Department of Economics University of California, Berlekey

Announcements

Problem set 3 up later today.

Discuss Scores on midterm Monday lecture

Start Macro next time. Lots of reading. Stick to required pages..

	Abo Econ	ut Exam 1 Student	
	No study	Study a	lot
reasonable Me	2,50s	2, 90s	
challenging	1,30s	1,80s	-

About Exam

Exam Questions

NYT, July 11 Universities to Share Patented Work on Crops

WSJ, June 18, Natural-Gas Prices Rock U.S.'s Chemical Industry

WSJ, June 27 Amid Fight Over Teen Drinking, Panel Weighs New Alcohol Tax

Role of Government

Enhance Efficiency

Enhance Equity

Make/enforce Laws/Institutions

Role of Government

Efficiency: Increase size of pie, remove DWL

Equity: share pie, redistribute

Laws: collect tax, property rights

Institutions: courts, police, government agencies, etc

Public Goods

Private Good: Excludable so can charge price and MB & MC determine P, Q

Public Good: Non-rival and non-excludable

public park public security (street light, airport security) national defense sanitation/garbage collection services

Public Goods

Public Good Financing

Private: donation contracting (garbage, airport security)

Public: tax head proportional progressive/regressive

Public Goods

Lecture 6: example from problem 1 chapter 15

Finance neighborhood security guard

WTP > cost of guard, optimal to have guard

Head tax \$60 each (regressive)

Fails to get financed since exceeds res price of one resident

Greater chance of financing with prop or prog tax

Externality

Eg. Pollution

Private: bargain/negotiation Coase (zero transaction cost, property rights)

Public: tax, standard, auction permit

Externality						
Eg. Private Bargain						
Chapter ?	Chapter 11, problem 8, Barton & Statler					
	Soundproof	Not Soundproof				
Gain to B	\$100	\$150				
Gain to S	\$120	\$80				
Barton has right to Pollution						
Statler has rig	ht to Pollution-fr	ee				

Externality Soundproof Not Soundproof						
Gain to B	\$100	\$15U				
Gain to S	\$120	\$80				
<u>B has right to Pollution</u> S is victim & considers bribe has to bribe 50, but gain is only 40 Pollution: B=150, S=80, surplus = 230 <u>S has right to Pollution-free</u> B is victim & considers bribe has to bribe 40, and gain is 50 Pollution: B=110, S=120, surplus=230 Descript						

Externality

Example with no private bargaining, transaction cost high. Firms that pollute & many victims

No Regulation

Regulation with standard (not least cost)

Regulation with tax (least cost), optimal tax trial & error

Regulation with auction permit (least cost, no info problem)

	Costs and Emissions for Different Production Processes					
Process	Α	В	С	D	E	
(smoke)	(4 tons/day)	(3 tons/day)	(2 tons/day)	(1 ton/day)	(0 tons/day)	
Cost to Sludge Oi (\$/day)	^{il} 100	200	600	1,300	2,300	
Cost to Northwes	st 300	320	380	480	700	
Lumber (ø/day)						
Sce	Scenario I					
No regulation: firm has right to pollute						
4 to	4 tons each					

Costs and Emissions for Different Production Processes What is the least costly way to get 4 Tons Total?					
Process (smoke)	A (4 tons/day)	B (3 tons/day)	C (2 tons/day)	D (1 ton/day)	E (0 tons/day)
Cost to Sludge Oil (\$/day)	100	200	600	1,300	2,300
Cost to Northwest Lumber (\$/day)	300	320	380	480	700
Scenario II					
Regulation Standard: 2 Tons each					
MC Abatement: S O = 600 - 100 = 500 N L = 380 - 300 = 80 MC abatement = 580					

Costs and Emissions for Different Production Processes						
What is	s the leas	t costly wa	ay to get 4	Tons Tot	al?	
Process (smoke)	A (4 tons/day)	B (3 tons/day)	C (2 tons/day)	D (1 ton/day)	E (0 tons/day)	
Cost to Sludge Oil (\$/day)	100	200	600	1,300	2,300	
Cost to Northwes Lumber (\$/day)	^t 300 Scenario III	320	380	480	700	
Regulation Tax: 40/ton tax (By Trial & Error)						
MB Abatement = 40 per ton MC Abatement = additional cost of cleaner technology						
•SO uses A (40 < 100) •NL uses B (40 > 20) Pollution = 7 tons						

Costs and Emissions for Different Production Processes What is the least costly way to get 4 Tons Total?					
Process (smoke)	A (4 tons/day)	B (3 tons/day)	C (2 tons/day)	D (1 ton/day)	E (0 tons/day)
Cost to Sludge Oil (\$/day) Cost to Northwes Lumber (\$/day)	100 t 300	200 320	600 380	1,300 480	2,300 700
Scenario IV Regulation Tax : 101 per ton SO uses <i>B</i> (101 > 100) <i>NL uses D</i> (101 > 20, 60, 100)			MC Abat SO = 100 NL = 180 Least co	ement = 280) st	

Costs and Emissions for Different Production Processes

What is the least costly way to get 4 Tons Total?

Process	Α	В	С	D	E
(smoke)	(4 tons/day)	(3 tons/day)	(2 tons/day)	(1 ton/day)	(0 tons/day)
Cost to Sludge Oi (\$/day)	^I 100	200	600	1,300	2,300
Cost to Northwes Lumber (\$/day) •Scenario V	st 300	320	380	480	700
•Regulation Auction Permit: 4 permits (1 permit = 1 top)					

۶y ۰p s (1 р

•Firm has zero right to pollute, has to buy rights (bribe), Bid=MB pollution •Sludge bid: 1 @ \$1,000, 2 @ \$700, 3 @ \$400, 4 @ \$100 •Northwest bid: 1 @ \$220, 2 @ \$100, 3 @ \$60, 4 @ \$20

Costs and Emissions for Different Production Processes How much will pollution permits sell for?					
Process	Α	В	С	D	E
(smoke)	(4 tons/day)	(3 tons/day)	(2 tons/day)	(1 ton/day)	(0 tons/day)
Cost to Sludge Oil (\$/day) Cost to Northwes Lumber (\$/day)	100 300	200 320	600 380	1,300 480	2,300 700
 Government set the opening bid at \$90 SO buys 4 permits NL buys 2 permits, 6 permits Government will raise the price until quantity demanded = 4 permits, raise price to \$101 SO buys 3 (B), NL buys 1 (D), MC Abatement = 280 					

Natural Monoply

Regulate: force to produce more force to sell at below monopoly price

Problem: what firm is a natural monopoly

public utility (ok)

railroad (ok) , trucking (no)

Natural Monoply

Regulate:

Set price = AC

problem that firm inflates cost

Incentive Regulation

Govt sets regulated price for several years & share profit/loss with consumer

if costs low, firm keeps profit & shares if costs high, firm absorbs losses & shares

Redistribution

Distribution of Income according to Rawls veil of ignorance ideal=tend to equality

Distribution of Wealth according to Bill Gates Sr wealthy got wealthy by relying on govt institutions & infrastructure ideal=reduce inequality

Redistribution							
Distribution	Distribution of Income						
bot 20% next 20% next 20% next 20%	1960 4.3 12.2 17.8 24.0	2001 4.3 9.9 15.6 23.0					
top 20%	41.3	47.2 (almost half)					
top 5%	15.9	20.7* *1997					

Redistribution

Policies that aim to equalize incomes:

Minimum wage

Means Tested Transfer Programs

AFDC, Personal Responsibility Act Medicaid

Other Means Tested Programs EITC (tax credit for low income)

Summary: Government Role

Government enhances efficiency and equity and makes & enforces laws.

Whether government should have role should follow cost-benefit criterion, ultimately

Production and Consumption Possibilities and the Benefits of Trade

- A country's PPC shows the quantities of different goods that its economy can produce.
- Consumption Possibilities
 - The combinations of goods and services that a country's citizens might feasibly consume

Production and Consumption Possibilities and the Benefits of Trade

- In a closed economy:
 - Society's production possibilities = consumption possibilities.
 - If a country is self-sufficient, it is called *autarky*.

If the price of a good or service in a closed economy is greater than the world price, and that economy opens itself to trade, the economy will tend to become a net importer of that good or service.

If the price of a good or service in a closed economy is lower than the world price, and that economy opens itself for trade, the economy will tend to become a net exporter of that good or service.

A Supply and Demand Perspective on Trade

- Observations of the Mutually Beneficial Gains from Trade
 - Countries will profit by exporting the goods and services for which they have a comparative advantage.
 - The revenue from the exports are used to import goods and services for which they do not have a comparative advantage.

A Supply and Demand Perspective on Trade

- Observations of the Mutually Beneficial Gains from Trade
 - The markets will ensure that goods will be produced where opportunity cost is lowest.
 - The consumption possibilities will be maximized.

A Supply and Demand Perspective on Trade

- Winners and Losers from Trade
 - Winners
 Consumers of imported goods
 - Producers of exported goods
 - Losers
 - Consumers of exported goodsProducers of imported goods

A Supply and Demand Perspective on Trade

- Protectionism
 - The view that free trade is injurious and should be restricted
- Tariff
 - A tax imposed on an imported good
- Quota
 - A legal limit on the quantity of a good that may be imported

Tariffs

- ◆ Closed economy
 ◆ Equilibrium price:

 0 1,000 + 0.5 P_c = 3,000 0.5P_c
 0 P_c = \$2,000
 - ◆Equilibrium quantity:
 - o 1,000 + 0.5(2,000) = 2,000 computers

A Supply and Demand Perspective on Trade

- Tariffs
 - Open economy
 - $\bullet P$ = world price = \$1,500
 - $\diamond q_{\rm S} = 1,000 + 0.5(1,500) = 1,750$
 - $\mathbf{A}q_D = 3,000 0.5(1,500) = 2,250$
 - ◆Imports = 2,250 1,750 = 500 computers/yr

A Supply and Demand Perspective on Trade

Tariffs

- Tariff imposed
 - ◆Tariff = \$300/computer
 - P = world price + tariff = \$1,500 + \$300 = \$1,800
 - $\bullet q_s = 1,000 + (0.5)(1,800) = 1,900$ computers/yr
 - $\bullet q_d = 3,000 = (0.5)(1,800) = 2,100$
 - ◆Imports = 2,100 1,900 = 200
 - ◆Tariff revenue = \$300/computer x 200
 - computers/yr = \$60,000/yr

- Effects of an import Quota
 - Without quota:
 - $\diamond q_{\rm S} = 1,000 + 0.5 P_{\rm C}$
 - With a quota of 200 computers
 - $\diamond q_{\rm S} = 1,000 + 0.5P_{\rm C} + 200 = 1,200 + 0.5P_{\rm C}$
 - $\diamond q_D = 3,000 0.5P_C$
 - \bullet Equilibrium = 1,200 + 0.5 P_{c} = 3,000 0.5 P_{c}
 - ◆Equilibrium price = \$1,800

A Supply and Demand Perspective on Trade

- Effects of an import Quota
 - With a quota of 200 computers
 Domestic quantity supplied
 - o 1,000 + 0.5(\$1,800) = 1,900 computers/yr ◆Domestic quantity demanded
 - o 3,000 0.5 (\$1,800) = 2,100 computers/yr
 - ♦ Imports = 2,100 1,900 = 200
 ♦ Revenue to the importers
 - o (\$1,800 \$1,500) x 200 = \$60,000

A Supply and Demand Perspective on Trade

- Other Barriers to Trade
- Red-tape barriers
- Regulations

A Supply and Demand Perspective on Trade

- The Inefficiency of Protectionism
 - Trade barriers are inefficient and reduce the size of the economic pie.
 - Because trade barriers benefit certain groups, and these groups may be well organized, they may be successful in lobbying for trade barriers.
 - The gains from trade could be used to assist groups that have been hurt by trade.