Econ 250a
Problem Set 5

1. Consider a simple search model with no on-the-job search, no job destruction, and similar utility while working or searching. As shown in Lecture, the reservation wage w^{*} satisfies the equation:

$$
w^{*}=b+\frac{\lambda}{r} \int_{w^{*}}^{\infty}\left(w-w^{*}\right) f(w) d w
$$

Assume that the offered wage distribution is discrete, $w \in\left\{w_{1}, \ldots . w_{n}\right\}$ with d.f.:

$$
\begin{aligned}
P(w= & \left.w_{1}\right)=\Phi\left(\frac{w_{1}-\mu}{\sigma}\right) \\
P(w= & \left.w_{2}\right)=\Phi\left(\frac{w_{2}-\mu}{\sigma}\right)-\Phi\left(\frac{w_{1}-\mu}{\sigma}\right) \\
& \cdots \\
P(w= & \left.w_{n-1}\right)=\Phi\left(\frac{w_{n-1}-\mu}{\sigma}\right)-\Phi\left(\frac{w_{n-2}-\mu}{\sigma}\right) \\
P(w= & \left.w_{n}\right)=1-\Phi\left(\frac{w_{n-1}-\mu}{\sigma}\right)
\end{aligned}
$$

where Φ is the standard normal d.f., and (μ, σ) are parameters. Assume that time in measured in months, and that $b=1000, r=0.02$. Set up a numerical procedure to find the optimal reservation wage, using a grid with $n=200$, and setting $w_{1}=0$ and $w_{n}=8000$. Assuming $\lambda=0.1$ and $\mu=1800$, find w^{*} for $\sigma=100,500,1000,1500,2000$. Find the expected duration of job search d for each σ. Graph the relationships between σ, w^{*} and d.

Extra credit: repeat the above, assuming $\log w^{\sim} N(\mu, \sigma)$, with $\mu=7.5$ and $\sigma=0.025,0.05,0.10,0.20,0.40$.
2. Consider the simplified model with on the job search described in Lecture 9 , where wage offers are distributed on the interval $[0, \bar{w}]$ according to a given d.f. $F(w)$, and the two value functions are:

$$
\begin{equation*}
U(w)=\frac{w-c}{r+\delta}+\frac{\delta}{r+\delta} V+\frac{\lambda(1-\delta)}{r+\delta} \int_{w}^{\bar{w}}(U(\widetilde{w})-U(w)) f(\widetilde{w}) d \widetilde{w} \tag{1}
\end{equation*}
$$

and:

$$
\begin{equation*}
V=\frac{b}{r}+\frac{\lambda(1-\delta)}{r} \int_{w^{*}}^{\bar{w}}(U(\widetilde{w})-V) f(\widetilde{w}) d \widetilde{w} \tag{2}
\end{equation*}
$$

where $w^{*}=b+c$ is the reservation wage.
a) Find the derivative $U^{\prime}(w)$. What is $U^{\prime}(\bar{w})$? What is $U^{\prime}\left(w^{*}\right)$? Draw a picture of $U(w)$ and V.
b) Suppose $b=800$ (per month), $c=0, \lambda=0.4, r=0.02$, and $\delta=0.25$, and $F(w)=N(1200,400)$. Assume that with this distribution $\bar{w}=2500$ (which is almost true). Develop a numberical procedure to solve for $U(w)$ and V.
3. Read Card-Chetty-Weber, QJE 2008. The model is discrete time, with variable search intensity and endogenous asset accumulation. Each worker has a fixed wage w; all jobs last indefinitely (no job destruction); and utility is additively separable in consumption and search effort. Some details:
discount rate $=\delta ; \quad$ interest rate $=r$ (non-random)
flow utility $=u\left(c_{t}\right)-\psi\left(s_{t}\right) ; \quad c_{t}=$ consumption $; \quad s_{t}=$ search effort
Beginning-of-period: start with assets A_{t}, choose s_{t}
If successful $\left(p r o b=s_{t}\right)$ start working, receive w,
if not successful $\left(p r o b=1-s_{t}\right)$, receive benefit b,
End - of - period : choose c_{t}^{e} or c_{t}^{u} depending on seach outcome
Value function at the end of period t for an individual who finds a job:

$$
V_{t}\left(A_{t}\right)=\max _{A_{t+1} \geq L} u\left(A_{t}-A_{t+1} /(1+r)+w_{t}\right)+\frac{1}{1+\delta} V_{t+1}\left(A_{t+1}\right)
$$

Value function at end of period t for an individual who does not find a job:

$$
U_{t}\left(A_{t}\right)=\max _{A_{t+1} \geq L} u\left(A_{t}-A_{t+1} /(1+r)+b\right)+\frac{1}{1+\delta} J_{t+1}\left(A_{t+1}\right)
$$

Beginning-of-period value function: $J_{t}\left(A_{t}\right)=\max _{s_{t}} s_{t} V_{t}\left(A_{t}\right)+\left(1-s_{t}\right) U_{t}\left(A_{t}\right)-$ $\psi\left(s_{t}\right)$.
a) Find the first order condition for optimal search intensity, s_{t}^{*}. Show that the marginal utility of effort depends on the gap $V_{t}\left(A_{t}\right)-U_{t}\left(A_{t}\right)$.
b) Using your answer in (a) and the derivatives of V_{t} and U_{t}, find $\partial s_{t}^{*} / \partial A_{t}$, $\partial s_{t}^{*} / \partial w_{t}$, and $\partial s_{t}^{*} / \partial b_{t}$ and discuss the conditions under which $\partial s_{t}^{*} / \partial A_{t}=0$.
c) Suppose that benefits b are available indefinitely, that $u\left(c_{t}\right)=\log c_{t}$, that $\psi\left(s_{t}\right)=a s_{t}^{2}$, and that $\delta=r$. Suppose in addition that $L=0$ (i.e., assets have to be positive). Can you derive an algorithm to compute $U_{t}\left(A_{t}\right)$ and the optimal search intensity choice $s_{t}^{*}\left(A_{t}\right)$?

HINTS: find $V_{t}\left(A_{t}\right)=V\left(A_{t}\right)$. Now think about how to compute $U_{t}\left(A_{t}\right)=$ $U\left(A_{t}\right)$.

