Announcements
Problem set 3 up later today.
Discuss Scores on midterm Monday lecture
Start Macro next time. Lots of reading. Stick to required pages..

Role of Government
 Enhance Efficiency
 Enhance Equity
 Make/ enforce Laws/ Institutions

WSJ , J une 18, Natural-Gas Prices Rock U.S.'s
Chemical Industry
WSJ , J une 27 Amid Fight Over Teen Drinking,
Panel Weighs New Alcohol Tax

Role of Government

Efficiency: Increase size of pie, remove DWL
Equity: share pie, redistribute
Laws: collect tax, property rights
Institutions: courts, police, government agencies, etc

Public Goods

Private Good: Excludable so can charge price and MB \& MC determine P, Q

Public Good: Non-rival and non-excludable
public park
public security (street light, airport security) national defense
sanitation/ garbage collection services

Public Goods
Public Good Financing
Private: donation
contracting (garbage, airport security)
Public: tax head proportional progressive/ regressive

Public Goods

Tax
head: flat amount
proportional: fixed \% of income progressive: increasing \% of income regressive: decreasing \% of income
eg Head Tax of \$1
Income = 10 (10\%)
Income = 100 (1 \%)
so, regressive

Public Goods

Lecture 6: example from problem 1 chapter 15
Finance neighborhood security guard
WTP > cost of guard, optimal to have guard
Head tax $\$ 60$ each (regressive)
Fails to get financed since exceeds res price of one resident

Greater chance of financing with prop or prog tax

Externality

Eg. Pollution

Private: bargain/ negotiation Coase (zero transaction cost, property rights)

Public: tax, standard, auction permit

Externality

Eg. Private Bargain
Chapter 11, problem 8, Barton \& Statler

	Soundproof	Not Soundproof
Gain to B	$\$ 100$	$\$ 150$
Gain to S	$\$ 120$	$\$ 80$
Barton has right to Pollution		
Statler has right to Pollution-free		

Externality

Gain to B	Soundproof Not Soundproof $\$ 100$ $\$ 150$	
Gain to S	$\$ 120$	$\$ 80$

B has right to Pollution
S is victim \& considers bribe
has to bribe 50, but gain is only 40
Pollution: $B=150, S=80$, surplus $=230$
S has right to Pollution-free
B is victim \& considers bribe
has to bribe 40 , and gain is 50
Pollution: $B=110, S=120$, surplus $=230$ Doesn't matter who has right.

\quad Externality
Example with no private bargaining, transaction cost
high. Firms that pollute \& many victims
No Regulation
Regulation with standard (not least cost)
Regulation with tax (least cost),
optimal tax trial \& error
Regulation with auction permit (least cost, no info problem)

Costs and Emissions for Different Production Processes					
Process (smoke)	$\begin{gathered} \text { A } \\ \text { (4 tons/day) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B } \\ \text { (3 tons/day) } \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \text { (2 tons/day) } \end{gathered}$	$\begin{gathered} D \\ \text { (1 ton/day) } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (0 \text { tons/day }) \\ \hline \end{gathered}$
Cost to Sludge Oil (\$/day)	100	200	600	1,300	2,300
Cost to Northwest Lumber (\$/day)	300	320	380	480	700
Scenario I					
No regulation: firm has right to pollute					
4 tons each					

Costs and Emissions for Different Production Processes What is the least costly way to get 4 Tons Total?					
Process (smoke)	$\begin{gathered} \hline A \\ \text { (4 tons/day) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (3 \text { tons/day) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C} \\ (2 \text { tons/day) } \end{gathered}$	$\begin{gathered} \text { D } \\ \text { (1 ton/day) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (0 \text { tons/day }) \\ \hline \end{gathered}$
Cost to Sludge Oil (\$/day)	100	200	600	1,300	2,300
Cost to Northwest Lumber (\$/day)	$\text { t } \quad 300$	320	380	480	700
Scenario II					
Regulation Standard: 2 Tons each					
MC Abatement: $\begin{aligned} & S O=600-100=500 \\ & N L=380-300=80 \end{aligned}$ MC abatement $=580$					

Costs and Emissions for Different Production Processes is the least costly way to get 4 Tons Total?					
$\begin{aligned} & \text { Process } \\ & \text { (smoke) } \end{aligned}$	$\begin{gathered} \hline \text { A } \\ (4 \text { tons/day }) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { B } \\ \text { (3 tons/day) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \text { (2 tons/day) } \\ \hline \end{gathered}$	$\begin{gathered} \text { D } \\ \text { (1 ton/day) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{E} \\ (0 \text { tons/day }) \\ \hline \end{gathered}$
Cost to Sludge Oil (\$/day)	100	200	600	1,300	2,300
Cost to Northwest	300	320	380	480	700
Lumber (\$/day)	Scenario III				
Regulation Tax: 40/ton tax (By Trial \& Error) MB Abatement $=40$ per ton MC Abatement = additional cost of cleaner technology					
\cdot SO uses $A(40<100)$ \cdot NL uses $B \quad(40>20) \quad$ Pollution $=7$ tons					

Costs and Emissions for Different Production Processes is the least costly way to get 4 Tons Total?					
Process (smoke)	$\begin{gathered} \hline \text { A } \\ \text { (4 tons/day) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{B} \\ (3 \text { tons/day) } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \text { (2 tons/day) } \end{gathered}$	$\begin{gathered} \hline D \\ (1 \text { ton } / \text { day }) \\ \hline \end{gathered}$	$\begin{gathered} E \\ (0 \text { tons/day }) \\ \hline \end{gathered}$
Cost to Sludge Oil (\$/day)	100	200	600	1,300	2,300
Cost to Northwest Lumber (\$/day)	300	320	380	480	700
Scenario IV MC Abatement 280					
SO uses $B(101>100)$ NL uses D (101 > 20, 60, 100)			$\begin{aligned} & S O=10 \\ & N L=18 \\ & \text { Least } \end{aligned}$		

Costs and Emissions for Different Production Processes How much will pollution permits sell for?					
$\begin{aligned} & \text { Process } \\ & \text { (smoke) } \end{aligned}$	A (4 tons $/$ day)	$\begin{gathered} \mathrm{B} \\ \text { (3 tons/day) } \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \text { (2 tons/day) } \end{gathered}$	$\begin{gathered} \text { D } \\ \text { (1 ton/day) } \end{gathered}$	$\begin{gathered} E \\ (0 \text { tons/day }) \end{gathered}$
Cost to Sludge Oil (\$/day)	100	200	600	1,300	2,300
Cost to Northwest Lumber (\$/day)	300	320	380	480	700
- Government set the opening bid at $\$ 90$ -SO buys 4 permits NL buys 2 permits, 6 permits - Government will raise the price until quantity demanded $=4$ permits, raise price to $\$ 101$ -SO buys $\mathbf{3}$ (B) , NL buys 1 (D), MC Abatement $=\mathbf{2 8 0}$					

Natural Monoply
Monopoly due to economies of scale
Everywhere declining AC (so MC < AC)
Cheaper for 1 firm to produce many units
One firm is monopoly (monopoly DWL)

Natural Monoply
Regulate: force to produce more
force to sell at below monopoly price
Problem: what firm is a natural monopoly
public utility (ok)
railroad (ok), trucking (no)

Externality

Example with no private bargaining, transaction cost high. Firms that pollute \& many victims

No Regulation 8 tons
Regulation with standard 2 ton each $\mathrm{MC}=580$
Regulation with $\operatorname{tax}=\$ 101, \mathrm{MC}=280$
Regulation with auction permit MC=280

Economies of Scale: Declining ATC, ATC > MC

(Special Form of TC)

Natural Monoply

Regulate:
Set price $=A C$
problem that firm inflates cost
Incentive Regulation
Govt sets regulated price for several years \& share profit/ loss with consumer
if costs low, firm keeps profit \& shares if costs high, firm absorbs losses \& shares

Redistribution
Distribution of Income
according to Rawls
veil of ignorance
ideal =tend to equality
Distribution of Wealth
according to Bill Gates Sr
wealthy got wealthy by relying on
govt institutions \& infrastructure
ideal=reduce inequality

Redistribution

Policies that aim to equalize incomes:

Minimum wage

Means Tested Transfer Programs
AFDC, Personal Responsibility Act Medicaid

Other Means Tested Programs EITC (tax credit for low income)

Production and Consumption

 Possibilities and the Benefits of Trade- A country's PPC shows the quantities of different goods that its economy can produce.
- Consumption Possibilities
- The combinations of goods and services that a country's citizens might feasibly consume

Production and Consumption Possibilities and the Benefits of Trade - A country's PPC shows the quantities of different goods that its economy can produce. - Consumption Possibilities - The combinations of goods and services that a country's citizens might feasibly consume

Redistribution		
Distribution of Income		
bot 20\%	1960	2001
next 20\%	4.3	4.3
next 20\%	12.2	9.9
next 20\%	17.8	15.6
top 20\%	24.0	23.0
top 5\%	41.3	47.2 (almost half)
	15.9	20.7^{*}

Summary: Government Role

Government enhances efficiency and equity and makes \& enforces laws.

Whether government should have role should follow cost-benefit criterion, ultimately

Production and Consumption Possibilities and the Benefits of Trade

- In an open economy:
- The society's consumption possibilities are typically greater than its production possibilities.

Brazil's Consumption Possibilities with Trade

Production and Consumption Possibilities and the Benefits of Trade

- Economic Naturalist
- Scenario
U.S. and Fredonia produce software and beef.
-Real wages in Fredonia are lower than in the U.S.
- Fredonia is half as productive as the U.S. in beef production.
- Fredonia is one-tenth as productive in software production.

Production and Consumption Possibilities and the Benefits of Trade

- Economic Naturalist
- Outcome
- Fredonia has a comparative advantage in beef.
\bullet U.S. has a comparative advantage in software.
-The U.S. will trade software for beef and increase its consumption of both.
- Employment in the software industry in the U.S. increases and employment in the beef industry will decrease.

A Supply and Demand Perspective on Trade

- If the price of a good or service in a closed economy is greater than the world price, and that economy opens itself to trade, the economy will tend to become a net importer of that good or service.

The Market for Coffee in Brazil

ES

The Market for Computers in Brazil

ED

A Supply and Demand Perspective on Trade

- If the price of a good or service in a closed economy is lower than the world price, and that economy opens itself for trade, the economy will tend to become a net exporter of that good or service.

A Supply and Demand Perspective on Trade

- Observations of the Mutually Beneficial Gains from Trade
- The markets will ensure that goods will be produced where opportunity cost is lowest.
- The consumption possibilities will be maximized.

A Supply and Demand Perspective on Trade

- Observations of the Mutually Beneficial Gains from Trade
- Countries will profit by exporting the goods and services for which they have a comparative advantage.
- The revenue from the exports are used to import goods and services for which they do not have a comparative advantage.

A Supply and Demand Perspective on Trade

- Winners and Losers from Trade
- Winners
- Consumers of imported goods
- Producers of exported goods
- Losers
- Consumers of exported goods
- Producers of imported goods

A Supply and Demand Perspective on Trade

- Protectionism
- The view that free trade is injurious and should be restricted
- Tariff
- A tax imposed on an imported good
- Quota
- A legal limit on the quantity of a good that may be imported

The Market for Computers after the Imposition of an Import Tariff

The Market for Computers after the Imposition of an Import Tariff

- Tariffs
- Closed economy
- Equilibrium price:
o $1,000+0.5 P_{C}=3,000-0.5 P_{C}$ o $P_{C}=\$ 2,000$
- Equilibrium quantity:
o $1,000+0.5(2,000)=2,000$ computers

A Supply and Demand
 Perspective on Trade

A Supply and Demand Perspective on Trade

- Tariffs
- The market for computers in Brazil:
- Demand $=Q^{D}=3,000-0.5 P_{C}$
- Supply $=Q^{S}=1,000+0.5 P_{C}$

A Supply and Demand Perspective on Trade

- Tariffs
- Open economy
- $P=$ world price $=\$ 1,500$
- $q_{S}=1,000+0.5(1,500)=1,750$
$-q_{D}=3,000-0.5(1,500)=2,250$
- Imports $=2,250-1,750=500$ computers/yr

A Supply and Demand Perspective on Trade

- Tariffs
- Tariff imposed
- Tariff $=\$ 300 /$ computer
- $P=$ world price + tariff $=\$ 1,500+\$ 300=\$ 1,800$
- $q_{s}=1,000+(0.5)(1,800)=1,900$ computers $/ \mathrm{yr}$
- $q_{d}=3,000=(0.5)(1,800)=2,100$
- Imports = 2,100-1,900 = 200
- Tariff revenue $=\$ 300 /$ computer $\times 200$ computers/yr = \$60,000/yr

The Market for Computers after the Imposition of an Import Quota

A Supply and Demand Perspective on Trade

- Effects of an import Quota
- Without quota:
$-q_{S}=1,000+0.5 P_{C}$
- With a quota of 200 computers
$-q_{S}=1,000+0.5 P_{C}+200=1,200+0.5 P_{C}$
$-q_{D}=3,000-0.5 P_{C}$
- Equilibrium $=1,200+0.5 P_{C}=3,000-0.5 P_{C}$
- Equilibrium price $=\$ 1,800$

A Supply and Demand Perspective on Trade

- Other Barriers to Trade
- Red-tape barriers
- Regulations

A Supply and Demand Perspective on Trade

- Quotas \& Tariffs
- Market effects of tariffs are the same.
- Tariffs generate tax revenue.
- Quotas generate revenue for the firms that hold an import license. Or (rents), if they bribe officials to get the license (eg in LDCs)

A Supply and Demand Perspective on Trade

- Effects of an import Quota
- With a quota of 200 computers
- Domestic quantity supplied - $1,000+0.5(\$ 1,800)=1,900$ computers $/ \mathrm{yr}$
- Domestic quantity demanded o 3,000-0.5 (\$1,800) = 2,100 computers/yr
- Imports $=2,100-1,900=200$
- Revenue to the importers

○ $(\$ 1,800-\$ 1,500) \times 200=\$ 60,000$

A Supply and Demand Perspective on Trade

- The Inefficiency of Protectionism
- Trade barriers are inefficient and reduce the size of the economic pie.
- Because trade barriers benefit certain groups, and these groups may be well organized, they may be successful in lobbying for trade barriers.
- The gains from trade could be used to assist groups that have been hurt by trade.

