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Food for thought 



LUPI

Many players simultaneously chose an integer between 1 and 99,999. Who-
ever chooses the lowest unique positive integer (LUPI) wins.

Question What does an equilibrium model of behavior predict in this game?

The field version of LUPI, called Limbo, was introduced by the government-
owned Swedish gambling monopoly Svenska Spel. Despite its complexity,
there is a surprising degree of convergence toward equilibrium.



Games with population uncertainty relax the assumption that the exact
number of players is common knowledge.

In particular, in a Poisson game (Myerson; 1998, 2000) the number of
players  is a random variable that follows a Poisson distribution with
mean  so the probability that  =  is given by

−

!

In the Swedish game the average number of players was  = 53 783 and
number choices were positive integers up to 99 999.



 

 
 

Probability 

0.0002 

Number 
5,500  99,999 



Morra

A two-player game in which each player simultaneously hold either one or
two fingers and each guesses the total number of fingers held up.

If exactly one player guesses correctly, then the other player pays her the
amount of her guess.

Question Model the situation as a strategic game and describe the equilibrium
model of behavior predict in this game.

The game was played in ancient Rome, where it was known as “micatio.”



In Morra there are two players, each of whom has four (relevant) actions,
12, 13, 23, and 24, where  denotes the strategy (Show
, Guess ).

The payoffs in the game are as follows

12 13 23 24
12 0 0 2−2 −3 3 0 0
13 −2 2 0 0 0 0 3−3
23 3−3 0 0 0 0 −4 4
24 0 0 −3 3 4−4 0 0



Maximal game
(sealed-bid second-price auction)

Two bidders, each of whom privately observes a signal  that is inde-
pendent and identically distributed (i.i.d.) from a uniform distribution on
[0 10].

Let max = max{1 2} and assume the ex-post common value to the
bidders is max.

Bidders bid in a sealed-bid second-price auction where the highest bidder
wins, earns the common value max and pays the second highest bid.



A review of the main ideas

We study two (out of four) groups of game theoretic models:

[1] Strategic games — all players simultaneously choose their plan of action
once and for all.

[2] Extensive games (with perfect information) — players choose sequentially
(and fully informed about all previous actions).



A solution (equilibrium) is a systematic description of the outcomes that
may emerge in a family of games. We study two solution concepts:

[1] Nash equilibrium — a steady state of the play of a strategic game (no
player has a profitable deviation given the actions of the other players).

[1] Subgame equilibrium — a steady state of the play of an extensive game
(a Nash equilibrium in every subgame of the extensive game).

=⇒ Every subgame perfect equilibrium is also a Nash equilibrium.
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Maximization and zero-sum games 



Strictly competitive game

A strategic game h{1 2} () (%)i is strictly competitive if for any 
∈  and  ∈  we have  %1  if and only if  %2 .

 
 − −
 − −

If (∗ ∗) is a  of a strictly competitive game then

1(
∗ ∗) = max

∈1
min
∈2

1( ) = min
∈2

max
∈1

1( )



Maxminimization
(optional)

A maxmin mixed strategy of player  is a mixed strategy that solves the
problem

max
∈∆

min
−∈∆−

( −)

A player’s payoff in ∗ ∈ () is at least her maxmin payoff:

(
∗) ≥ ( 

∗
−)

≥ min
−∈∆−

( −)

≥ max
∈∆

min
−∈∆−

( −)

and the last step follows since the above holds for all  ∈ 4().



Two min-max results

[1] max
∈∆

min
−∈∆−

( −) ≤ min
−∈∆−

max
∈∆

( −)

For every 0

min
−

(
0
 −) ≤ (

0
 

0
−)

and thus

min
−

(
0
 −) ≤ max

( 
0
−)

However, since the above holds for every 0 and 
0
− it must hold for

the “best” and “worst” such choices

max


min
−

( −) ≤ min−
max


( −)



[2] In a zero-sum game

max
1∈∆1

min
2∈∆2

1(1 2) = min
2∈∆2

max
1∈∆1

1(1 2) = 1(
∗)

⇐ Since ∗ ∈ ()

1(
∗) = max

1∈∆1
1(1 

∗
2) ≥ min

2∈∆2
max

1∈∆1
1(1 2)

and since 1 = −2 at the same time

1(
∗) = min

2∈∆2
1(

∗
1 2) ≤ max

1∈∆1
min

2∈∆2
1(1 2)

Hence,

max
1∈∆1

min
2∈∆2

1(1 2) ≥ min
2∈∆2

max
1∈∆1

1(1 2)

which together with [1] gives the desired conclusion.



⇒ Let max1 be player 1’s maxmin strategy and min2 be player 2’s
minmax strategy. Then,

max
1∈∆1

min
2∈∆2

1(1 2) = min
2∈∆2

1(
max
1  2)

≤ 1(
max
1  2) ∀2 ∈ ∆2

and

min
2∈∆2

max
1∈∆1

1(1 2) = max
1∈∆1

1(1 
min
2 )

≥ 1(1 
min
2 ) ∀1 ∈ ∆1



But

max
1∈∆1

min
2∈∆2

1(1 2) = min
2∈∆2

max
1∈∆1

1(1 2)

= 1(
max
1  min2 )

implies that

1(1 
min
2 ) ≤ 1(

max
1  min2 ) ≤ 1(

max
1  2)

∀2 ∈ ∆2 and ∀1 ∈ ∆1.

Hence, (max1  min2 ) is an equilibrium.



 

 

 

 

 

 

Evolutionary Game Theory 



Evolutionary stability

A single population of players. Players interact with each other pair-wise
and randomly matched.

Players are assigned modes of behavior (mutation). Utility measures each
player’s ability to survive.

 of players consists of mutants taking action  while others take action
∗.



Evolutionary stable strategy ()

Consider a two-player payoff symmetric game

 = h{1 2} () (1 2)i

where

1(1 2) = 2(2 1)

(players exchanging 1 and 2).



∗ ∈  is  if and only if for any  ∈ ,  6= ∗ and   0 sufficiently
small

(1− )(∗ ∗) + (∗ )  (1− )( ∗) + ( )

which is satisfied if and only if for any  6= ∗ either

(∗ ∗)  ( ∗)

or

(∗ ∗) = ( ∗) and (∗ )  ( )



Three results on 

[1] If ∗ is an  then (∗ ∗) is a .

Suppose not. Then, there exists a strategy  ∈  such that

( ∗)  (∗ ∗)

But, for  small enough

(1− )(∗ ∗) + (∗ )  (1− )( ∗) + ( )

and thus ∗ is not an .



[2] If (∗ ∗) is a strict  ((∗ ∗)  ( ∗) for all  ∈ ) then ∗ is
an .

Suppose ∗ is not an . Then either

(∗ ∗) ≤ ( ∗)

or

(∗ ∗) = ( ∗) and (∗ ) ≤ ( )

so (∗ ∗) can be a  but not a strict .



[3] The two-player two-action game

 0

   
0    

has a strategy which is .

If    or    then ( ) or (0 0) are strict , and thus  or
0 are .

If    and    then there is a unique symmetric mixed strategy
 (∗ ∗) where

∗() = ( − )( −  +  − )

and (∗ )  () for any  6= ∗.




