
Confronting Theory with Experimental Data and vice versa

Risk Preferences

The University of Melbourne
Department of Economics

April 2014



The basic assumptions about preferences

The theory begins with two (not three!) assumptions about preferences

[1] Completeness

x % y or y % x

for any pair of bundles x and y.

[2] Transitivity

if x % y and y % z then x % z

or any three bundles x, y and z.



Together, completeness and transitivity constitute the formal definition of
rationality as the term is used in economics.

Rational economic agents are ones who [1] have the ability to make choices,
and [2] whose choices display a logical consistency.

The preferences of a rational agent can be represented, or summarized, by
a utility function (more later).



Preferences toward risk

The standard model of decisions under risk (known probabilities) is based
on von Neumann and Morgenstern Expected Utility Theory.

Let X be a set of lotteries, or gambles, (outcomes and probabilities). A
fundamental assumption about preferences toward risk is independence:

For any lotteries x, y, z and 0 < α < 1

x Â y implies αx+ (1− α)r Â αy + (1− α)r.



Experiments à la Allais

Allais (1953) I

— Choose between the two gambles:
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Allais (1953) II

— Choose between the two gambles:
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The Marschak-Machina probability triangle 

 

1

HP  

Increasing  
preference 

LP  
0

1

H, M, and L are three degenerate gambles with certain outcomes H>M>L 



A test of Expected Utility Theory (EUT) 
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EUT requires that indifference lines are parallel so one must choose either A and C, or B and D. 



Contributions

Results have generated the most impressive dialogue between observation
and theorizing (Camerer, 1995):

— Violations of EUT raise criticisms about the status of the Savage axioms
as the touchstone of rationality.

— These criticisms have generated the development of various alternatives
to EUT, such as Prospect Theory.



Limitations

Choice scenarios narrowly tailored to reveal “anomalies” limits the useful-
ness of data for other purposes:

— Subjects face “extreme” rather than “typical” decision problems de-
signed to encourage violations of specific axioms.

— Small data sets force experimenters to pool data and to ignore individ-
ual heterogeneity.



Research questions

Consistency

— Is behavior under uncertainty consistent with the utility maximization
model?

Structure

— Is behavior consistent with a utility function with some special struc-
tural properties?



Recoverability

— Can the underlying utility function be recovered from observed choices?

Extrapolation

— Given behavior in the laboratory, can we forecast behavior in other
environments?



A new experimental design

An experimental design that has a couple of fundamental innovations over
previous work:

— A selection of a bundle of contingent commodities from a budget set
(a portfolio choice problem).

— A graphical experimental interface that allows for the collection of a
rich individual-level data set.



The experimental computer program dialog windows 
 



 
 



Rationality

Let {(pi, xi)}50i=1 be some observed individual data (pi denotes the i-th
observation of the price vector and xi denotes the associated portfolio).

A utility function u(x) rationalizes the observed behavior if it achieves the
maximum on the budget set at the chosen portfolio

u(xi) ≥ u(x) for all x s.t. pi · xi ≥ pi · x.



Revealed preference

A portfolio xi is directly revealed preferred to a portfolio xj if pi · xi ≥
pi · xj, and xi is strictly directly revealed preferred to xj if the inequality
is strict.

The relation indirectly revealed preferred is the transitive closure of the
directly revealed preferred relation.



Generalized Axiom of Revealed Preference (GARP) If xi is indirectly
revealed preferred to xj, then xj is not strictly directly revealed preferred
(i.e. pj · xj ≤ pj · xi) to xi.

GARP is tied to utility representation through a theorem, which was first
proved by Afriat (1967).



Afriat’s Theorem The following conditions are equivalent:

— The data satisfy GARP.

— There exists a non-satiated utility function that rationalizes the data.

— There exists a concave, monotonic, continuous, non-satiated utility
function that rationalizes the data.



Afriat’s critical cost efficiency index (CCEI) The amount by which
each budget constraint must be relaxed in order to remove all violations
of GARP.

The CCEI is bounded between zero and one. The closer it is to one, the
smaller the perturbation required to remove all violations and thus the
closer the data are to satisfying GARP.



The construction of the CCEI for a simple violation of GARP 
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The agent is ‘wasting' as much as A/B<C/D of his income by making inefficient choices. 



A benchmark level of consistency

A random sample of hypothetical subjects who implement the power utility
function

() =
1−

1− 


commonly employed in the empirical analysis of choice under uncertainty,
with error.

The likelihood of error is assumed to be a decreasing function of the utility
cost of an error.



More precisely, we assume an idiosyncratic preference shock that has a
logistic distribution

Pr(∗) =
·(

∗)R
:·=1

·()


where the precision parameter  reflects sensitivity to differences in utility.

If utility maximization is not the correct model, is our experiment suffi-
ciently powerful to detect it?



The distributions of GARP violations – ρ=1/2 and different γ 
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Bronnars’ (1987) test (γ=0) 
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 Individual-level data 

 

 



 

  

 



 

 

 



 

 

 



 

 

 



 

 

 



 

 

 



Recoverability

• Revealed preference relations in the data contain the information that is
necessary for recovering preferences.

• Varian (ECMA, 1982) uses GARP to generate an algorithm that can re-
cover preferences from choices.

• This approach is purely nonparametric making no assumptions about the
parametric form of the underlying utility function.



Risk neutrality 



Infinite risk aversion 



Loss / disappointment aversion 



The CentERpanel

• A representative sample of over 2,000 Dutch-speaking households (5,000
individual members) in the Netherlands.

• A wide range of individual socio-demographic and economic information
for the panel members.

• The subjects in the experiment were randomly recruited from the entire
CentERpanel body.



Mean CCEI scores: equiprobable lotteries 

 



Mean CCEI scores: income in a few days and income 60 days after that 

 



Mean CCEI scores: income in 60 days and income another 60 days after that   

 



Dominance

• Violations of monotonicity with respect to first-order stochastic dominance
(FOSD) are errors, regardless of risk attitudes.

• A decision to allocate less tokens to the cheaper account violates domi-
nance but need not involve a violation of GARP.

• We use expected payoff calculations (largest upward probabilistic shift) to
assess how nearly choice behavior complies with dominance.



A scatterplot of CCEI and FOSD scores 

 



Wealth differentials

=⇒ The heterogeneity in wealth is not well-explained either by standard observ-
ables (income, education, family structure) or by standard unobservables
(intertemporal substitution, risk tolerance).

=⇒ If consistency with utility maximization in the experiment were a good
proxy for (financial) decision-making quality then the degree to which con-
sistency differ across subjects should help explain wealth differentials.
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Is there a development gap in rationality (IQ)? 
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Is there a development gap in rationality (CCEI)? 
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Substantive rationality 



Substantive rationality

One approach is to posit the “kinky” preference ordering implied by Afriat’s
theorem and go no further in attempting to rationalize the data.

Q. What kind of preferences could give rise to these choices?

A. The best candidate would be preferences generated by a rank-dependent
utility function (Quiggin, 1993).



The theory of Gul (1991) implies that the utility function over portfolios
takes the form

min { (1) +  (2)   (1) +  (2)} 

where  ≥ 1 measures loss/disappointment aversion and (·) is the utility
of consumption in each state.

If   1 there is a kink at the point where 1 = 2 and if  = 1 we have
the standard EUT representation.



The indifference map of Gul (1991) in the Marschak-Machina triangle 
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The indifference map of Gul (1991) 
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An illustration of the derived demand 
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The risk premium for different levels of risk and disappointment aversion 
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Risk aversion – the fraction of tokens allocated to the cheaper asset 

 



Scatterplot of the CARA NLLS estimates 
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Ambiguity aversion 

  



Ambiguity aversion

• The distinction between settings with risk and ambiguity dates back to at
least the work of Knight (1921).

• Ellsberg (1961) countered the reduction of subjective uncertainty to risk
with several thought experiments.

• A large theoretical literature (axioms over preferences) has developed mod-
els to accommodate this behavior.



Experiments à la Ellsberg

Consider the following four two-color Ellsberg-type urns (Halevy, 2007):

I. 5 red balls and 5 black balls

II. an unknown number of red and black balls

III. a bag containing 11 tickets with the numbers 0-10; the number written
on the drawn ticket determines the number of red balls

IV. a bag containing 2 tickets with the numbers 0 and 10; the number
written on the drawn ticket determines the number of red balls



• A cleverly designed experiment that allows distinguishing between four
models of ambiguity aversion – SEU, MEU, REU and RNEU.

• The different models of ambiguity aversion generate different predictions
about how the urns will be ordered.

• For each subject, there will be a unique model that predicts (is consistent
with) the subject’s reservation values.

• No single model predicts all the observed behaviors, and all models are
represented in the pool of subjects.



The distribution of relative demands 
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The number of diagonal portfolios by subject 
  (ambiguity - vertical axis / loss - horizontal axis) 
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Parametric analysis

There is a variety of theoretical models of attitudes toward risk and ambi-
guity, but they all give rise to one of two main specifications:

[1] kinked specification rationalized by -Maxmin Expected Utility (-
MEU), Choquet Expected Utility, or Contraction Expected Utility.

[2] smooth specification, based on the class of Recursive Expected Utility
(REU) models.



The kinked specification has the form


h
2
3(min{1 3}) +

1
3(2)

i
+ (1− )

h
2
3(max{1 3}) +

1
3(2)

i


where  is the ambiguity parameter.

The indifference curves have a “kink” at all unambiguous portfolios where
1 = 3.



The general form of the smooth specification isZ
∆


µZ


() ()

¶
()

where  ∈ ∆(∆ ()) is a (second-order) distribution over possible priors
 on  and  : (R+) → R is a possibly nonlinear transformation over
expected utility levels.

The REU models are based a cardinal utility indicator — the preferences
generated are not independent of a change in the scale of utility.



To clarify, suppose risk preferences are represented by a von Neumann-
Morgenstern utility function  () with constant absolute risk aversion
(CARA)

() = −−

where  is the number of tokens,  a scale parameter, and  is the coef-
ficient of absolute risk aversion.

The concavity of the transformation  implies that the ranking of uncertain
prospects will not be invariant to changes in  (cannot identify  and 
separately).



Smooth (left) and kinked (right) specifications 
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Estimation

→ Our first parametric assumption is that risk preferences are represented by
a von Neumann-Morgenstern utility function with CARA,

() = −−

→ We restrict, WLOG, the parameters so that preferences are always risk
and ambiguity averse —  ≥ 0 in both specifications, 12 ≤  ≤ 1 in the
kinked specification and 0 ≤  in the smooth specification.

→ For each subject  and for each specification, we generate estimates of the
ambiguity and risk aversion parameters, ̂ and ̂, using nonlinear least
squares (NLLS).



Econometric results

Kinked specification

56 subjects (38.9%) have non-kinky preferences ̂ ≈ 12. We cannot
reject the hypothesis that  = 12 for a total of 109 subjects (75.7%)
at the 5% significance level.

Smooth specification

44 subjects (30.6%) have ̂ ≈ 0, indicating ambiguity neutrality. We
cannot reject the hypothesis that  = 0 for a total of 97 subjects
(67.4%) at the 5% significance level .



Scatterplot of the estimated parameters – kinked specification 
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Scatterplot of the estimated parameters – smooth specification 
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• There is the strong tendency for subjects to equate the demand for the
securities that pay off in the ambiguous states, 1 and 3.

• This feature of the data is consistent with the kinked specification but not
with the smooth specification.

• But the tendency to equate 1 and 3 cannot be attributed solely to
ambiguity aversion.

• In the first place, there is also strong tendency to equate the demand for
the securities that pay off in any pair of states.



A model of ambiguity aversion and loss/disappointment aversion

• If both loss aversion and ambiguity aversion are present in the data, we
need a structural model in order to disentangle the two effects.

• In order to allow for kinks at portfolios where  = 0 for any  6= 0, we
make use of the rank-dependent utility (RDU) model of Quiggin (1982).

• This is a generalization of the SEU model that replaces probabilities with
decision weights when calculating the value of expected utility.

• In Quiggin (1982), the decision weight of each payout depends only on its
(known) probability and its ranking position.



Following -MEU, we assume that the unknown probabilities 1 and 3
are skewed using the weights  and 1−  :

min = min{1 3}

is given a probability weight 23 and

max = max{1 3}

is given probability weight 23 (1− ) where the parameter 12 ≤  ≤ 1

measures the degree of ambiguity aversion.



The utility of a portfolio x = (1 2 3) takes the form

I. 2 ≤ min

1 (2) + 2 (min) + (1− 1 − 2) (max)

II. min ≤ 2 ≤ max

3 (min) + (1 + 2 − 3) (2) + (1− 1 − 2) (max)

III. max ≤ 2

3 (min) + 4 (max) + (1− 3 − 4) (2)



where
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³
1
3

´


2 = 
³
2
3+

1
3

´
−

³
1
3

´


3 = 
³
2
3
´


4 = 
³
2
3

´
−

³
2
3
´


and the mapping from the four parameters 1  4 to two parameters 
and  is as follows:

1 =
1
3 + 

2 =
1
3 + 

3 =
1
3 +  + 

4 =
1
3 − 



The parameter  measures the degree of ambiguity aversion and the para-
meter  measures the degree of loss aversion:

—  ≥ 0 and  = 0 — kinked specification

—  = 0 and  ≥ 0 — loss/disappointment aversion (Gul, 1991)

—  = 0 and  = 0 — standard SEU representation.

The indifference curves will have kinks where  = 0 and agents will
choose portfolios that satisfy  = 0 for a non-negligible set of prices.



Econometric results

The vast majority of the subjects are well described by the loss- and
ambiguity-neutral SEU model. The remainder appear to have a signifi-
cant degree of loss and/or ambiguity aversion

Ambiguity
Neutral Averse Total

Loss Neutral 604 167 771
Averse 181 49 229
Total 785 215

There is considerable heterogeneity in both ̂ or ̂ and that their values
are not correlated (2 = 0029).



 

 

 

 

 

 

Procedural rationality 



Procedural rationality

• How subjects come to make decisions that are consistent with an underlying
preference ordering?

• Boundedly rational individuals use heuristics in their attempt to maximize
an underlying preference ordering.

— There is a distinction between the “revealed” preference ordering and
the “true” underlying preference ordering.

— Preferences have an EU representation, even though revealed prefer-
ences appear to be non-EU.



Suppose there are  states of nature and  associated Arrow securities and
that the agent’s behavior is represented by the decision problem

max  (x)
s.t. x ∈ B (p) ∩A

where B (p) is the budget set and A is the set of portfolios corresponding
to the various archetypes the agent uses to simplify his choice problem.

The only restriction we have to impose is that A is a pointed cone (closed
under multiplication by positive scalars), which is satisfied ifA is composed
of elimination and equalization (Rubinstein, 1987).



We can derive the following properties of the agent’s demand:

1. Let p denotes the -th observation of the price vector and

x ∈ argmax
n
 (x) : x ∈ B

³
p
´
∩A

o
denotes the associated portfolio. Then the data

n
px

o
satisfy

GARP.

2. There exists a utility function ∗ (x) such that for any price vector p,

x∗ ∈ argmax { (x) : x ∈ B (p) ∩A}
⇔

x∗ ∈ argmax {∗ (x) : x ∈ B (p)} 
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Archetypes and polytypes

• We identify a finite number of stylized behaviors, which collectively pose
a challenge to decision theory.

• We call these basic behaviors archetypes. We also find mixtures of archetypal
behaviors, which we call polytypes.

• The archetypes account for a large proportion of the data set and play a
role in the behavior of most subjects.

• The combinations of types defy any of the standard models of risk aversion.
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The aggregate distribution of archetypes  
for different token confidence intervals 

 
  

Center Vertex Centroid Edge Bisector All 
0.1 0.005 0.003 0.000 0.019 0.083 0.110

0.25 0.061 0.004 0.002 0.083 0.187 0.337

0.5 0.093 0.011 0.007 0.139 0.215 0.466

1 0.134 0.032 0.019 0.165 0.252 0.602

2.5 0.185 0.064 0.049 0.186 0.285 0.769

 



The distribution of archetypes, by subject 
(half token confidence interval) 
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The distribution of archetypes, by subject 
(one token confidence interval) 
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Substantive rationality

What kind of preferences could give rise to these choices? The best candi-
date would be preferences generated by a rank-dependent utility function
(Quiggin, 1993):

 (1 2 3) =  () +  () +  ()

where  (·) is a von Neumann-Morgenstern utility function.

This formulation encompasses standard EU representation as a special case
( =  = ).



RDU estimation results

We assume that risk preferences are represented by a von Neumann-
Morgenstern utility function  () = −− with constant absolute risk
aversion (CARA).

 =  =  662%
     188%
     30%
     45%
     75%



Scatterplot of the estimated RDU parameters 
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Time preferences



• The long-standing interest: time discount rates decline as tradeoffs are
pushed into the temporal distance.

— Subjects often choose the larger and later of two rewards when both are
distant in time, but prefer the smaller and earlier one as both rewards
draw nearer to the present.

• Interpreted as non-constant time discounting, these preference reversals
have important implications.

— Under standard assumptions, non-constant time discounting implies
time-inconsistency — self-control problems and a demand for commit-
ment thus emerge.



Experimental design

Di¤erent from the prototype experiment regarding risk:

� Choice problems (dataset E) involve tradeo¤s between income in a few
days and income 60 days after that.

� Choice problems (dataset L) involve tradeo¤s between income in 60
days and income another 60 days after that.

The exact same budget sets � randomly ordered.



A GARP test of dynamic preference reversals

A non-parametric econometric approach for testing whether preferences in
the two treatments are the same (for a given subject):

� Combine dataset E with dataset L.

� Compute the CCEI for this combined dataset.

� Compare that number to the min CCEI in each of the separate treat-
ments.

The CCEI for the combined dataset can be no bigger than the minimum
of the CCEIs for the separate datasets E and L.



 

 

The minimum (vertical axis) and combined (horizontal axis) CCEI scores 
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The minimum (vertical axis) and combined (horizontal axis) Varian (1990, 1991) scores 
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Concluding remarks

� The clarity that is achieved by putting behavior under the microscope is
well worth the necessary simpli�cation.

� Many experiments �censor� the data to avoid the ugly truth that life is
more complicated than our theories.

� Otherwise, no theory �ts perfectly and the analysis inevitably involves mod-
eling and econometric compromises.



� A very rich data set well-suited to studying behavior at the level of the
individual subject.

� Although individual behavior is quite heterogeneous, there is a high level
of consistency in the individual-level decisions.

� What kind of preferences are consistent with the observed choices (sub-
stantive rationality)?

� How individuals come to make decisions that are consistent with an
underlying preference ordering (procedural rationality)?




