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This week

[1] The main ideas — review

[2] Strictly competitive games

[3] Oligopolistic competition

Next week

[4] Auctions

[5] Bargaining / negotiations

[6] Observational learning



A review of the main ideas

We study two (out of four) groups of game theoretic models:

[1] Strategic games — all players simultaneously choose their plan of action
once and for all.

[2] Extensive games (with perfect information) — players choose sequentially
(and fully informed about all previous actions).



A solution (equilibrium) is a systematic description of the outcomes that
may emerge in a family of games. We study two solution concepts:

[1] Nash equilibrium — a steady state of the play of a strategic game (no
player has a profitable deviation given the actions of the other players).

[1] Subgame equilibrium — a steady state of the play of an extensive game
(a Nash equilibrium in every subgame of the extensive game).

=⇒ Every subgame perfect equilibrium is also a Nash equilibrium.



Example I (a 2× 2 strategic game)

B S
B 3, 1 0, 0
S 0, 0 1, 3

This Battle of the Sexes (BoS) game has three Nash equilibria

(B,B), (S, S), and ((3/4, 1/4), (1/4, 3/4)).

The last equilibrium is a mixed strategy equilibrium in which each player
chooses B and S with positive probability (so each of the four outcome
occurs with positive probability).



 
Example II (an entry game) 

 
The game has two Nash equilibria (In, Acquiesce) and (Out, Fight) but only 
(In, Acquiesce) is a subgame perfect equilibrium. 
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Example III  
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Example IV (a game with simultaneous and sequential moves) 

 

1 

Home Out 

2 
0 

 Ball Show

Ball 3,1 0,0 

Show 0,0 1,3 



Strictly competitive games

In strictly competitive games, the players’ interests are diametrically op-
posed.

More precisely, a strategic two-player game is strictly competitive if for any
two outcomes a and b we have

a %1 b if and only if b %2 a.

A strictly competitive game can be represented as a zero-sum game

L R
T A,−A B,−B
B C,−C D,−D



This class of games is important for a number of reasons:

— A simple decision making procedure leads each player to choose a Nash
equilibrium action.

— There are innumerable social and economic situations which are strictly
competitive.

— In the game of business, a successful strategy is avoiding the zero-sum trap
by reshaping the game.

=⇒ See Brandenburger & Nalebuff and Hermalin (Chapter 6).



Maxminimization

A maxminimizing strategy is a (mixed) strategy that maximizes the player’s
minimal payoff.

A strategy that maximizes the player’s expected payoff under the (very
pessimistic) assumption that whatever she does the other player will
act in a way that minimizes her expected payoff.

A pair strategies in a strictly competitive game is a Nash equilibrium if and
only if each player’s strategy is a maxminimizer (or a minimaximzer).



An example

L R
T 2,−2 −1, 1
B −1, 1 1,−1

The maxminimizing strategy of player 1 is (2/5, 3/5), which yields her a
payoff of 1/5.

Some history: the theory was developed by von Neumann in the late 1920s
but the idea appeared two centuries earlier (Montmort, 1713-4).



Changing the game of business
(Brandenburger & Nalebuff)

To change a (strictly competitive) game one has to change on or more of
its elements:

— Players (including yourself)

— Added values

— Rules

— Strategies

— Scope



Oligopolistic competition (PR 12.2-12.5)

Cournot’s oligopoly model (1838)

— A single good is produced by two firms (the industry is a “duopoly”).

— The cost for firm i = 1, 2 for producing qi units of the good is given
by ciqi (“unit cost” is constant equal to ci > 0).

— If the firms’ total output is Q = q1 + q2 then the market price is

P = A−Q

if A ≥ Q and zero otherwise (linear inverse demand function). We
also assume that A > c.



The inverse demand function 
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To find the Nash equilibria of the Cournot’s game, we can use the proce-
dures based on the firms’ best response functions.

But first we need the firms payoffs (profits):

π1 = Pq1 − c1q1
= (A−Q)q1 − c1q1
= (A− q1 − q2)q1 − c1q1
= (A− q1 − q2 − c1)q1

and similarly,

π2 = (A− q1 − q2 − c2)q2



Firm 1’s profit as a function of its output 
(given firm 2’s output) 
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To find firm 1’s best response to any given output q2 of firm 2, we need
to study firm 1’s profit as a function of its output q1 for given values of
q2.

If you know calculus, you can set the derivative of firm 1’s profit with
respect to q1 equal to zero and solve for q1:

q1 =
1

2
(A− q2 − c1).

We conclude that the best response of firm 1 to the output q2 of firm 2

depends on the values of q2 and c1.



Because firm 2’s cost function is c2 6= c1, its best response function is
given by

q2 =
1

2
(A− q1 − c2).

A Nash equilibrium of the Cournot’s game is a pair (q∗1, q
∗
2) of outputs

such that q∗1 is a best response to q
∗
2 and q

∗
2 is a best response to q

∗
1.

From the figure below, we see that there is exactly one such pair of outputs

q∗1 =
A+c2−2c1

3 and q∗2 =
A+c1−2c2

3

which is the solution to the two equations above.



The best response functions in the Cournot's 
duopoly game 
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Nash equilibrium comparative statics 
(a decrease in the cost of firm 2) 

 
A question: what happens when consumers are willing to pay more (A 
increases)? 
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In summary, this simple Cournot’s duopoly game has a unique Nash equi-
librium.

Two economically important properties of the Nash equilibrium are (to
economic regulatory agencies):

[1] The relation between the firms’ equilibrium profits and the profit they
could make if they act collusively.

[2] The relation between the equilibrium profits and the number of firms.



[1] Collusive outcomes: in the Cournot’s duopoly game, there is a pair of out-
puts at which both firms’ profits exceed their levels in a Nash equilibrium.

[2] Competition: The price at the Nash equilibrium if the two firms have the
same unit cost c1 = c2 = c is given by

P ∗ = A− q∗1 − q∗2

=
1

3
(A+ 2c)

which is above the unit cost c. But as the number of firm increases, the
equilibrium price deceases, approaching c (zero profits!).



Stackelberg’s duopoly model (1934)

How do the conclusions of the Cournot’s duopoly game change when the
firms move sequentially? Is a firm better off moving before or after the
other firm?

Suppose that c1 = c2 = c and that firm 1 moves at the start of the game.
We may use backward induction to find the subgame perfect equilibrium.

— First, for any output q1 of firm 1, we find the output q2 of firm 2

that maximizes its profit. Nest, we find the output q1 of firm 1 that
maximizes its profit, given the strategy of firm 2.



Firm 2

Since firm 2 moves after firm 1, a strategy of firm 2 is a function that
associate an output q2 for firm 2 for each possible output q1 of firm 1.

We found that under the assumptions of the Cournot’s duopoly game Firm
2 has a unique best response to each output q1 of firm 1, given by

q2 =
1

2
(A− q1 − c)

(Recall that c1 = c2 = c).



Firm 1

Firm 1’s strategy is the output q1 the maximizes

π1 = (A− q1 − q2 − c)q1 subject to q2 =
1
2(A− q1 − c)

Thus, firm 1 maximizes

π1 = (A− q1 − (
1

2
(A− q1 − c))− c)q1 =

1

2
q1(A− q1 − c).

This function is quadratic in q1 that is zero when q1 = 0 and when
q1 = A− c. Thus its maximizer is

q∗1 =
1

2
(A− c).



Firm 1’s (first-mover) profit in Stackelberg's duopoly 
game 
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We conclude that Stackelberg’s duopoly game has a unique subgame per-
fect equilibrium, in which firm 1’s strategy is the output

q∗1 =
1

2
(A− c)

and firm 2’s output is

q∗2 =
1

2
(A− q∗1 − c)

=
1

2
(A− 1

2
(A− c)− c)

=
1

4
(A− c).

By contrast, in the unique Nash equilibrium of the Cournot’s duopoly game

under the same assumptions (c1 = c2 = c), each firm produces
1

3
(A− c).



The subgame perfect equilibrium of Stackelberg's 
duopoly game 
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Bertrand’s oligopoly model (1883)

In Cournot’s game, each firm chooses an output, and the price is deter-
mined by the market demand in relation to the total output produced.

An alternative model, suggested by Bertrand, assumes that each firm
chooses a price, and produces enough output to meet the demand it faces,
given the prices chosen by all the firms.

=⇒ As we shell see, some of the answers it gives are different from the answers
of Cournot.



Suppose again that there are two firms (the industry is a “duopoly”) and
that the cost for firm i = 1, 2 for producing qi units of the good is given
by cqi (equal constant “unit cost”).

Assume that the demand function (rather than the inverse demand function
as we did for the Cournot’s game) is

D(p) = A− p

for A ≥ p and zero otherwise, and that A > c (the demand function in
PR 12.3 is different).



Because the cost of producing each until is the same, equal to c, firm i

makes the profit of pi − c on every unit it sells. Thus its profit is

πi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(pi − c)(A− pi) if pi < pj
1

2
(pi − c)(A− pi) if pi = pj

0 if pi > pj

where j is the other firm.

In Bertrand’s game we can easily argue as follows: (p1, p2) = (c, c) is the
unique Nash equilibrium.



Using intuition,

— If one firm charges the price c, then the other firm can do no better
than charge the price c.

— If p1 > c and p2 > c, then each firm i can increase its profit by
lowering its price pi slightly below pj.

=⇒ In Cournot’s game, the market price decreases toward c as the number of
firms increases, whereas in Bertrand’s game it is c (so profits are zero)
even if there are only two firms (but the price remains c when the number
of firm increases).



Avoiding the Bertrand trap

If you are in a situation satisfying the following assumptions, then you will
end up in a Bertrand trap (zero profits):

[1] Homogenous products

[2] Consumers know all firm prices

[3] No switching costs

[4] No cost advantages

[5] No capacity constraints

[6] No future considerations




