Before Starting New Material

Enrollment: Space in class. Should be on enrolled status

Official Section: Attend section for which enrolled If you do otherwise, must request permission of new GSI \& regularly attend that section

Problem Set 1: Can get clarification only from GSI Section not for help w/ homework Due Start of lecture. Envelopes in front.

Worked S\&D Examples: Today before new material

Utility Maximization

Utility: Measures satisfaction from consumption of good
Consumer's Goal: Maximize Utility
Consumer's Constraint: Fixed Budget
Econ 1: Don't look formally at Indifference Curve \& Budget Constraint. So, we sort of intuit our way around the theory. Can get more formal theory in 100A_

Law of Diminishing Marginal Utility

- The tendency for the additional utility gained from consuming an additional unit of a good to diminish as consumption increases

Utility Maximization
Consumer's Consumption Decision Across Goods:
Rational Spending Rule or Last Dollar Rule
Consumers' Demand For Single Good:
Maximize Economic Surplus
Compare MB to MC
Compare Reservation Price (WTP) to market P

Utility Maximization						
Elaboration on example like problem 9 (section).						
Two goods. Budget = \$40 Price of public lecture $\mathrm{PL}=10$ Price of books $\mathrm{PB}=20$						
Units $\mathrm{U}_{\mathrm{L}} \quad \mathrm{MU} \mathrm{L}_{\mathrm{L}} \quad(\mathrm{MU} / \mathrm{P})_{\mathrm{L}} \quad \mathrm{U}_{\mathrm{B}} \mathrm{MU}_{\mathrm{B}}(\mathrm{MU} / \mathrm{P})_{B}$						
	0			0	0	
	25	25	2.5		60	3
	45	20			40	
	60	15	1.5	140	20	1
Last Dollar Rule Says: First Dollars to Book, Next to Lecture, Next to Lecture: 1 Book \& 2 Lectures						

Utility Maximization
 Suppose $P_{L}=\$ 11.10$

Can trace out Demand Curve
Units $U_{L} \quad M U_{L} \quad(M U / P)_{L} \quad U_{B} M U_{B}(M U / P)_{B}$

0	0			0	0	
1	25	25	$\mathbf{2 . 5}$	60	60	$\mathbf{3}$
2	45	20	1.8	100	40	2
3	60	15	1.4	140	20	1

Now buy 1 book and 1 lecture

Utility Maximization Suppose $\mathrm{P}_{\mathrm{L}}=\$ 11.10$

Can trace out Demand Curve for Lectures

Utility Maximization
 Demand Curve as MB Curve

MU/P determined demand schedule as prices changed in Public Lecture Demand example. Utility is a hard concept to deal with especially if we don't have all the theory tools at our disposal.

Easy to Conceptualize: Demand curve as a Marginal Benefit Schedule. Where MB is WTP and is in \$ terms

We can think of it this way for Econ 1. But, we do need to understand the Rational Spending Rule

Slope Demand Curve

Reason 1: Slopes down since WTP for additional units falls as more are consumed

Reason 2: Diminishing Marginal Utility
Reason 3: Interaction of Income \& Substitution Effects.
For normal good, income \& substitution effects re-enforce each other. Fall in price, like increase in real income, purchasing power rises, buy more. Also, if "purchasing power" held fixed, would buy more of the cheaper good.

Consumer Surplus in the Market for Milk

Consumer Surplus = $\$ 2000$ per day

Consumer's Economic Surplus

Consumer Surplus: Excess of buyer's reservation price (WTP or MB) over market price for all units of good purchased.

Lecture 4: Consumer surplus is max in unregulated PC market.

Problem To Do

How should you allocate your budget of \$ 10 between consumption of X and Y if you want to maximize your utility? $P x=2 P y=4$

Units U x		MU x (MU/P) $\mathrm{x}^{\text {a }}$	U y	MU y	(MU/P)y
1	6		10		
2	10		16		
3	12		20		
4	13		22		

Diminishing Marginal Utility: As more of a good
is consumed additions to utility decrease
Rational Spending Rule: Allocate budget across goods so that additions to utility per $\$$ equal across goods. This rule maximizes utility, given fixed budget.
Downward Slope of Demand: Falling Marginal Benefit Diminishing Marginal Utility Income and Substitution Effects

Profit Maximization

Profit $=$ Total Revenue - Total Cost
Max Profit Rule (in general): $\quad M R=M C$
Max Profit Rule (PC firm): $\quad P=M C$
Additional revenue from selling additional unit is prevailing price P in perfectly competitive market

Marginal Revenue Equals Price for $P C$ firm: $M R=P$
So, MR = MC Rule becomes $\mathrm{P}=\mathrm{MC}$ for PC firm

Perfectly Competitive Firm

Many buyers and sellers:
No single buyer or seller has influence on market price

Homogeneous good:
A buyer is just as happy buying from one firm as another. Eg. Fuji apple from Tom's Orchard Inc same as Fuji apple from Sally's Orchard Inc

Perfectly Competitive Firm
Many buyers and sellers:
No single buyer or seller has influence on market price
Homogeneous good:
A buyer is just as happy buying from one firm as another. Eg. Fuji apple from Tom's Orchard Inc same as Fuji apple from Sally's Orchard Inc

Perfectly Competitive Firm

Benchmark Case: Ideal. In Lecture 4 we'll see that total economic surplus is max for unregulated PC market.

Assumptions:
Many buyers and seller
Homogeneous good
Perfect information
Free Entry \& Exit

Perfectly Competitive Firm

Perfect Information:

Sellers know market price ("demand curve" they face or equilibrium price given market demand and supply)

Buyers know who sellers are and the equilibrium market price P. They will certainly not buy from a seller if his price is even a shade above market price P.

Perfectly Competitive Firm

Free Entry \& Exit:

Or, as F\&B say: Productive resources mobile A Key behind idea of entry \& exit
"Resource" can be legal/institutional
Or, say: No barriers to entry \& exit
Any firm can easily acquire inputs needed (to "set up shop") to produce. And, any firm can quit easily, leave industry if it is not worth it to stay.

Costs, Costs, Costs !!!

Patience please!

Factors of Production: What the firm uses to produce a good. The inputs. Eg. labor (workers), equipment, materials (like metal for cars, seeds for tomato plants)

Fixed Factor: Factor whose level does not vary for different output levels. Eg. robotic equipment for assembly line

Variable Factor: Factor whose level does vary for different output levels Eg. workers

Firm Output (q) vs Market Output (Q)

Market Output $=$ Sum of individual firm, output

$$
\begin{gathered}
Q=\Sigma_{i} q_{i} \\
Q=q_{1}+q_{2} \ldots+q_{n}
\end{gathered}
$$

with n firms in market
(Can say "big Q" is sum of "little q")

Costs, Costs, Costs !!!

Patience please!
Total Cost of Production: The sum of fixed and variable costs of production at each output level

Fixed Cost: The sum of costs for all fixed factors
Variable Cost: The sum of costs of all variable factors at each output level

Note: "at each output level" not relevant for fixed cost. Why?

Costs, Costs, Costs !!!
Patience please!
$\frac{\text { Average Total Cost (ATC): }}{\text { Total Cost per unit }=\text { TC / q }}$
$\frac{\text { Average Fixed Cost (AFC): }}{\text { Total Fixed Cost per unit }=\text { TFC / q }}$
$\frac{\text { Average Variable Cost (AVC) : }}{\text { Total Variable Cost per unit }=}$ TVC / q

Costs, Costs, Costs !!!

Marginal Cost
Measures how total cost changes with a change in ouput
(Definition allows unequal increments for "change in output", as in F\&B example)

$$
M C=\frac{\Delta \mathrm{TC}}{\Delta \mathrm{Output}}
$$

Cost Schedule (Simple Example)			
$\begin{aligned} & \text { Output } \\ & \text { q } \end{aligned}$	Total Cost TC	Marginal Cost MC	$\begin{aligned} & \text { Profit } \\ & \text { TR-TC } \end{aligned}$
0	5	\ldots	0
1	7	2	3
2	13	6	7
3	21	8	9
4	33	12	7
If market price $P=10$, profit maximizing output for this firm is $q=3$. Set " $P=M C$ ". (Note: TFC=5)			

Cost Schedule (F\&B Example, Table 6.1) Employment and Output Glass Bottle Maker		
Employees (Variable Factor)	tvc	Bottles (q)
0	0	0
1	12	80
2	24	200
3	36	260
4	48	300
5	60	330
6	72	350
7	84	362

Costs (F\&B Example, Table 6.2)						
	Output (Bottles)	$\begin{gathered} \text { Total } \\ \text { Revenue } \end{gathered}$		Total	Cost)	Profit
0	0	0		40		-40
1	80	28	$\mathrm{MR}=.35$	52	MC = . 15	
2	200	70	MR $=.35$	64	$\mathrm{MC}=.10$	6
3	260	91	MR $=.35$	76	$\mathrm{MC}=.20$	15
4	300	105	MR $=.35$	88	$\mathrm{MC}=.33$	17
5	330	115.50	MR $=.35$	100	MC $=.44$	15.50
6	350	122.50	MR $=.35$		$\mathrm{MC}=.60$	10.50
7	362	126.70	MR $=.35$		$\mathrm{MC}=1.00$	02.70
Text's "MB" replaced with MR. For PC firm, MR = P. ($\mathrm{P}=0.35$)						

PC Firm SR Decision
Profit Maximizing Output can involve
Positive Profit >0
Zero Profit Profit $=0$
Loss Profit <0
Operate (produce) if TR $>$ TVC
P $\times \mathrm{q} \gg$ TVC
P $>$ TVC/q
P $>$ AVC
Otherwise, Shut Down

Firm's Shut Down Decision

Shuts down if revenues can't cover avoidable costs.
Short Run : Shut down if it reduces losses.
Fixed costs are sunk (unavoidable) \& not relevant to shut down decision

Only Variable costs are avoidable in SR
Operate in SR if revenues cover variable costs.
Long Run: All costs are variable \& so avoidable. All costs are relevant to shut down decision.

F\&B Statement of Shut Down Decision Confusing Wording

F\&B Statement is confusing. They state shut down decision as: TR > TVC at all levels of output.

Better:
Option 1: TR > TVC at all profit maximizing output levels

Option 2: TR > TVC at all P
(In \#2 Implicit that output levels are where $\mathrm{P}=\mathrm{MC}$)

PC Firm's Profit Maximization

 Graphical Approach
Ouptut and Shutdown Decision

Elements of Graph: Must have MC, P, AVC
Make sure MC cuts AVC at min point.
Profit-Max Output: Find $\mathrm{P}=\mathrm{MC}$. Draw line to horizontal q axis.

Shut Down: If $\mathrm{P}<\min \mathrm{AVC}$, shutdown Otherwise, operate

F\&B Figure 6.8 Error

Shaded area showing loss is wrong. $\mathrm{P}=\mathrm{MC}$ point not correctly drawn. Calculations are correct.

PC Firm's Profit Maximization Graphical Approach

Profit and Loss
Elements of Graph: Must have MC, P, AC (or ATC).
Can also have AVC, AFC
At profit max output level,
Step 1: Draw vertical line from $P=M C$ to q axis
Step 2: Find intersection of vertical line and ATC
Step 3: Draw horizontal line from ATC (at q) to vertical axis.
Step 4: Shade area between P \& AC up to level q Step 5: If $P>A C$, profit. If $A C>P$, loss.

Problem To Do

Determine: (1) SR Output (2) Shut Down Decision

Observations
Observation 1:
Rising MC reflects diminishing marginal returns.
(See F\&B example of Bottle Co. and Harry's
Recycling Services)
Rising MC reflects rising reservation price
Due to diminishing returns, given opportunity cost, production becomes more expensive, because additional workers are less \& less productive.

Observations

Observation 2: PC firm's supply curve is MC above min AVC (why?)

Observation 3: Market Supply curve is horizontal sum of individual supply curves. Individual firm supply curves (MC curves) could be non-identical

Observation 4: Upward slope of supply curve due to diminishing returns. Also consistent with nonidentical firms (high cost produce only at higher price)

Producer's Economic Surplus

Producer Surplus: The excess of price above cost for the total amount supplied.

Cost is given by MC and is the producers reservation price ("willingness to accept" price).
(Recall: Buyer's reservation price is "willingness to pay")
Producer surplus also gives the excess of revenue above variable cost.

Producer's Economic Surplus
Producer Surplus: The excess of price above
cost for the total amount supplied.
Cost is given by MC and is the producers
reservation price ("willingness to accept" price).
(Recall: Buyer's reservation price is "willingness to pay")
Producer surplus also gives the excess of revenue above variable cost.

Summary

Perfectly Competitive Industry is one with:
many buyers \& sellers
homogeneous good
perfect information
free entry \& exit
PC Firm's SR Profit Maximization Decision
Set Output where $\mathrm{P}=\mathrm{MC}$
Shut down if $P<\min$ AVC

PC Firm's Supply Curve: MC above min AVC. Rising slope due to diminishing returns in presence of fixed factor
\(\left.\begin{array}{l}Perfectly Competitive Industry is one with:

many buyers \& sellers

homogeneous good

perfect information

free entry \& exit\end{array}\right]\)| PC Firm's SR Profit Maximization Decision |
| :--- |
| Set Output where $\mathrm{P}=\mathrm{MC}$ |
| Shut down if P < min AVC |
| PC Firm's Supply Curve: MC above min AVC. Rising slope |
| due to diminishing returns in presence of fixed factor |

Producer Surplus in the Market for Milk

