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Leftovers



Bayesian equilibrium

A Bayesian game consists of a finite set N of players, a finite set 2 of

decision-relevant states (characteristics of players), and for each player
1€ N

— a set A; of actions
— a finite set T} of types and a signal function 7, : Q — T;

— a probability measure p; on Q (prior belief) for which pi(Ti_l(t?;)) > 0
for all t; € T;.

— a preference relation 2;on the set of probability measure over A x €.



a* € X(z’,ti)Az’ is a Bayes-Nash equilibrium of a Bayesian game

<N7 Q, (Az)7 (Tz)7 (7-2')7 (pi)v (zz»

if it is a NE in which the set of players is the set of all pairs (i, ¢;) for all
¢ € N and t; € T;, and for each player (2, t;)

a” Zit) b & Li(a®, t;) Zi Li(b", 1)

pi(w)
pi(; H(t:))

where L;(a*, t;) is a lottery over A XS that assigns a probability

to

(a*(j, 7§(w)))jeNw if w € pi(T; H(t:))

and zero otherwise.
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Example: BoS with one-side imperfect information




Then, the expected payoffs of player 1 are given by

(B,B) (B,S) (5B) (5,5)
B 2 2p 2(1 — p) 0
S 0 P 1—p 1

For any belief p € (0,1), (B, (B, S)) is an equilibrium (B is optimal
for player 1 given the actions of the two types of player 2 and his
beliefs).



Harsanyi (1973)

Consider a game G = (N, (4;), (u;)) and let (e;(a))icN,aca be a col-
lection of random variables with support [—1, 1] where

— ¢; = (€;(a))qca is private information and has well-behaved distribu-
tion function, and € = (¢;);c v are independent.

— The payoff of each player ¢ at the outcome a and state € is u;(a) +
e;(a). This defines a Bayesian game G(¢).

For almost any game G and any collection €*, almost any o € NE(G) is
approachable — associated with the limit as v — 0 of a sequence of pure
strategy equilibria of the Bayesian game G(~ye*) (and visa versa).



A model of knowledge (OR 5.1-5.2)

Knowledge is formalized such that a player cannot know something that is
false (by contrast to beliefs).

An event is common knowledge if

— all players know it,

— all players know that all players know it,

— and so on ad infinitum.



Setup

— - a finite set of states of the world.
— F C Q - an event.
— P - information function.
A partition of €2, i.e., a collection of non-empty disjoint subsets of £2 whose

union is £2. The information that a player is assumed to have about the
true state.



Example

Q={1,2,3,4,5,6,7,8,9}

The information of players a and b are given by

P = {{1,2,3},{4,5},{6,7,8},{9}}
and

PP = {{1,2},{3,4,5},{6},{7,8,9}}.



Suppose that w = 2 and consider the event

E={1,2,3,4}
— Does a know E7?
— Does b know E7?
— Does a know that b knows E7?

— Does b know that a knows E7?



Given P® and P° when w = 2 the event

G ={1,2,3,4,5,6}

is common knowledge.
— a knows G,

— b knows G,

— a knows b knows @,

— b knows a knows G, and so on indefinitely.



Some definitions

— A partition P* refines another partition P if every member of P is a
subset of a member PJ.

— The meet of two partitions P’ and P7, denoted by P A PJ, is a
partition of Q such that P* and PJ are (the only) refinements of
PLAPI



Example (continue)

— Given P2 and PY above, the meet P% A PP is the partition

Pa /\ Pb p— {{1, 2, 3,4, 5}, {67 77 87 9}}

— This is the unique partition that satisfies the conditions above.



Aumann’s common knowledge

Let w € €2 be the true state and fix some event £ C €. Then E is

common knowledge (given w) if and only if

(P AP (w) C E

(E is common knowledge if it contains the member of P® A PP that
contains w).

In the above example,
(P* AP")(w) = {1,2,3,4,5} C G = {1,2,3,4,5,6}

which implies that event (G is common knowledge at w = 2. The idea of
the proof can be seen in Figure 1 and Figure 2.



Aumann’s agreement theorem (OR 5.3)

Suppose a and b have a common (prior) probability measure p on the set
of states €2 (the common prior assumption).

The posterior probabilities of event & C 2 when the state is w € 2 for
1 = a, b is given by
plE N P'(w)]

p[PY(w)]

plE|PY(w)] =

Aumann’s theorem: Fix some event £ C €2 and a state w € 2. |If
p[E|P%w)] and p[E|P?(w)] are common knowledge, then they must be
equal. Hence, players cannot agree to disagree!



Proof

— Let (P2 APP)(w) be member of the meet of P and PP that contains
w. Since a's posterior is common knowledge, there is a g such that

p(ElT) = q
for any m € P? C (P A PP)(w).



Proof (continue)

— Since a's posterior is common knowledge, there is a r such that

p(Elp) =7
for any p € PP C (P A PY)(w).

— Hence,
pE|(P® A PP)(w)] = ¢ and p[E|(P* A PP)(w)] = r

which completes the proof.



A knowledge function

The event that a player knows an event EE C € is given by
KE={weQ:P(w)CFE}

where K : 282 — 2% (the set of all subsets of Q to itself).

Properties of K FE
v Forany E C Q, KE C E.
11t Forany E,F C Q,if E C F,then KE C KF.

iii Forany E C Q, (KE)° C K(KE)®.



Why?

i Ifwe KE, then P(w) CE. Butw € P(w),sow € E.

it If w e KE, then P (w) C E. But then P(w) C Fsow € KF.
it If w € (KE)S, then P (w) € E.

Suppose there exists some w’ € P(w)N KE. Then, o' € P(w)
implies P (w') = P (w) € E, contradicting w’ € KE. Thus, P (w) N
KFE = (), which says that P (w) C (KE)¢, or w € K (KE)°.



If a (knowledge) function K : 28 — 2% satisfies (4)-(i4¢) then there is a
partition P of €2 such that

KE={weQ:P(w)CE}.

proof (sketch)

— The following properties of K must be shown:

KQ=Q, KECKKE, and K(ENF)= KEN KF.

— Then, the following must be shown:

w € KE if and only if P(w) C E, and if w € P(w) and W' €
P (w), then P (') = P (w).



Knowledge and equilibrium (an example)

States

— Q = Q1 X Q5 where Q; = [a,b] C R, and the generic element is

w = (w1,w2).

Signals

- o0j(w) = w;, Yw € Q2,4 =1,2and P =P; x Py and P; has no
atoms.



Actions and payoffs

(a,w) = 0 ifa=20
e, ) = U(wi,wp) ifa=1"

— where U(w) is a continuous and increasing function and actions are
not weakly dominated.

Social beliefs

— An event {w;} X Bj;, where w; € Bj; C Q;. It is common knowledge
at date ¢ that

w € Bi(w) = Bit(w) X Byt(w).



The optimal decision

— Agent ¢'s expected payoff to action 1

pi(wi, Bjt) = ElU (w1, w2)[{wi} X Bjt}
Is increasing in w;. The optimal strategy is the cutoff strategy

wi > w;i(Bjt) = i(w;, Bji) >0,
wi < w;(Bjt) = @i(w;, Bj) < 0.

where w is the history-contingent cutoff.

— The cutoff rule implies that the set Bj; is an interval and that

Bjty1(w) C Bji(w) C [a, D]



Claim: Agents must eventually choose the same action.

— By contradiction.

Suppose that for some B and every w such that B(w) = B

E[U(w1,w2){w1} x By] >0
and

E[U(w1,w2)|B1 x {wz}] < 0.



— The same action must be optimal for every element in the information
set

ElU(w1,w2){w1} x Bo] > 0
and
ElU(w1,w2)|B1 X {w2}] <0,
where wi = inf B1(w) and wy = sup B(w).
Then
U(wqy,ws) > 0 and U(w;y,w2) < 0.

If B; for : = 1,2 is not a singleton, a contradiction. B is a singleton
and U(w) = 0 if w € B but the set {w : U(w) = 0} has probability
Zero.



An illustration

- 0i(w) = w;, w;"U[-1,1], and U(1,w) = w1 + wo.

- If

t—1 t—2
———>w;>———
t t

and
>t—1
w —_—
2 ¢

then 15 =0 and xps = 1 for s < t, and x13 = xos = 1 for s > t.
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Figure 2a
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Figure 2b
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Does a know that b knows that a knows E? Here the answer is no!



