Microeconomics III

Subgame perfect equilibrium (Apr 29, 2012)

School of Economics
The Interdisciplinary Center (IDC), Herzliya

Perfect information

A <u>finite</u> extensive game with <u>perfect information</u> $\Gamma = \langle N, H, P, (\succeq_i) \rangle$ consists of

- A set N of players.
- A set H of sequences (histories) where $\varnothing \in H$ and for any L < K

$$(a^k)_{k=1}^K \in H \Longrightarrow (a^k)_{k=1}^L \in H.$$

- A player function $P: H \setminus Z \to N$ where $h \in Z \subseteq H$ if $(h, a) \notin H$.
- A preference relation \succeq_i on Z for each player $i \in N$.

Strategies, outcomes and Nash equilibrium

A strategy

$$s_i: h \to A(h)$$
 for every $h \in H \setminus Z$ such that $P(h) = i$.

A Nash equilibrium of $\Gamma = \langle N, H, P, (\succsim_i) \rangle$ is a strategy profile $(s_i^*)_{i \in N}$ such that for any $i \in N$

$$O(s^*) \succsim_i O(s_i, s_{-i}^*) \ \forall s_i$$

where $O(s) = (a^1, ..., a^K) \in Z$ such that

$$s_{P(a^1,...,a^k)}(a^1,...,a^k) = a^{k+1}$$

for any $0 \le k < K$ (an outcome).

The (reduced) strategic form

 $G = \langle N, (S_i), (\succsim_i') \rangle$ is the <u>strategic form</u> of $\Gamma = \langle N, H, P, (\succsim_i) \rangle$ if for each $i \in N$, S_i is player i's strategy set in Γ and \succsim_i' is defined by

$$s \succsim_i' s' \Leftrightarrow O(s) \succsim_i' O(s') \forall s, s' \in \times_{i \in N} S_i$$

 $G = \langle N, (S_i'), (\succeq_i'') \rangle$ is the <u>reduced strategic form</u> of $\Gamma = \langle N, H, P, (\succeq_i) \rangle$ if for each $i \in N$, S_i' contains one member of *equivalent* strategies in S_i , that is,

 $s_i, s_i' \in S_i$ are equivalent if $(s_i, s_{-i}) \sim_j' (s_i', s_{-i}) \forall j \in N$, and \succsim_i'' defined over $\times_{j \in N} S_j'$ and induced by \succsim_i' .

Subgames and subgame perfection

A subgame of Γ that follows the history h is the game $\Gamma(h)$

$$\langle N, H |_h, P |_h, (\succsim_i |_h) \rangle$$

where for each $h' \in H_h$

$$(h,h') \in H, P|_h(h') = P(h,h') \text{ and } h' \succsim_i |_h h'' \Leftrightarrow (h,h') \succsim_i (h,h'').$$

 $s^* \in \times_{i \in N} S_i$ is a subgame perfect equilibrium (SPE) of Γ if

$$O_h(s_i^*|_h, s_{-i}^*|_h) \succsim_i |_h O_h(s_i|_h, s_{-i}^*|_h)$$

for each $i \in N$ and $h \in H \setminus Z$ for which P(h) = i and for any $s_i \mid_h$.

Thus, the equilibrium of the full game must induce on equilibrium on every subgame.

Backward induction and Kuhn's theorems

Let Γ be a <u>finite</u> extensive game with perfect information

 $-\Gamma$ has a SPE (Kuhn's theorem).

The proof is by backward induction (Zermelo, 1912) which is also an algorithm for calculating the set of SPE.

- Γ has a <u>unique</u> SPE if there is no $i \in N$ such that $z \sim_i z'$ for any $z, z' \in Z$.
- Γ is dominance solvable if $z \sim_i z'$ $\exists i \in N$ then $z \sim_j z' \forall j \in N$ (but elimination of weakly dominated strategies in G may eliminate the SPE in Γ).

Backward induction and Kuhn's theorems

Let Γ be a <u>finite</u> extensive game with perfect information

 $-\Gamma$ has a SPE (Kuhn's theorem).

The proof is by backward induction (Zermelo, 1912) which is also an algorithm for calculating the set of SPE.

- Γ has a <u>unique</u> SPE if there is no $i \in N$ such that $z \sim_i z'$ for any $z, z' \in Z$.
- Γ is dominance solvable if $z \sim_i z'$ $\exists i \in N$ then $z \sim_j z' \forall j \in N$ (but elimination of weakly dominated strategies in G may eliminate the SPE in Γ).

Forward induction

- Backward induction cannot always ensure a self-enforcing equilibrium (forward and backward induction).
- In an extensive game with simultaneous moves, players interpret a deviation as a signal about future play.
- The concept of iterated <u>weak</u> dominance can be used to capture forward and backward induction.

