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Randomization

Recall that a strategic game is a triple (IV, (A;), (72;)) where
— N is a finite set of players, and for each player : € N
— a non-empty set A; of actions

— a preference relation ~—;on the set A = X jeNAj of possible outcomes.

or a triple (NN, (A4;), (u;)) when ~—; can be represented by a utility function



Suppose that,

— each player 7 can randomize among all her strategies so choices are not

deterministic, and
— player 7's preferences over lotteries on A can be represented by vIN M

expected utility function.

Then, we need to add theses specifications to the primitives of the model
of strategic game (N, (A4;), (:2;)).



A mixed strategy of player i is o; € A(A;) where A(A;) is the set of all
probability distributions over A;.

— A profile (;);c N of mixed strategies induces a probability distribution
over the set A.

— Assuming independence, the probability of an action profile (outcome)
a is then

[Lien ai(a;).



A vIN M utility function

represents player ¢'s preferences over the set of lotteries over A.

The mixed extension of a the strategic game (N, (A4;), (u;)) is the strategic
game



Preferences toward risk

The standard model of decisions under risk (known probabilities) is based
on von Neumann and Morgenstern Expected Utility Theory.

Consider a set of lotteries, or gambles, (outcomes and probabilities). A
fundamental axiom about preferences toward risk is independence:

For any lotteries z,y,z and 0 < aa < 1

x >y implies ar + (1 —a)z > ay + (1 — a)=z.



Expected Utility Theory has some very convenient properties for analyzing

choice under uncertainty.

To clarify, we will consider the utility that a consumer gets from her or his

Income.

More precisely, from the consumption bundle that the consumer’s income

can buy.



Behavioral economics

Allais (1953) |

— Choose between the two gambles:

$25, 000
33

/

A= % ¢24000 B:= -1 $24,000

N

.01
$0



Allais (1953) 11

— Choose between the two gambles:

$25, 000 $24, 000
33 .34
/ /
C = D =
N, N\,
.67 .66



Two results on mixed strategy Nash equilibrium

Let G = (N, (A4;), (u;)) be a strategic game and G’ = (N, (A(A4;)), (U;))
be its mixed extension.

[1] If a € NE(G) then a € NE(G').

2] « € NE(G') if and only if
Ui(a—i,a;) 2 U(a—, afi)

for all a} and all a;(a;) > 0.



[1] Proof: If a € NE(G) then

ui(a_;i, a;) > u;(a_;,a;) Vi € N and Va, € A;.

Then, by the linearity of U; in ¢
Ui(a_;,a;) > Ui(a_;, ;) Vi € N and Va,; € A(A;)
and thus a € NE(G').



[2] Proof: Let « € NE(G')

Suppose that Ja; € A; such that «;(a;) > 0 and

U(a_;,al) > Ui(a_;, a;) for some a; # aj;.

Then, player ¢ can increase her payoff by transferring probability from a;

to afi soaisnota NE.

This implies that U;(a_;, a;) = Us(a—, al) for all a4, al in the support

of .



Evolutionary stability

A single population of players. Players interact with each other pair-wise
and randomly matched.

Players are assigned modes of behavior (mutation). Utility measures each
player’s ability to survive.

e of players consists of mutants taking action a while others take action

a®.



Evolutionary stable strategy (ESS)

Consider a payoff symmetric game G = ({1, 2}, (A, A), (u;))where u1(a) =
us(a’) when a’ is obtained from a by exchanging a7 and as.

a* € Ais ESS iff forany a € A, a # a™ and € > 0 sufficiently small
(1—28)u(a”,a™) +cu(a™, a) > (1 —&)u(a,a™) + cu(a, a)
which is satisfied ¢ f f for any a # a* either
u(a™, a™) > u(a,a™)
or

u(a®,a*) = u(a,a™) and u(a*,a) > u(a, a)



Three results on £SS

[1] If a*® is an ESS then (a*,a*) isa NE.

Suppose not. Then, there exists a strategy a € A such that
u(a,a”) > u(a®, a”).
But, for £ small enough
(1 —28)u(a”,a™) +cu(a™, a) < (1 —¢&)u(a,a™) + cu(a, a)

and thus a™ is not an ESS.



2] If (a*,a*) is a strict NE (u(a*,a*) > u(a,a*) for all a € A) then a* is
an ESS.

Suppose a* is not an E£SS. Then either
u(a*,a™) < u(a,a™)
or
u(a®,a*) = u(a,a™) and u(a®, a) < u(a,a).

so (a*,a*) can be a NE but not a strict NE.



[3] A2 x2game G = ({1,2}, (A, A), (u;)) where u;(a) # u;(a’) for any
a,a’ has a mixed strategy which is £SS

a a’
a | w,w|x,y

a |y | zz2

If w > y or z > x then (a,a) or (a’,a’) are strict NE, and thus a or
a’ are ESS.

If w < y and z < x then there is a unique symmetric mixed strategy
NFE (o, a*) where
a(a) =(z—x)/(w—y+2z—x)

and u(a*, a) > u(a, ) for any a # a*.



Strictly competitive games

A strategic game ({1,2}, (A4;), (7Z;)) is strictly competitive if for any a
€ Aand b € A we have a 721 b if and only if b =5 a.
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Maxminimization

A max min mixed strategy of player ¢ is a mixed strategy that solves the
problem

max min U;(a;, o
a;€EAA; a_jEAA_; Z( v Z)

A player's payoff in ™ € NE(G) is at least her max min payoff:

Ui(a”) 2 Ui, aZ) = min -~ Uia, o)
—1 —1

and thus

U:(a™) > max min U (o;. o
il )_aiEAAZ-a_iEAA_i i, o)

since the above holds for all o; € A(A;).



Two min-max results

1| max min Uil(o;, ;) < min max U;(o,;., oo
[1 ;CAA; o EAA_ i, i) ~ a_CAA_; a;EAA; i, i)

For every o/

min Uy(a, ) < Uj(af, o)
—1

and thus

min Ui(oz;;, oz_i) < max Ui(aia 04/—7;)
a_; o7

However, since the above holds for every oz;; and o/_z- it must hold for
the “best” and “worst” such choices

max min Uy(a;, a—;) < minmaxUs(a;, a—;).



[2] In a zero-sum game

max  min Uj(og,a2) = min max Uj(aq,an) = Ur(a®
L ST 1(a1, a) NN 1(a1, ap) = Ur(a™)

< Since a* € NE(G)

Ul(a*): max Ul(ozl,oz;)z min max Ul(ozl,ozz)

a1€AA arEAAr a1 €ANA,
and since U7 = —U»> at the same time
Ui(a™) = min Ug(af,an) < max min U(aq, o
(e €A A 1(ag, 2)_a1€AA1a2€AA2 (a1, a2)

Hence,

max min Ui(a1,a2) >  min max Uj(oq, «
WX om0, Uiler,a2) 2 min | max, Ui(ag, az)

which together with [1] gives the desired conclusion.



= Let of"® be player 1's maxmin strategy and ozrzni” be player 2's
min max strategy. Then,

max  min Uj(og, o min  U1(a™®. o
a1 €EAA] apeAA) 1( 1 2) asEAA, 1( 1 > 2)

Ul(ar]T]axv 042) \V/OQ = AAQ

IA

and

min  max Uj(ag, o max  Uj(aq,a5""
OQEAAzquAAl 1( 1 2) OélEAAl ].( 1, &9 )

Ur(a1,a3") Vag € AA;

'V



But

max min Uq(o1, « = min max U1(aq. o
S o min, Uiler,a2) = min | max, Ui(ag, a2)

— Ul(amax 2 |n)
implies that
Up(az,a8"™) < Up(a®, o8"") < Up (o', as)

Voo € AAs and Vo € AA;.

max

Hence, (a'®, af"M) is an equilibrium.



Interchangeability

If & and o’ are NE in a zero-sum game, then so are (o, o) and (o, ap).

— Since a and & are equilibria
U1(aq, ap) > Ui(ad, an) and Us(af, ab) > Us(af, an),
and because U; = —U>
Ur(ah, o) < Us(af, a2).
Therefore,
Ui, @) > Ur(ed, a) > Ur(eq, o). (1)
and similar analysis gives that

Ui(aq, ap) < Ul(ozl,o/z) < Ul(o/l,ozé). (2)



— (1) and (2) yield

Ui(aq, ag) = Ur(a], ap) = Ur(a1, ab) = Ui(ag, as)

— Since « is an equilibrium
Up(a, a3) < Us(ay, ap) = Usp(ag, o)
for any a5 € A Ay, and since &' is an equilibrium
Ul(alllvo‘é) < Ul(alla O/2) — Ul(alvo‘,Q)

for any of € AAj. Therefore, (a1, %) is an equilibrium and similarly
also (aq, ab).





