Economics 104: Game Theory, Spring 2011 Problem Set 7

(0) Take any Nash equilibrium α^* of a zero sum game. Show that: $\max_{\alpha_1 \in \Delta A_1} \min_{\alpha_2 \in \Delta A_2} U_1(\alpha_1, \alpha_2) = \min_{\alpha_2 \in \Delta A_2} \max_{\alpha_1 \in \Delta A_1} U_1(\alpha_1, \alpha_2) = U_1(\alpha^*)$

(O) Questions:

- (1) Exercise 433.1 (Feasible payoff pairs in a Prisoner's Dilemma)
- (2) Exercise 442.1 (Deviations from grim trigger strategy)
- (3) Exercise 443.1 (Delayed motified grim trigger strategies)
- (4) Exercise 443.2 (Different punishment lengths in subgame perfect equilibrium)
- (5) Exercise 445.1 (*Tit-for-tat* as a subgame perfect equilibirum)
- (6) Exercise 452.3 (Minmax payoffs)
- (7) Exercise 454.2 (Nash equilibrium payoffs in infinitely repeated games)
- (8) Exercise 454.3 (Repeated Bertrand duopoly)
- (9) Exercise 459.1 (Costly price changing)
- (10) Exercise 459.2 (Detection lags)
- (11) Exercise 459.3 (Alternating moves)

(OR) Questions:

- (12) Exercise 139.1
- (13) Exercise 143.1 (note that "machine" is another term for automata)
- (14) Exercise 146.1