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Bayesian equilibrium

A Bayesian game consists of a finite set  of players, a finite set Ω of
decision-relevant states (characteristics of players), and for each player
 ∈ 

— a set  of actions

— a finite set  of types and a signal function  : Ω→ 

— a probability measure  on Ω (prior belief) for which (
−1
 ())  0

for all  ∈ .

— a preference relation &on the set of probability measure over ×Ω.



∗ ∈ ×() is a Bayes-Nash equilibrium of a Bayesian game

hΩ () () () () (&)i

if it is a  in which the set of players is the set of all pairs ( ) for all
 ∈  and  ∈ , and for each player ( )

∗ &() 
∗ ⇔ (

∗ ) & (
∗ )

where (∗ ) is a lottery over×Ω that assigns a probability ()

(
−1
 ())

to

(∗( ()))∈ if  ∈ (
−1
 ())

and zero otherwise.



Example:  with one-side imperfect information

 =   = 
 

 2 1 0 0
 0 0 1 2

 
 2 0 0 2
 0 1 1 0



Then, the expected payoffs of player 1 are given by

() () () ( )
 2 2 2(1− ) 0
 0  1−  1

For any belief  ∈ (0 1), ( ()) is an equilibrium ( is optimal
for player 1 given the actions of the two types of player 2 and his
beliefs).



Harsanyi (1973)

Consider a game  = h () ()i and let (())∈∈ be a col-
lection of random variables with support [−1 1] where

—  = (())∈ is private information and has well-behaved distribu-
tion function, and  = ()∈ are independent.

— The payoff of each player  at the outcome  and state  is () +
(). This defines a Bayesian game ().

For almost any game  and any collection ∗, almost any  ∈ () is
approachable — associated with the limit as  → 0 of a sequence of pure
strategy equilibria of the Bayesian game (∗) (and visa versa).



A model of knowledge (OR 5.1-5.2)

Knowledge is formalized such that a player cannot know something that is
false (by contrast to beliefs).

An event is common knowledge if

— all players know it,

— all players know that all players know it,

— and so on ad infinitum.



Setup

— Ω - a finite set of states of the world.

—  ⊆ Ω - an event.

— P - information function.

A partition of Ω, i.e., a collection of non-empty disjoint subsets of Ω whose
union is Ω. The information that a player is assumed to have about the
true state.



Example

Ω = {1 2 3 4 5 6 7 8 9}

The information of players  and  are given by

P = {{1 2 3} {4 5} {6 7 8} {9}}

and

P = {{1 2} {3 4 5} {6} {7 8 9}}



Suppose that  = 2 and consider the event

 = {1 2 3 4}

— Does  know ?

— Does  know ?

— Does  know that  knows ?

— Does  know that  knows ?



Given P and P, when  = 2 the event

 = {1 2 3 4 5 6}

is common knowledge.

—  knows ,

—  knows ,

—  knows  knows ,

—  knows  knows , and so on indefinitely.



Some definitions

— A partition P refines another partition P if every member of P is a
subset of a member P.

— The meet of two partitions P and P, denoted by P ∧ P, is a
partition of Ω such that P and P are (the only) refinements of
P ∧ P.



Example (continue)

— Given P and P above, the meet P ∧ P is the partition

P ∧ P = {{1 2 3 4 5} {6 7 8 9}}

— This is the unique partition that satisfies the conditions above.



Aumann’s common knowledge

Let  ∈ Ω be the true state and fix some event  ⊆ Ω. Then  is
common knowledge (given ) if and only if

(P ∧ P)() ⊆ 

( is common knowledge if it contains the member of P ∧ P that
contains ).

In the above example,

(P ∧ P)() = {1 2 3 4 5} ⊆  = {1 2 3 4 5 6}

which implies that event  is common knowledge at  = 2. The idea of
the proof can be seen in Figure 1 and Figure 2.



Aumann’s agreement theorem (OR 5.3)

Suppose  and  have a common (prior) probability measure  on the set
of states Ω (the common prior assumption).

The posterior probabilities of event  ⊆ Ω when the state is  ∈ Ω for
 =   is given by

[|P()] =
[ ∩ P()]

[P()]


Aumann’s theorem: Fix some event  ⊆ Ω and a state  ∈ Ω. If
[|P()] and [|P()] are common knowledge, then they must be
equal. Hence, players cannot agree to disagree!



Proof

— Let (P∧P)() be member of the meet of P and P that contains
. Since ’s posterior is common knowledge, there is a  such that

(|) = 

for any  ∈ P ⊆ (P ∧ P)().



Proof (continue)

— Since ’s posterior is common knowledge, there is a  such that

(|) = 

for any  ∈ P ⊆ (P ∧ P)().

— Hence,

[|(P ∧ P)()] =  and [|(P ∧ P)()] = 

which completes the proof.



A knowledge function

The event that a player knows an event  ⊆ Ω is given by

 = { ∈ Ω : P () ⊆ }

where  : 2Ω → 2Ω (the set of all subsets of Ω to itself).

Properties of 

 For any  ⊆ Ω,  ⊆ .

 For any  ⊆ Ω, if  ⊆  , then  ⊆  .

 For any  ⊆ Ω, () ⊆ ().



Why?

 If  ∈ , then P () ⊆ . But  ∈ P (), so  ∈ .

 If  ∈ , then P () ⊆ . But then P () ⊆  so  ∈  .

 If  ∈ (), then P () * .

Suppose there exists some 0 ∈ P ()∩ . Then, 0 ∈ P ()
implies P

¡
0
¢
= P () * , contradicting 0 ∈ . Thus, P ()∩

 = ∅, which says that P () ⊆ (), or  ∈  ().



If a (knowledge) function  : 2Ω → 2Ω satisfies ()-() then there is a
partition P of Ω such that

 = { ∈ Ω : P () ⊆ } 

proof (sketch)

— The following properties of  must be shown:

Ω = Ω,  ⊆ , and  ( ∩  ) =  ∩  .

— Then, the following must be shown:

 ∈  if and only if P () ⊆ , and if  ∈ P () and 0 ∈
P (), then P

¡
0
¢
= P ().



Knowledge and equilibrium (an example)

States

— Ω = Ω1 × Ω2 where Ω = [ ] ⊆ R, and the generic element is
 = (1 2).

Signals

— () = , ∀ ∈ Ω,  = 1 2 and P = P1 × P2 and P has no
atoms.



Actions and payoffs

( ) =

(
0 if  = 0
(1 2) if  = 1



— where () is a continuous and increasing function and actions are
not weakly dominated.

Social beliefs

— An event {}×, where  ∈  ⊆ Ω. It is common knowledge
at date  that

 ∈ () = 1()×2()



The optimal decision

— Agent ’s expected payoff to action 1

() = [(1 2)|{} ×}
is increasing in . The optimal strategy is the cutoff strategy

  ∗ () =⇒ ()  0

  ∗ () =⇒ ()  0

where ∗ is the history-contingent cutoff.

— The cutoff rule implies that the set  is an interval and that

+1() ⊆ () ⊆ [ ]



Claim: Agents must eventually choose the same action.

— By contradiction.

Suppose that for some  and every  such that () = 

[(1 2)|{1} ×2]  0

and

[(1 2)|1 × {2}]  0



— The same action must be optimal for every element in the information
set

[(1 2)|{1} ×2] ≥ 0

and

[(1 2)|1 × {2}] ≤ 0

where 1 = inf 1() and 2 = sup2().

Then

(1 2) ≥ 0 and (1 2) ≤ 0

If  for  = 1 2 is not a singleton, a contradiction.  is a singleton
and () = 0 if  ∈  but the set { : () = 0} has probability
zero.



An illustration

— () = , ˜ [−1 1], and (1 ) = 1 + 2.

— If

−− 1


 1  −
− 2


and

2 
− 1


then 1 = 0 and 2 = 1 for   , and 1 = 2 = 1 for  ≥ .
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Fi 2Figure 2a
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Fi 2bFigure 2b
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Does a know that b knows that a knows E? Here the answer is no! 


