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Randomization

Recall that a strategic game is a triple h () (%)i where

—  is a finite set of players, and for each player  ∈ 

— a non-empty set  of actions

— a preference relation %on the set  = ×∈ of possible outcomes.

or a triple h () ()i when % can be represented by a utility function
 : → R.



Suppose that,

— each player  can randomize among all her strategies so choices are not
deterministic, and

— player ’s preferences over lotteries on  can be represented by 

expected utility function.

Then, we need to add theses specifications to the primitives of the model
of strategic game h () (%)i.



A mixed strategy of player  is  ∈ ∆() where ∆() is the set of all
probability distributions over .

— A profile ()∈ of mixed strategies induces a probability distribution
over the set .

— Assuming independence, the probability of an action profile (outcome)
 is then Q

∈ ()



A  utility function

 : ×∈∆()→ R

represents player ’s preferences over the set of lotteries over .

The mixed extension of a the strategic game h () ()i is the strategic
game

h (∆()) ()i 



Preferences toward risk

The standard model of decisions under risk (known probabilities) is based
on von Neumann and Morgenstern Expected Utility Theory.

Consider a set of lotteries, or gambles, (outcomes and probabilities). A
fundamental axiom about preferences toward risk is independence:

For any lotteries    and 0    1

 Â  implies + (1− ) Â  + (1− )



Expected Utility Theory has some very convenient properties for analyzing
choice under uncertainty.

To clarify, we will consider the utility that a consumer gets from her or his
income.

More precisely, from the consumption bundle that the consumer’s income
can buy.



Behavioral economics

Allais (1953) I
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Allais (1953) II
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Two results on mixed strategy Nash equilibrium

Let = h () ()i be a strategic game and0 = h (∆()) ()i
be its mixed extension.

[1] If  ∈ () then  ∈ (0).

[2]  ∈ (0) if and only if

(− ) ≥ (− 
0
)

for all 0 and all ()  0.



[1] Proof: If  ∈ () then

(− ) ≥ (− 
0
) ∀ ∈  and ∀0 ∈ 

Then, by the linearity of  in 

(− ) ≥ (− ) ∀ ∈  and ∀ ∈ ∆()

and thus  ∈ (0).



[2] Proof: Let  ∈ (0)

Suppose that ∃ ∈  such that ()  0 and

(− 
0
) ≥ (− ) for some 

0
 6= 

Then, player  can increase her payoff by transferring probability from 
to 0 so  is not a .

This implies that (− ) = (− 0) for all  
0
 in the support

of .



Evolutionary stability

A single population of players. Players interact with each other pair-wise
and randomly matched.

Players are assigned modes of behavior (mutation). Utility measures each
player’s ability to survive.

 of players consists of mutants taking action  while others take action
∗.



Evolutionary stable strategy ()

Consider a payoff symmetric game = h{1 2} () ()iwhere 1() =
2(

0) when 0 is obtained from  by exchanging 1 and 2.

∗ ∈  is   for any  ∈ ,  6= ∗ and   0 sufficiently small

(1− )(∗ ∗) + (∗ )  (1− )( ∗) + ( )

which is satisfied  for any  6= ∗ either

(∗ ∗)  ( ∗)

or

(∗ ∗) = ( ∗) and (∗ )  ( )



Three results on 

[1] If ∗ is an  then (∗ ∗) is a .

Suppose not. Then, there exists a strategy  ∈  such that

( ∗)  (∗ ∗)

But, for  small enough

(1− )(∗ ∗) + (∗ )  (1− )( ∗) + ( )

and thus ∗ is not an .



[2] If (∗ ∗) is a strict  ((∗ ∗)  ( ∗) for all  ∈ ) then ∗ is
an .

Suppose ∗ is not an . Then either

(∗ ∗) ≤ ( ∗)

or

(∗ ∗) = ( ∗) and (∗ ) ≤ ( )

so (∗ ∗) can be a  but not a strict .



[3] A 2 × 2 game  = h{1 2} () ()i where () 6= (
0) for any

 0 has a mixed strategy which is 

 0

   
0    

If    or    then ( ) or (0 0) are strict , and thus  or
0 are .

If    and    then there is a unique symmetric mixed strategy
 (∗ ∗) where

∗() = ( − )( −  +  − )

and (∗ )  () for any  6= ∗.



Strictly competitive games

A strategic game h{1 2} () (%)i is strictly competitive if for any 
∈  and  ∈  we have  %1  if and only if  %2 .

 
 − −
 − −



Maxminimization

A maxmin mixed strategy of player  is a mixed strategy that solves the
problem

max
∈∆

min
−∈∆−

( −)

A player’s payoff in ∗ ∈ () is at least her maxmin payoff:

(
∗) ≥ ( 

∗
−) ≥ min

−∈∆−
( −)

and thus

(
∗) ≥ max

∈∆

min
−∈∆−

( −)

since the above holds for all  ∈ 4().



Two min-max results

[1] max
∈∆

min
−∈∆−

( −) ≤ min
−∈∆−

max
∈∆

( −)

For every 0

min
−

(
0
 −) ≤ (

0
 

0
−)

and thus

min
−

(
0
 −) ≤ max

( 
0
−)

However, since the above holds for every 0 and 
0
− it must hold for

the “best” and “worst” such choices

max


min
−

( −) ≤ min−
max


( −)



[2] In a zero-sum game

max
1∈∆1

min
2∈∆2

1(1 2) = min
2∈∆2

max
1∈∆1

1(1 2) = 1(
∗)

⇐ Since ∗ ∈ ()

1(
∗) = max

1∈∆1
1(1 

∗
2) ≥ min

2∈∆2
max

1∈∆1
1(1 2)

and since 1 = −2 at the same time

1(
∗) = min

2∈∆2
1(

∗
1 2) ≤ max

1∈∆1
min

2∈∆2
1(1 2)

Hence,

max
1∈∆1

min
2∈∆2

1(1 2) ≥ min
2∈∆2

max
1∈∆1

1(1 2)

which together with [1] gives the desired conclusion.



⇒ Let max1 be player 1’s maxmin strategy and min2 be player 2’s
minmax strategy. Then,

max
1∈∆1

min
2∈∆2

1(1 2) = min
2∈∆2

1(
max
1  2)

≤ 1(
max
1  2) ∀2 ∈ ∆2

and

min
2∈∆2

max
1∈∆1

1(1 2) = max
1∈∆1

1(1 
min
2 )

≥ 1(1 
min
2 ) ∀1 ∈ ∆1



But

max
1∈∆1

min
2∈∆2

1(1 2) = min
2∈∆2

max
1∈∆1

1(1 2)

= 1(
max
1  min2 )

implies that

1(1 
min
2 ) ≤ 1(

max
1  min2 ) ≤ 1(

max
1  2)

∀2 ∈ ∆2 and ∀1 ∈ ∆1.

Hence, (max1  min2 ) is an equilibrium.



Interchangeability

If  and 0 are in a zero-sum game, then so are (1 02) and (
0
1 2).

— Since  and 0 are equilibria

1(1 2) ≥ 1(
0
1 2) and 2(

0
1 

0
2) ≥ 2(

0
1 2)

and because 1 = −2
1(

0
1 

0
2) ≤ 1(

0
1 2)

Therefore,

1(1 2) ≥ 1(
0
1 2) ≥ 1(

0
1 

0
2) (1)

and similar analysis gives that

1(1 2) ≤ 1(1 
0
2) ≤ 1(

0
1 

0
2) (2)



— (1) and (2) yield

1(1 2) = 1(
0
1 2) = 1(1 

0
2) = 1(

0
1 

0
2)

— Since  is an equilibrium

2(1 
00
2) ≤ 2(1 2) = 2(1 

0
2)

for any 002 ∈ ∆2, and since 0 is an equilibrium

1(
00
1 

0
2) ≤ 1(

0
1 

0
2) = 1(1 

0
2)

for any 001 ∈ ∆1. Therefore, (1 02) is an equilibrium and similarly
also (1 02).




