year, Education by 
year and education 
by Experience

Number of observations 24 24 192 192
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Table 5 

 
Elasticity of substitution between Broad and Narrow Education groups 

CPS data 1962-2006, Pooled Men and Women 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note: Each cell is the estimate from a separate regression on yearly CPS data. In the first column we estimate the relative wage elasticity of the group 
of workers with a high school degree or less relative to those with some college or more. Method and construction of the relative supply (hours 
worked) and relative average weekly wages are described in the text in Section 4.2.2. In the first row we split workers with some college education 
between H and L. In the second row we include them in group H, following the CES nesting in our model. In the second column we consider only the 
groups of workers with no degree and those with a high school degree (the dependent variable is relative wages and the explanatory is relative hours 
worked). In the third column we consider only workers with some college education and workers with a college degree or more (the dependent 
variable is relative wages and the explanatory is relative hours worked). In brackets are the standard errors and in square brackets the Newey-West 
autocorrelation-robust standard errors. 

***= significant at 1% level; **=significant at 5% level; *= significant at 10% level. 
 

 
 
 
 
 
 

 Model B  
 (1) 

-1/σH-L 
 

(2) 
-1/σEDU,L 

 

(3) 
-1/σEDU,H 

 

Observations 

"Some College" split between LHIGH 
and LLOW 

-0.54***
(0.06) 
[0.07]

-0.029
(0.018) 
[0.021] 

-0.16*
(0.08) 
[0.10] 

44 

"Some College" in  LHIGH -0.32***
(0.06) 
[0.08] 

-0.029
(0.018) 
[0.021]

-0.16*
(0.08) 
[0.10]

44 

Employment as a Measure of Labor 
Supply 

-0.66***
(0.07) 
[0.09]

-0.039
(0.020) 
[0.024]

-0.08
(0.09) 
[0.11]

44 

1970-2006 
 

-0.52*** 
(0.06) 
[0.08] 

0.021 
(0.028) 
[0.025] 

-0.13 
(0.08) 
[0.09] 

36 
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Table 6 

Calculated Long-Run Wage Effects of Immigration, 1990-2006 
 

Nesting Structures: Model A/C Model D Model B 
Specifications: 
 
 
Parameters: 

(1) 
σN= ∞  

(2)
Estimated  

σN 

(3)
Education 
specific  σN 

(4)
Estimated 

σN 

(5) 
Education 
specific σN 

(6)
Estimated 

σN 

(7)
Education 
specific σN 

(8)
Katz-

Murphy 
σHIGH-LOW 

(9)
σEXP=10 

σHIGH-LOW 2.5 2.5 2.5 2.5 2.5 2 2 1.41 2
σEDU,HIGH  2.5 2.5 2.5 2.5 2.5 10 10 10 10
σEDU,LOW   2.5 2.5 2.5 2.5 2.5 10 10 10 10
σEXP 5 5 5 5 5 5 5 5 10
(σN)H ∞  20 33 20 33 20 33 33 33 
(σN)L ∞  20 12.5 20 12.5 20 12.5 12.5 12.5 

 
% Real Wage Change of US-Born Workers Due to Immigration, 1990-2006

Less than HS -4.1% -3.1% -2.3% -2.6% -1.9% -0.1% 0.6% 0.5% 0.6% 
HS graduates 0.9% 1.4% 1.6% 1.4% 1.7% 0.5% 0.8% 0.7% 0.8% 
Some CO 2.2% 2.5% 2.4% 2.4% 2.3% 1.0% 0.8% 0.9% 0.8% 
CO graduates -1.4% -0.6% -1.0% -0.7% -1.0% 0.5% 0.2% 0.2% 0.2% 
Average US-born 0.0% 0.7% 0.6% 0.7% 0.6% 0.6% 0.6% 0.6% 0.6% 

 
% Real Wage Change of Foreign-Born Workers Due to Immigration, 1990-2006

Less than HS -4.1% -8.4% -11.0% -8.5% -11.0% -5.5% -8.0% -8.1% -8.0% 
HS graduates 0.9% -6.1% -10.2% -6.0% -10.1% -6.9% -11.0% -11.1% -11.0% 
Some CO 2.2% -2.4% -0.6% -2.5% -1.0% -4.0% -2.2% -2.1% -2.2% 
CO graduates -1.4% -9.2% -6.3% -9.3% -6.7% -8.1% -5.0% -5.0% -5.0% 
Average Foreign-born 0.0% -7.0% -6.6% -7.0% -6.9% -6.5% -6.1% -6.1% -6.1% 
 
Overall average 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

 
Note: The percentage wage changes for each education group are obtained averaging the wage change of each education-experience group (calculated using 
the formulas for the appropriate nesting structure and the coefficient listed in the first 6 rows). Those percentage changes are weighted by the wage share in the 
education group. The US-born and Foreign-born average changes are obtained weighting changes of each education group by its share in the 1990 wage bill of 
the group. The overall average wage change adds the change of US- and foreign-born weighted for the relative wage shares in 1990 and it is always equal to 0 
due to the long-run assumption that the capital-labor ratio adjusts to maintain constant returns to capital. 
 
 



Table 1:  Simulated Effects of Increase in the Supply of Unskilled Labor

                       Baseline Settings Except:

   Baseline  θ(2,u)=.30 θ(2,u)=.50
   Scenario σ(u,s)=3 σ(u,s)=6 θ(2,s)=.35 θ(2,s)=.20

1. Own‐elasticity of demand ‐0.70 ‐1.54 ‐2.80 ‐0.66 ‐0.53
for unskilled labor (average
of two sectors)

2. Elasticity of unskilled wage ‐0.69 ‐0.29 ‐0.15 ‐0.54 ‐0.28
w.r.t. increase in unskilled 
labor π(u,u)

3. Elasticity of relative wage ‐1.00 ‐0.42 ‐0.22 ‐1.00 ‐1.00
w.r.t. increase in unskilled 
labor π(u,u) ‐ π(s,u)

4. Elasticity of output of local 0.46 0.41 0.40 0.49 0.54
sector w.r.t. increase in 
unskilled labor

5. Elasticity of output of export 0.31 0.35 0.37 0.46 0.71
sector w.r.t. increase in 
unskilled labor

6. Derivative of unskilled 0.24 0.26 0.26 0.25 0.25
employment share in local
sector w.r.t. increase in 
unskilled labor

7. Derivative of unskilled 0.24 0.23 0.23 0.25 0.19
employment share in export
sector w.r.t. increase in 
unskilled labor

Note: see text. Baseline scenario has Cobb‐Douglas technologies in both sectors (all cross substitution 
elasticities=1) expenditure shares on local good equal to 0.5, unskilled share in local sector=0.4, skilled share 
in local sector=0.4, unskilled share in export sector=0.2, and skilled share in export sector=0.45.




