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CHAPTER 3.   A REVIEW OF PROBABILITY THEORY

3.1.  SAMPLE SPACE

The starting point for probability theory is the concept of a state of Nature, which is a description
of everything that has happened and will happen in the universe.  In particular, this description
includes the outcomes of all probability and sampling experiments.  The set of all possible states of
Nature is called the sample space.  Let s denote a state of Nature, and S the sample space.  These are
abstract objects that play a conceptual rather than a practical role in the development of probability
theory.  Consequently, there can be considerable flexibility in thinking about what goes into the
description of a state of Nature and into the specification of the sample space; the only critical
restriction is that there be enough states of Nature so that distinct observations are always associated
with distinct states of Nature.  In elementary probability theory, it is often convenient to think of the
states of Nature as corresponding to the outcomes of a particular experiment, such as flipping coins
or tossing dice, and to suppress the description of everything else in the universe.  Sections 3.2-3.4
in this Chapter contain a few crucial definitions, for events, probabilities, conditional probabilities,
and statistical independence.  They also contain a treatment of measurability, the theory of
integration, and probability on product spaces that is needed mostly for more advanced topics in
econometrics.  Therefore, readers who do not have a good background in mathematical analysis may
find it useful to concentrate on the definitions and examples in these sections, and postpone study
of the more mathematical material until it is needed.

3.2.  EVENT FIELDS AND INFORMATION

3.2.1.  An event is a set of states of Nature with the property that one can in principle determine
whether the event occurs or not.  If states of Nature describe all happenings, including the outcome
of a particular coin toss, then one event might be the set of states of Nature in which this coin toss
comes up heads.  The family of potentially observable events is denoted by F.  This family is
assumed to have the following properties:

(i) The "anything can happen" event S is in F.
(ii) If event A is in F, then the event "not A", denoted Ac, is in F.
(iii) If A and B are events in F, then the event "both A and B", denoted A1B, is in F.
(iv) If A1,A2,...  is a finite or countable sequence of events in F, then the event "one or more of

A1 or A2 or ...", denoted Ai, is in F.^4i'1

A family F  with these properties is called a -field (or Boolean -algebra) of subsets of S.  The pair
(S,F) consisting of an abstract set S and a -field F of subsets of S is called a measurable space, and
the sets in F are called the measurable subsets of S.  Implications of the definition of a -field are
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(v) If A1,A2,...  is a finite or countable sequence of events in F, then  is also in F._4i'1 A i

(vi) If A1,A2,...  is a countable sequence of events in F that is monotone increasing (A1 f A2 f
...) or monotone decreasing (A1 g A2 g ...), then A0 = lim Ai is also in F.
(vii) The empty event  is in F.

We will use a few concrete examples of sample spaces and -fields:

Example 1.  [Two coin tosses] A coin is tossed twice, and for each toss a head or tail appears.
Let HT denote the state of Nature in which the first toss yields a head and the second toss yields a
tail.  Then S = {HH,HT,TH,TT}.  Let F  be the class of all possible subsets of S; F  has 24 members.

Example 2.  [Coin toss until a tail] A coin is tossed until a tail appears.  The sample space is S
= {T, HT, HHT, HHHT,...}.  In this example, the sample space is infinite, but countable.  Let F  be
the -field generated by the finite subsets of S.  This -field contains events such as “At most ten
heads”, and also, using the monotone closure property (vi) above, events such as "Ten or more tosses
without a tail", and "an even number of heads before a tail".  A set that is not in F will have the
property that both the set and its complement are infinite.  It is difficult to describe such a set,
primarily because the language that we normally use to construct sets tends to correspond to
elements in the -field.  However, mathematical analysis shows that such sets must exist, because
the cardinality of the class of all possible subsets of S is greater than the cardinality of F .

Example 3.  [Daily change in S&P stock index] The stock index change is a number in the real
line ß, so S / ß.  Take the -field of events to be the Borel -field B, which is defined as the
smallest family of subsets of the real line that contains all the open intervals and satisfies the
properties (i)-(iv) of a -field.  The subsets of ß that are in B are said to be measurable, and those
not in B are said to be non-measurable.

Example 4.  [Changes in S&P stock index on successive days] The set of states of Nature is the
Cartesian product of the set of changes on day one and the set of changes on day 2, S = ß×ß (also
denoted ß2).  Take the -field of events to be the product of the one-dimensional -fields, F =
B1qB2, where "q" denotes an operation that forms the smallest -field containing all sets of the form
A×C with A 0 B1 and C 0 B2.  In this example, B1 and B2 are identical copies of the Borel -field
on the real line.  Examples of events in F are "an increase on day one", "increases on both days", and
"a larger change the second day than the first day".  The operation "q" is different than the cartesian
product "×", where B1×B2 is the family of all  rectangles A×C formed from A 0 B1 and C 0 B2.  This
family is not itself a -field, but the -field that it generates is B1qB2.  For example, the event "a
larger change the second day than the first day" is not a rectangle, but is obtained as a monotone limit
of rectangles.
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In the first example, the -field consisted of all possible subsets of the sample space.  This was
not the case in the last two examples, because the Borel -field does not contain all subsets of the
real line.  There are two reasons to introduce the complication of dealing with -fields that do not
contain all the subsets of the sample space, one substantive and one technical.  The substantive
reason is that the -field can be interpreted as the potential information that is available by
observation.  If an observer is incapable of making observations that distinguish two states of Nature,
then the -field cannot contain sets that include one of these states and excludes the other.  Then, the
specification of the -field will depend on what is observable in an application.  The technical reason
is that when the sample space contains an infinite number of states, it may be mathematically
impossible to define probabilities with sensible properties on all subsets of the sample space.
Restricting the definition of probabilities to appropriately chosen -fields solves this problem. 

3.2.2.  It is possible that more than one -field of subsets is defined for a particular sample space
S.  If A is an arbitrary collection of subsets of S, then the smallest -field that contains A is said to
be the -field generated by A.  If F  and G are both -fields, and G f F, then G is said to be a
sub-field of F, and F is said to contain more information or refine G.  It is possible that neither F f
G nor G f  F.  However, there is always a smallest -field that refines both F and G, which is simply
the -field generated by the sets in the union of F and G, or put another way, the intersection of all
-fields that contain both F and G.  The intersection F1G is a -field that contains the common

information in F and G.

Example 1.  (continued) Let F denote the -field of all subsets of S.  Another -field is G =
{ ,S,{HT,HH},{TT,TH}}, containing all the events in which information is available only on the
outcome of the first coin toss.  Obviously, F contains more information than G.

Example 3.  (continued) Let F denote the Borel -field.  Then G = { ,S,(0,4),(-4,0]} and D =
{ ,S,{-4,0).[0,4)} are both -fields, the first corresponding to the ability to observe whether price
increases, the second corresponding to the ability to tell whether price decreases.  Neither contains
the other, both are contained in F, and the two have a smallest mutual refinement which is
C = { ,S,(0,4),(-4,0),[0,4),(-4,0],{0}};corresponding to the ability to tell whether price is increasing
or decreasing.  The intersection of G and D is the “no information” -field { ,S}.

3.3.  PROBABILITY

3.3.1.  Given a sample space S and -field of subsets F, a probability (or probability measure)
is defined as a function P from F  into the real line with the following properties:
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(i) P(A) $ 0 for all A 0 F.
(ii) P(S) = 1.
(iii) [Countable Additivity] If A1, A2,...  is a finite or countable sequence of events in F  that are

mutually exclusive (i.e., Ai1Aj =  for all i ú j), then P( Ai) = P(Ai). ^4i'1 j4

i'1

With conditions (i)-(iii), P has the following additional intuitive properties of a probability when A
and B are events in F: 

(iv) P(A) + P(Ac) = 1.  
(v) P(AcB) = P(A) + P(B) - P(A1B).
(vi) P(A) $ P(B) when B f A.  
(vii) If Ai in F  is monotone decreasing to , then P(Ai) 6 0.  

(viii) If Ai 0 F, not necessarily disjoint, then P( Ai) # P(Ai). ^4i'1 j4

i'1

The triplet (S,F,P) consisting of a measurable space (S,F) and a probability measure P is called a
probability space.

3.3.2.  If A 0 F  has P(A) = 1, then A is said to occur almost surely (a.s.), or with probability one
(w.p.1).  If A 0 F has P(A) = 0, then A is said to occur with probability zero (w.p.0).  Finite or
countable intersections of events that occur almost surely again occur almost surely, and finite or
countable unions of events that occur with probability zero again occur with probability zero.

Example 1.  (continued) If the coin is fair so that heads and tails are equally likely, then each
possible outcome HH,HT,TH,TT occurs with probability 1/4.  The probability that the first coin is
heads is the probability of the event {HH,HT}, which by countable additivity is P({HH,HT}) =
P({HH}) + P({HT}) = 1/2.  

Example 2.  (continued) If the coin is fair, then the probability of k-1 heads followed by a tail
is 1/2k.  Verify that the probability of “At most 3 heads” is 15/16, of "Ten or more heads" is 1/210,
and the probability of "an even number of heads" is 2/3.

Example 3.  (continued) Consider the function P defined on open sets (s,4) by P((s,4)) =
1/(1+es).  This function maps into the unit interval, and is increasing as the length of the interval
increases.  It is then easy to show that P satisfies properties (i)-(iii) of a probability on the restricted
family of open intervals, and a little work to show that when a probability is determined on this
family of open intervals, then it is uniquely determined on the -field generated by these intervals.
Each single point, such as {0}, is in F.  Taking intervals that shrink to this point, each single point
occurs with probability zero.  Then, a countable set of points occurs w.p.0.
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3.3.3.  Often a measurable space (S,F) will have an associated measure  that is a countably

additive function from F into the nonnegative real line; i.e., ( Ai) = (Ai) for any^4i'1 j4

i'1

sequence of disjoint Ai 0 F.  The measure is positive if (A) $ 0 for all A 0 F; we will consider only
positive measures.  The measure  is finite if * (A)* # M for some constant M and all A 0 F, and

-finite if there exist a countable number of disjoint sets Ai 0 F  with (Ai) < +4 and Ai = S.^4i'1

The measure  may be a probability, but more commonly it is a measure of "length" or "volume".
For example, it is common when the sample space S is the countable set of positive integers to
define  to be counting measure with (A) equal to the number of points in A.  When the sample
space S is the real line, with the Borel -field B, it is common to define  to be Lebesgue measure,
with ((a,b)) = b - a for any open interval (a,b).  Both of these examples are positive -finite
measures.  A set A is said to be of -measure zero if (A) = 0.  A property that holds except on a set
of measure zero is said to hold almost everywhere (a.e.).  It will sometimes be useful to talk about
a -finite measure space (S,F,µ) where µ is positive and -finite and may either be a probability
measure or a more general counting or length measure such as Lebesgue measure.

3.3.4. Suppose f is a real-valued function on a -finite measure space (S,F,µ).  This function is
measurable if  f -1(C) 0 F  for each open set C in the real line.  The integral of measurable f on a set

A 0 F, denoted f(s)@µ(ds), is defined in the case µ(A) < +4 as the limit as n 6 4 of sums of themA

form (k/n)@µ(Ckn), where Ckn is the set of states of Nature in A for which f(s) is containedj4

k'&4

in the interval (k/n,(k+1)/n].  A finite limit exists if |k/n|@µ(Ckn) < +4, in which case f is saidj4

k'4

to be integrable on A.  Let disjoint  Ai 0 F  with µ(Ai) < +4 and Ai = S be the decomposition^4i'1

guaranteed by the -finite property of µ.  The function f is integrable on a general set A 0 F   if it is

integrable on A1Ai for each i and |f(s)|@µ(ds) = limn64 |f(s)|@µ(ds) exists, andmA
jn

i'1 mA1Ai

simply integrable if it is integrable for A = S.  In general, the measure µ can have point masses, or
continuous measure, or both, so that the notation for integration with respect to µ includes sums and
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mixed cases.  The integral f(s)µ(ds) will sometimes be denoted f(s)dµ, or in the case ofmA mA

Lebesgue measure, f(s)ds.  mA

3.3.5. For a -finite measure space (S,F,µ), define Lq(S,F,µ) for 1 # q < +4 to be the set of
measurable real-valued functions on S with the property that |f|q is integrable, and define 2f2q =

[ *f(s)*q µ(ds)]1/q to be the norm of f.  Then, Lq(S,F,µ) is a linear space, since linearm
combinations of integrable functions are again integrable.  This space has many, but not all, of
familiar properties of finite-dimensional Euclidean space.  The set of all linear functions on the space
Lq(S,F,µ) for q > 1 is the space Lr(S,F,µ), where 1/r = 1 - 1/q.  This follows from an application of
Holder’s inequality, which generalizes from finite vector spaces to the condition

f 0 Lq(S,F,µ) and g 0 Lr(S,F,µ) with q-1 + r-1 = 1 imply *f(s)@g(s)* µ(ds) # 2f2q@2g2r.m
The case q = r = 2 gives the Cauchy-Schwartz inequality in general form.  This case arises often in
statistics, with the functions f interpreted as random variables and the norm 2f22 interpreted as a
quadratic mean or variance. 

3.3.6. There are three important concepts for the limit of a sequence of functions fn 0 Lq(S,F,µ).
First, there is convergence in norm, or strong convergence:  f is a limit of fn if 2fn - f2q 6 0.  Second,
there is convergence in µ-measure:  f is a limit of fn if µ({s0S* |fn(s) - f(s)| > g}) 6 0 for each g > 0.

Third, there is weak convergence:  f is a limit of fn if (f n(s) - f(s))@g(s) µ(ds) 6 0 for each g 0m
Lr(S,F,µ) with 1/r = 1 - 1/q.  The following relationship holds between these modes of convergence:

Strong Convergence ~| Weak Convergence ~| Convergence in µ-measure

An example shows that convergence in µ-measure does not in general imply weak convergence:
Consider L2([0,1],B,µ) where B is the Borel -field and µ is Lebesgue measure.  Consider the
sequence fn(s) =@n@1(s#1/n).  Then µ({s0S| |fn(s)| > g}) = 1/n, so that fn converges in µ-measure to

zero, but for g(s) = s-1/3, one has 2g22 = 31/2 and fn(s)g(s) µ(ds) = 3n1/3/2 divergent.  Anotherm
example shows that weak convergence does not in general imply strong convergence:  Consider S
= {1,2,...} endowed with the -field generated by the family of finite sets and the measure µ that
gives weight k-1/2 to point k.  Consider fn(k) =@n1/4@1(k = n).  Then 2fn22@= 1.  If g is a function for
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which fn(k)g(k)µ({k}) = g(n)@n1/4 does not converge to zero, then g(k)2 µ({k}) is boundedj4

k'1

away from zero infinitely often, implying 2g22 = g(k)2 µ({k}) = +4.  Then, fn convergesj4

k'1

weakly, but not strongly, to zero.  The following theorem, which is of great importance in advanced
econometrics, gives a uniformity condition under which these modes of convergence coincide.

Theorem 3.1. (Lebesgue Dominated Convergence)  If g and fn for n = 1,2,... are in Lq(S,F,µ) for
1 # q < +4 and a -finite measure space (S,F,µ), and if |fn(s)| # g(s) almost everywhere, then fn

converges in µ-measure to a function f if and only if f 0 Lq(S,F,µ) and 2fn - f2q 6 0.

One application of this theorem is a result for interchange of the order of integration and
differentiation.  Suppose f(@,t) 0 Lq(S,F,µ) for t in an open set T f ßn.  Suppose f is differentiable,
meaning that there exists a function Ltf(@,t) 0 Lq(S,F,µ) for t 0 T such that if t+h 0 T and h ú 0, then
the remainder function r(s,t,h) = [f(s,t+h) - f(s,t) - Ltf(@,t)@h]/|h| 0 Lq(S,F,µ) converges in µ-measure

to zero as h 6 0.  Define F(t) = f(s,t)µ(ds).  If there exists g 0 Lq(S,F,µ) which dominates them
remainder function (i.e., |r(s,t,h)| # g(s) a.e.), then Theorem 3.1 implies limh602r(@,t,h)2q = 0, and F(t)

is differentiable and satisfies LtF(t) = Ltf(s,t)µ(ds).m
A finite measure P on (S,F) is absolutely continuous with respect to a measure  if  A 0 F  and

(A) = 0 imply P(A) = 0.  If P is a probability measure that is absolutely continuous with respect to
the measure , then an event of measure zero occurs w.p.0, and an event that is true almost
everywhere occurs almost surely.  A fundamental result from analysis is the theorem:

Theorem 3.2. (Radon-Nikodym) If a finite measure P on a measurable space (S,F) is absolutely
continuous with respect to a positive -finite measure  on (S,F), then there exists an integrable
real-valued function p on S, unique almost everywhere, such that

 p(s) (ds) = P(A) for each A 0 F.  mA

When P is a probability, the function p given by the theorem is nonnegative, and is called the
probability density.  An implication of the Radon-Nikodym theorem is that if a measurable space
(S,F) has a positive -finite measure  and a probability measure P that is absolutely continuous with
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respect to , then there exists a density p such that for every f 0 Lq(S,F,P) for some 1 # q < +4, one

has f(s)P(ds) = f(s)@p(s) (ds).mS mS

3.3.7.  In applications where the probability space is the real line with the Borel -field, with a
probability P such that P((-4,s]) = F(s) is continuously differentiable, the fundamental theorem of

integral calculus states that p(s) = FN(s) satisfies F(A) = p(s)ds.  What the Radon-NikodymmA

theorem does is extend this result to -finite measure spaces and weaken the assumption from
continuous differentiability to absolute continuity.  In basic econometrics, we will often characterize
probabilities both in terms of the probability measure (or distribution) and the density, and will
usually need only the elementary calculus version of the Radon-Nikodym result.  However, it is
useful in theoretical discussions to remember that the Radon-Nikodym theorem makes the
connection between probabilities and densities.  We give two examples that illustrate practical use
of the calculus version of the Radon-Nikodym theorem.
  

Example 3. (continued) Given P((s,4)) = 1/(1+es), one can use the differentiability of the
function in s to argue that it is absolutely continuous with respect to Lebesgue measure on the line.
Then, one can verify by integration that the density implied by the Radon-Nikodym theorem is p(s)
= es/(1+es)2.

Example 5.  A probability that appears frequently in statistics is the normal, which is defined
on (ß,B), where ß is the real line and B the Borel -field, by the density n(s-µ, ) /

, so that P(A) = .  In this probability, µ and  are(2 2)&1/2"e &(s&µ)2/2 2

mA
(2 2)&1/2"e &(s&µ)2/2 2

ds

parameters that are interpreted as determining the location and scale of the probability, respectively.
When µ = 0 and  = 1, this probability is called the standard normal.

3.3.8. Consider a probability space (S,F,P), and a -field G f F.  If the event B 0 G has P(B) >
0, then the conditional probability of A given B is defined as P(A*B) = P(A1B)/P(B).  Stated
another way, P(A*B) is a real-valued function on F×G with the property that P(A1B) = P(A*B)P(B)
for all A 0 F and B 0 G.  The concept of conditional probability can be extended to cases where P(B)
= 0 by defining P(A*B) as the limit of P(A*Bi) for sequences Bi 0 G that satisfy P(Bi) > 0 and Bi 6
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B, provided the limit exists.  When B is a finite set, the conditional probability of A given B is the

ratio of sums P(A|B) = .js0A1B P({ s})

js0B P({ s})

Example 6. On a quiz show, a contestant is shown three doors, one of which conceals a prize,
and is asked to select one.  Before it is opened, the host opens one of the remaining doors which he
knows does not contain the prize, and asks the contestant whether she wants to keep her original
selection or switch to the other remaining unopened door.  Should the contestant switch?  Designate
the contestant’s initial selection as door 1.  The sample space consists of pairs of numbers ab, where
a = 1,2,3 is the number of the door containing the prize and b = 2,3 is the number of the door opened
by the host, with b ú a:  S = {12,13,23,32}.  The probability is 1/3 that the prize is behind each door.
The conditional probability of b = 2, given a = 1, is 1/2, since in this case the host opens door 2 or
door 3 at random.  However, the conditional probability of b = 2, given a = 2 is zero and the
conditional probability of b = 2 given a = 3 is one.  Hence, P(12) = P(13) = (1/3)@(1/2), and P(23) =
P(32) = 1/3.  Let A = {12,13} be the event that door 1 contains the prize and B = {12,32} be the
event that the host opens door 2.  Then the conditional probability of A given B is
P(12)/(P(12)+P(32)) = (1/6)/((1/6)+(1/3)) = 1/3.  Hence, the probability of receiving the prize is 1/3
if the contestant stays with her original selection, 2/3 if she switches to the other unopened door.

Example 7.  Two fast food stores are sited at random points along a street that is ten miles long.
What is the probability that they are less than five miles apart?  Given that the first store is located
at the three mile marker, what is the probability that the second store is less than five miles away?
The answers are obvious from the diagram below, in which the sample space is depicted as a
rectangle of dimension 10 by 10, with the horizontal axis giving the location of the first store and
the vertical axis giving the location of the second store.  The shaded areas correspond to the event
that the two are more than five miles apart, and the proportion of the rectangle in these areas is 1/4.
Conditioned on the first store being at point 3 on the horizontal axis, the second store is located at
random on a vertical line through this point, and the proportion of this line that lies in the shaded
area is 1/5.  Let x be the location of the first store, y the location of the second.  The conditional
probability of the event that  |x - y| > 5, given x, is |x-5|/10.  This could have been derived by forming
the probability of the event |x - y| > 5 and c < x < c+ for a small positive , taking the ratio of this
probability to the probability of the event c < x < c+ to obtain the conditional probability of the
event |x - y| > 5 given c < x < c+, and taking the limit  6 0. 
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The idea behind conditional probabilities is that one has partial information on what the state of
Nature may be, and one wants to calculate the probability of events using this partial information.
One way to represent partial information is in terms of a subfield; e.g., F  is the field of events which
distinguish outcomes in both the past and the future, and a subfield G contains events which
distinguish only past outcomes.  A conditional probability P(A*B) defined for B f G can be
interpreted for fixed A as a function from G into [0,1].  To emphasize this, conditional probabilities
are sometimes written P(A*G), and G is termed the information set, or a family of events with the
property that you know whether or not they happened at the time you are forming the conditional
probability.

Example 1. (continued) If G = { ,S,{HT,HH},{TT,TH}}, so that events in G describe the
outcome of the first coin toss, then P(HH*{HH,HT}) = P(HH)/(P(HH)+P(HT)) = ½ is the probability
of heads on the second toss, given heads on the first toss.  In this example, the conditional probability
of a head on the second toss equals the unconditional probability of this event.  In this case, the
outcome of the first coin toss provides no information on the probabilities of heads from the second
coin, and the two tosses are said to be statistically independent.  If G  =
{ ,S,{HT,TH},{HH},{TT},{HH} c,{TT} c}, the family of events that determine the number of heads
that occur in two tosses without regard for order, then the conditional probability of heads on the
first toss, given at least one head, is P({HT,HH}*{TT} c) = (P(HT)+P(HH))/(1-P(TT))= 2/3.  Then,
the conditional probability of heads on the first toss given at least one head is not equal to the
unconditional probability of heads on the first toss.

Example 3.  (continued) Suppose G = { ,S,(0,4),(-4,0]} is the -field corresponding to the
event that the price change is positive or not.  The unconditional probability P((s,4)) = 1/(1+es)
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implies P([-1,1]) = , P((0,1]) = , P((0,4)) = 1/2, and P([-1,1])*(0,4)) = .e&1
e%1

e&1
2(e%1)

e&1
e%1

Here, the conditional and unconditional probability coincide, so that knowledge of the sign of the
price change provides no information on the probability that the magnitude of the change does not
exceed one.

For a probability space (S,F,P), suppose A1,...,Ak partition S; i.e., Ai1Aj =  and Ai =�k
i'1

S.  The partition generates a finite field G f F .  From the formula P(A1B) = P(A*B)P(B) satisfied
by conditional probabilities, one has for an event C 0 F  the formula

P(C) = P(C|Ai)@P(Ai).j
k

i'1

This is often useful in calculating probabilities in applications where the conditional probabilities
are available. 

3.4.  STATISTICAL INDEPENDENCE AND REPEATED TRIALS

3.4.1.  Consider a probability space (S,F,P).  Events A and C in F  are statistically independent
if P(A1C) = P(A)"P(C).  From the definition of conditional probability, if A and C are statistically
independent and P(A) > 0, then P(C*A) = P(A1C)/P(A) = P(C).  Thus, when A and C are
statistically independent, knowing that A occurs is unhelpful in calculating the probability that C
occurs.  The idea of statistical independence of events has an exact analogue in a concept of
statistical independence of subfields.  Let A = { ,A,Ac,S} and C = { ,C,Cc,S} be the subfields of
F generated by A and C, respectively.  Verify as an exercise that if A and C are statistically
independent, then so are any pair of events AN 0 A and CN 0 C.  Then, one can say that the subfields
A and C are statistically independent.  One can extend this idea and talk about statistical
independence in a collection of subfields.  Let N denote an index set, which may be finite, countable,
or non-countable.  Let Fi denote a -subfield of F  (Fi f F) for each i 0 N.  The subfields Fi  are

mutually statistically independence (MSI) if and only if P( Aj) = P(Aj)  for all finite K_
j0K

k
j0K

f N and Aj 0 Fj for j 0 K.  As in the case of statistical independence between two events (subfields),
the concept of MSI can be stated in terms of conditional probabilities:  Fi for i 0 N are mutually
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statistically independent (MSI) if, for all i 0 N, finite K f N\{i} and Aj 0 Fj for j 0 {i} cK, one has

P(Ai Aj) = P(Ai), so the conditional and unconditional probabilities are the same.  _
j0K

Example 1.  (continued) Let A = {HH,HT} denote the event of a head for the first coin, C =
{HH,TH} denote the event of a head for the second coin, D = {HH,TT} denote the event of a match,
G = {HH} the event of two heads.  The table below gives the probabilities of various events.

Event A C D G A1C A1D C1D A1C1D A1G

Prob. ½ ½ ½ 1/4 1/4 1/4 1/4 1/4 1/4

The result P(A1C) = P(A)P(C) = 1/4 establishes that A and C are statistically independent.  Verify
that A and D are statistically independent, and that C and D are statistically independent, but that
P(A1C1D) ú P(A)P(C)P(D), so that A, C, and D are not MSI.  Verify that A and G are not
statistically independent.  

Example 4.  (continued) Recall that S = ß2 with F = BqB, the product Borel -field.  Define the
subfields F1 = {A×ß A0B}, F2 = {ß×AA0B} containing information on price changes on the first
and second day, respectively.  Define C ={ ,S,(0,4),(-4,0),[0,4),(-4,0],{0}}, the subfield of B
containing information on whether a price change is positive, negative, or zero.  Define F3 to be the
-subfield of BqB generated by sets of the form A1×A2 with A1 0 C and A2 0 B; then F3 contains

quantitative information on the second day change, but only sign information on the first day change.
Suppose P is uniform on [-1,1]×[-1,1].  Then {F1,F2} are MSI.  However, {F1,F3} are not
independent. 

Example 8.  Consider S = {0, 1, 2, 3, 4, 5, 6, 7}, with F  equal to all subsets of S.  As a
shorthand, let 0123 denote {0,1,2,3}, etc.  Define the subfields 

F1 = { ,0123,4567,S},  F2 = { ,2345,0167,S}, F3 = { ,0246,1357,S},
F4 = { ,01,23,4567,0123,234567,014567,S}, 

    F5 = { ,01,23,45,67,0123,0145,0167,2345,2367,4567,012345,012367,014567,234567,S}, 
    F6 = { ,06,17,24,35,0167,0246,0356,1247,1357,2345,123457,023456,013567,012467,S}.  

The field F4 is a refinement of the field F1 (i.e., F1 f F4), and can be said to contain more information
than F1.  The field F5 is a mutual refinement of F1 and F2 (i.e., F1cF2 f F5), and is in fact the smallest
mutual refinement.  It contains all the information available in either F1 or F2.  Similarly, F6 is a
mutual refinement of F2 and F3.  The intersection of F5 and F6 is the field F2; it is the common
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information available in F5 and F6.  If, for example, F5 characterized the information available to one
economic agent, and F6 characterized the information available to a second agent, then F2 would
characterize the common information upon which they could base contingent contracts.  Suppose
P(i) = 1/8.  Then {F1, F2, F3} are MSI.  E.g., P(0123*2345) = P(0123*0246) = P(0123*234510246)
= P(0123) = 1/2.  However, {F1, F4} are not independent; e.g., 1 = P(0123*01) ú P(0123) = 1/2.  

For M f N, let FM denote the smallest -field containing Fi for all i 0 M.  Then MSI satisfies the
following theorem, which provides a useful criterion for determining whether a collection of
subfields is MSI::

Theorem 3.3. If Fi  are MSI for i 0 N, and M f N\{i}, then { Fi,FM} are MSI.  Further, Fi for i0N
are MSI if and only if {Fi,FN\i} are MSI for all i0N.  

Example 5.  (continued) If M = {2,3}, then FM / F6, and P(0123A) = ½ for each A 0 FM.  

3.4.2.  The idea of repeated trials is that an experiment, such as a coin toss, is replicated over
and over.  It is convenient to have common probability space in which to describe the outcomes of
larger and larger experiments with more and more replications.  The notation for repeated trials will
be similar to that introduced in the definition of mutual statistical independence.  Let N denote a
finite or countable index set of trials, Si a sample space for trial i, and Gi a -field of subsets of Si.
Note that (Si,Gi) may be the same for all i.  Assume that (Si, Gi) is the real line with the Borel -field,
or a countable set with the field of all subsets, or a pair with comparable mathematical properties
(i.e., Si is a complete separable metric space and Gi is its Borel field).  Let t = (s1,s2,...) = (si : i0N)

denote an ordered sequence of outcomes of trials, and SN = ×i0N Si denote the sample space of these

sequences.  Let FN = qi0NGi denote the -field of subsets of SN generated by the finite rectangles

which are sets of the form (×i0K Ai)×(×i0N\K Si) with K a finite subset of N and Ai 0 Gi for i 0 K.
The collection FN is called the product -field of subsets of SN.

Example 9.  N = {1,2,3}, Si = {0,1}, Gi = { ,{0},{1},S} is a sample space for a coin toss, coded
“1" if heads and “0" if tails.  Then SN = {s1s2s3si 0 Si} = {000, 001, 010, 011, 100, 101, 110, 111},
where 000 is shorthand for the event {0}×{0}×{0}, and so forth, is the sample space for three coin
tosses.  The field FN is the family of all subsets of SN.

For any subset K of N, define SK = ×i0K Si and GK = qi0KGi.  Then, GK is the product -field
on SK.  Define FK to be the -field on SN generated by sets of the form A×SN\K for A 0 GK.  Then GK

and FK contain essentially the same information, but GK is a field of subsets of SK and FK is a
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corresponding field of subsets of SN which contains no information on events outside of K.  Suppose
PN is a probability on (SN, FN).   The restriction of PN to (SK,GK) is a probability PK defined for A 0
GK by PK(A) = PN(A×SN\K).  The following result establishes a link between different restrictions:

Theorem 3.4. If M f K and PM, PK are restrictions of PN, then PM and PK satisfy the
compatibility condition that PM(A) = PK(A×SK\M) for all A 0 FM.

There is then a fundamental result that establishes that when probabilities are defined on all finite
sequences of trials and are compatible, then there exists a probability defined on the infinite sequence
of trials that yields each of the probabilities for a finite sequence as a restriction.

Theorem 3.5.  If PK on (SK,GK) for all finite K f N satisfy the compatibility condition, then there
exists a unique PN on (SN,FN) such that each PK is a restriction of PN.  

This result guarantees that it is meaningful to make probability statements about events such as “an
infinite number of heads in repeated coin tosses".
.

Suppose trials (Si,Gi,Pi) indexed by i in a countable set N are mutually statistically independent.
For finite K f N, let GK denote the product -field on SK.  Then MSI implies that the probability of

a set ×i0K Ai 0 GK satisfies PK(×i0K Ai) = Pj(Aj).   Then, the compatibility condition ink
j0K

Theorem 3.3 is satisfied, and that result implies the existence of a probability PN on (SN,FN) whose
restrictions to (SK,GK) for finite K f N are the probabilities PK.

3.4.3.  The assumption of statistically independent repeated trials is a natural one for many
statistical and econometric applications where the data comes from random samples from the
population, such as surveys of consumers or firms.  This assumption has many powerful
implications, and will be used to get most of the results of basic econometrics.  However, it is also
common in econometrics to work with aggregate time series data.  In these data, each period of
observation can be interpreted as a new trial.  The assumption of statistical independence across
these trials is unlikely in many cases, because in most cases real random effects do not conveniently
limit themselves to single time periods.  The question becomes whether there are weaker
assumptions that time series data are likely to satisfy that are still strong enough to get some of the
basic statistical theorems.  It turns out that there are quite general conditions, called mixing
conditions, that are enough to yield many of the key results.  The idea behind these conditions is that
usually events that are far apart in time are nearly independent, because intervening shocks
overwhelm the older history in determining the later event.  This idea is formalized in Chapter 4.
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5.  RANDOM VARIABLES, DISTRIBUTION FUNCTIONS, AND EXPECTATIONS

3.5.1.  A random variable X is a measurable real-valued function on a probability space (S,F,P).
The value of the function x = X(s) for a state of Nature s that actually occurs is termed a realization
of the random variable.  One can have many random variables defined on the same probability space;
another measurable function y = Y(s) defines a second random variable.  It is very helpful in working
with random variables to keep in mind that the random variable itself is a function of states of
Nature, and that observations are of realizations of the random variable.  Thus, when one talks about
convergence of a sequence of random variables, one is actually talking about convergence of a
sequence of functions, and notions of distance and closeness need to be formulated as distance and
closeness of functions.

3.5.2.  The term measurable in the definition of a random variable means that for each set A in
the Borel -field B of subsets of the real line, the inverse image X-1(A) / {s0S*X(s)0A} is in the
-field F of subsets of the sample space S.  The assumption of measurability is a mathematical

technicality that ensures that probability statements about the random variable are meaningful.  We
shall not make any explicit reference to measurability in basic econometrics, and shall always
assume implicitly that the random variables we are dealing with are measurable.

3.5.3.  The probability that a random variable X has a realization in a set A 0 B is given by

  F(A) / P(X-1(A)) / P({s0S*X(s)0A}).

The function F is a probability on B; it is defined in particular for half-open intervals of the form A
= (-4,x], in which case F((-4,x]) is abbreviated to F(x) and is called the distribution function (or,
cumulative distribution function, CDF) of X.   From the properties of a probability, the distribution
function has the properties

(i) F(-4) = 0 and F(+4) = 1.
(ii) F(x) is non-decreasing in x, and continuous from the right.
(iii) F(x) has at most a countable number of jumps, and is continuous except at these jumps.
(Points without jumps are called continuity points.)

Conversely, any function F that satisfies (i) and (ii) determines uniquely a probability F on B.  The
support of the distribution F is the smallest closed set A 0 B such that F(A) = 1.
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Example 5. (continued) The standard normal CDF is (x) = , obtained bym
x

&4

(2 )&1/2"e &s 2/2ds

integrating the density n(s) = .  Other examples are the CDF for the standard(2 )&1/2"e &s 2/2

exponential distribution, F(x) = 1 - e-x for x > 0, and the CDF for the logistic distribution, F(x) =

1/(1+e-x).  An example of a CDF that has jumps is F(x) = 1 - e-x/2 - for x > 0.j4

k'1 1(k$x)/2k%1

3.5.4.  If F is absolutely continuous with respect to a -finite measure  on ß; i.e., F gives
probability zero to any set that has -measure zero, then (by the Radon-Nikodym theorem) there
exists a real-valued function f on ß, called the density (or probability density function, pdf) of X,
such that 

  F(A) = f(x) (dx) mA

for every A 0 B.  With the possible exception of a set of -measure zero, F is differentiable and the
derivative of the distribution gives the density, f(x) = FN(x).  When the measure  is Lebesgue
measure, so that the measure of an interval is its length, it is customary to simplify the notation and

write F(A) = f(x)dx.mA

If F is absolutely continuous with respect to counting measure on a countable subset C of ß, then
it is called a discrete distribution, and there is a real-valued function f on C such that 

F(A) = f(x).j
x0A

Recall that the probability is itself a measure.  This suggests a notation F(A) = F(dx) that coversmA

both continuous and counting cases.  This is called a Lebesgue-Stieltjes integral.

3.5.5.  If (ß,B,F) is the probability space associated with a random variable X, and g:ß 6 ß is
a measurable function, then Y = g(X) is another random variable.  The random variable Y is

integrable with respect to the probability F if   *g(x)*F(dx) < +4;mß
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if it is integrable, then the integral g(x)F(dx) / g"dF exists, is denoted E g(X), and ismß mß
called the expectation of g(X).  When necessary, this expectation will also be denoted EXg(X) to
identify the distribution used to form the expectation.  When F is absolutely continuous with respect

to Lebesgue measure, so that F has a density f, the expectation is written   E g(X) = g(x)f(x)dx.mß
Alternately, for counting measure on the integers with density f(k), E g(X) = g(k)f(k).j%4

k'&4

The expectation of X, if it exists, is called the mean of X.  The expectation of (X - EX)2, if it
exists, is called the variance of X.  Define 1(X#a) to be an indicator function that is one if X(s) #
a, and zero otherwise.  Then, E 1(X#a) = F(a), and the distribution function can be recovered from
the expectations of the indicator functions.

Example 1.  (continued) Define a random variable X by

  X(s) = 

0 if s ' TT

1 if s ' TH or HT

2 if s ' HH

Then, X is the number of heads in two coin tosses.  For a fair coin, E X = 1.

Example 2.  (continued) Let X be a random variable defined to equal the number of heads that
appear before a tail occurs.  Then, possible values of X are the integers C = {0,1,2,...}.  Then C is
the support of X.  For x real, define [x] to be the largest integer k satisfying k # x.  A distribution

function for X, defined on the real line, is F(x) = ; the associated density
1& 2&[x%1] for 0# x

0 for 0 > x

defined on C is  f(k) = 2-k-1.  The expectation of X, obtained using evaluation of a special series from

2.1.10, is E X = k"2-k-1 = 1.j
4

k'0

Example 3.  (continued) Define a random variable X by X(s) = *s*.  Then, X is the magnitude
of the daily change in the price index.  The inverse image of an interval (a,b) with a < 0 is (-b,b) 0
F, and the inverse image of an interval (a,b) with a $ 0 is (-b,-a)c(a,b) 0 F.  Then X is measurable.
Other measurable random variables are Y defined by Y(s) = Max {0,s} and Z defined by Z(s) = s3.
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3.5.6.  Consider a random variable Y on (ß,B).  The expectation EYk is the k-th moment of Y,
and E(Y-EY)k is the k-th central moment.  Sometimes moments fail to exist.  However, if g(Y) is
continuous and bounded, then Eg(Y) always exists.  The expectation m(t) = EetY is termed the
moment generating function (mgf) of Y; it sometimes fails to exist.   Call a mgf proper if it is finite
for t in an interval around 0.  When a proper mgf exists, the random variable has finite moments of
all orders.  The expectation (t) = EetY, where  is the square root of -1, is termed the characteristic
function (cf) of Y.  The characteristic function always exists.

Example 5. (continued) A density f(x) that is symmetric about zero, such as the standard normal,

has EXk = xkf(x)dx = xkf(-x)dx + xkf(x)dx = [1 + (-1)k]xkf(x)dx = 0 form
%4

&4 m
0

&4 m
%4

0 m
%4

0

k odd.  Integration by parts yields the formula EXk = 2k  xk-1 [1-F(x)]dx for k even.  For them
%4

0

standard normal, EX2k = = (2k-1)@EX2k-2 for k > 2 using integration2@m
%4

0
(2 )&1/2"x 2k&1@e &x 2/2xdx

by parts, and EX2 = = 2@ (0) = 1.  Then, EX4 = 3 and EX6 = 15.  The2@m
%4

0
(2 )&1/2@e &x 2/2xdx

moment generating function of the standard normal is m(t) = .m
%4

&4

(2 )&1/2"e tx@e &x 2/2dx

Completing the square in the exponent gives m(t) = = .e t 2/2@m
%4

&4

(2 )&1/2@e &(x&t)2/2dx e t 2/2

3.5.7.  A measurable function X from the probability space (S,F,P) into (ßn,Bn) is termed a
random vector.  (The notation B n means BqBq...qB n times, where B is the Borel -field on the

real line.  This is also called the product -field, and is sometimes written B n = qi=1,...,n Bi, where
the Bi are identical copies of B.) The random vector can also be written XN = (X1,...,Xn) , with each
component Xi a random variable.  The distribution function (CDF) of X is 

  F(x1,...,xn) = P({sgS*X i(s) # xi for i = 1,...,n}). 
  

If A 0 B n, define F(A) = P({sgS*X(s)0A}).  If F(A) = 0 for every set A of Lebesque measure
zero, then there exists a probability density function (pdf) f(x1,...,xn) such that 



McFadden, Statistical Tools, © 2000                                                   Chapter 3-19, Page 57 
___________________________________________________________________________ 

(1)     F(x1,...,xn) =  f(y1,...,yn) dy1...dyn. m
x1

&4m
x2

&4

...m
xn

&4

F and f are termed the joint or multivariate CDF and pdf, respectively, of X.  The random variable
X1 has a distribution that satisfies
 

  F1(x1) / P({s0S*X1(s) # x1}) = F(x1,+4,...,+4).

This random variable is measurable with respect to the -subfield G1 containing the events whose
occurrence is determined by X1 alone; i.e., G1 is the family generated by sets of the form A×ß×...×ß
with A 0 B.  If F is absolutely continuous with respect to Lebesque measure on B n, then there are
associated densities f and f1 satisfying

(2)        F1(x1) = f1(y1) dy1 m
x1

y1'&4

(3)      f1(x1) = f(x1,y2,...,yn)"dy2...dyn.  m
%4

y2'&4

@ @ @m
%4

yn'&4

F1 and f1 are termed the marginal CDF and pdf, respectively, of X1. 
 

3.5.8.  Corresponding to the concept of a conditional probability, we can define a conditional
distribution: Suppose C is an event in G1 with P(C) > 0.  Then, define F(2)(x2,...,xn*C) =
F({y0ßn*y10C,y2#x2,...,yn#xn})/F1(C) to be the conditional distribution of (X2,...,Xn) given X1 0 C.
When F is absolutely continuous with respect to Lebesgue measure on ßn, the conditional
distribution can be written in terms of the joint density,

   F(2)(x2,...,xn*C) = .
my10C m

x2

y2 '&4
m

xn

yn'&4

f(y1,y2,...,yn)"dy1dy2...dyn

my10C m
%4

y2 '&4
m
%4

yn'&4

f(y1,y2,...,yn)"dy1dy2...dyn

Taking the limit as C shrinks to a point X1 = x1, one obtains the conditional distribution of (X2,...,Xn)
given X1 = x1,

   F(2)(x2,...,xn*X1=x1)
 =  ,   

m
x2

y2 '&4
m

xn

yn'&4

f(x1,y2,...,yn)"dy1dy2...dyn

f1(x1)

provided f1(x1) > 0.  Finally, associated with this conditional distribution is the conditional density
f(2)(x2,...,xn*X1=x1) = f(x1,x2,...,xn)/f1(x1).  More generally, one could consider the marginal
distributions of any subset, say X1,...Xk, of the vector X, with Xk+1,...Xn integrated out; and the
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conditional distributions of one or more of the variables Xk+1,...Xn given one or more of the
conditions X1 = x1,...,Xk = xk.

3.5.9.  Just as expectations are defined for a single random variable, it is possible to define
expectations for a vector of random variables.  For example, E(X1 - EX1)(X2-EX2) is called the
covariance of X1 and X2, and EetNX, where tN = (t1,...,tn) is a vector of constants, is a (multivariate)
moment generating function for the random vector X.  Here are some useful properties of
expectations of vectors: 

(a) If g(X) is a function of a random vector, then Eg(X) is the integral of g with respect to the
distribution of X.  When g depends on a subvector of X, then Eg(X) is the integral of g(y) with
respect to the marginal distribution of this subvector.
(b) If X and Z are random vectors of length n, and a and b are scalars, then E(aX + bZ) = aEX
+ bEZ.
(c) [Cauchy-Schwartz inequality] If X and Z are random vectors of length n, then (EXNZ)2 #
(EXNX)(EZNZ).
(d) [Minkowski Inequality] If X is a random vector of length n and r $ 1 is a scalar, then

(E* X i*
r)1/r # (E*X i*

r)1/r.jn
i'1 jn

i'1

(e) [Loeve Inequality] If X is a random vector of length n and r > 0, then E* X i*
r #jn

i'1

max(1,nr-1) E*X i*
r.jn

i'1

(f) [Jensen Inequality] If X is a random vector and g(x) is a convex function, then E g(X) $
g(EX).  If g(x) is a concave function, the inequality is reversed.

When expectations exist, they can be used to bound the probability that a random variable takes on
extreme values. 

Theorem 3.6.  Suppose X is a n×1 random vector and g is a positive scalar. 
a.  [Markov bound] If maxiE*X i* < +4, then maxiPr(*X i* > g) < maxiE*X i*/g.
b.  [Chebyshev bound] If EXNX < +4, then Pr(2X22 > g) < EXNX/g2.
c.  [Chernoff bound] If EetNX exists for all vectors t in some neighborhood of zero, then for some
positive scalars  and M, Pr(2X22 > g) < Me- g.

Proof:  All these inequalities are established by the same technique:  If r(y) is a positive non-
decreasing function of y > 0, and Er(2X2) < +4, then
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  Pr(2X2 > g) = F(dx) # [r(2x2)/r(g)]F(dx) # Er(2X2)/r(g). m2x2>g m2x2>g
Taking r(y) = y2 gives the result directly for the Chebyshev bound.  In the remaining cases, first get
a component-by-component inequality.  For the Markov bound, Pr(*X i* > g) < E*X i*/g for each i
gives the result.  For the Chernoff bound,

  Pr(2X22 > g) # [Pr(Xi > g@n-1/2) + Pr(Xi < -g@n-1/2)]jn
i'1

since if the event on the left occurs, one of the events on the right must occur.  Then apply the
inequality Pr(*X i* > g) # Er(*X i*)/r(g) with r(y) = n-1/2@ey  to each term in the right-hand-side sum.
The inequality for vectors is built up from a corresponding inequality for each component.  ~

3.5.10.  When the expectation of a random variable is taken with respect to a conditional
distribution, it is called a conditional expectation.  If F(x*C) is the conditional distribution of a
random vector X given the event C, then the conditional expectation of a function g(X) given C is
defined as 

 EX*Cg(X) = g(y)F(dy*C).m
Another notation for this expectation is E(g(X)*C).  When the distribution of the random variable
X is absolutely continuous with respect to Lebesgue measure, so that it has a density f(x), the

conditional density can be written as , and the conditional expectationf(x|C)' f(x)@1(x0C)/mC
f(s)ds

can then be written 

EX*Cg(X) =  = .mC
g(x)@f(x|C)dx

mC
g(x)@f(x)dx

mC
f(x)dx

When the distribution of X is discrete, this formula becomes

EX*Cg(X) = .
jk0C g(k)@f(k)

jk0C f(k)

The conditional expectation is actually a function on the -field C of conditioning events, and is
sometimes written EX*C g(X) or E(g(X)*C) to emphasize this dependence.

  Suppose A1,...,Ak partition the domain of X.  Then the distribution satisfies
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F(x) = F(x|Ai)@F(Ai),jk
i'1

implying

Eg(X) = g(x)F(dx) = g(x)F(dx*Ai)@F(Ai) = E{g(X)|Ai} @F(Ai).m jk
i'1 m jk

i'1

This is called the law of iterated expectations, and is heavily used in econometrics.

Example 2. (continued) Recall that X is the number of heads that appear before a tail in a
sequence of coin tosses, and that the probability of X = k is 2-k-1 for k = 0,1,... .  Let C be the event
of an even number of heads.  Then,

EX*CX = = = 2/3,jk'0,2,4,... k@2&k&1

jk'0,2,4,... 2&k&1

jj'0,1,2,... j@4&j

jj'0,1,2,... 4&j/2

where the second ratio is obtained by substituting k = 2j, and the value is obtained using the
summation formulas for a geometric series from 2.1.10.  A similar calculation for the event A of an
odd number of heads yields EX*AX = 5/3.  The probability of an even number of heads is

= 2/3.  The law of iterated expectations then givesjk'0,2,4,... 2&k&1

E X = E{X|C)@P(C) + E{X|A)@P(A) = (2/3)(2/3) + (5/3)(1/3) = 1,

which confirms the direct calculation of E X.

The concept of a conditional expectation is very important in econometrics and in economic
theory, so we will work out its properties in some detail for the case of two variables.  Suppose
random variables (U,X) have a joint density f(u,x).  The marginal density of X is defined by 

  g(x) = f(u,x)du, m
%4

u'&4

and the conditional density of U given X = x is defined by f(u*x) = f(u,x)/g(x), provided g(x) > 0.
The conditional expectation of a function h(U,X) satisfies E(h(U,X)*X=x) = Ih(u,x)f(u*x)du, and
is a function of x.  The unconditional expectation of h(U,X) satisfies

Eh(U,X) = h(u,x)f(u,x)dudx =  = EXEU*Xh(U,X); mm m
%4

x'&4 m
4

u'&4
h(u,x)f(u*x)du g(x)dx

another example of the law of iterated expectations.  The conditional mean of U given X=x is
MU*X(x) / EU*X=xU; by the law of iterated expectations, the conditional and unconditional mean are
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related by  EUU = EXEU*XU / EXMU*X(X).  The conditional variance of U is defined by V(U*x) =
EU*X(U - MU*X(x))2.  It is related to the unconditional variance by the formula

EU(U - EUU)2 = EXEU*X(U - MU*X(X) + MU*X(X) - EUU)2

      = EXEU*X(U - MU*X(X))2 + EXEU*X(MU*X(X) - EUU)2 + 2EXEU*X(U - MU*X(X))(MU*X(X) - EUU)
    = EXV(U*X) + EX(MU*X(X) - EUU)2 + 2EX(MU*X(X) - EUU)EU*X(U - MU*X(X))
    = EXV(U*X) + EX(MU*X(X) - EUU)2

 

Then, the unconditional variance equals the expectation of the conditional variance plus the variance
of the conditional expectation.  

Example 10: Suppose (U,X) are bivariate normal with means EU = µu and EX = µx, and second
moments E(U-µu)

2 = u
2, E(X-µx)

2 = x
2, and E(U-µu)(X-µx) = ux / u x.  Define

Q = ,1

1& 2
@

u&µu

u

2

%
x&µx

x

2

& 2@ @
u&µu

u

@
x&µx

x

and observe that

    .Q&
x&µx

x

2

'
1

1& 2
@

u&µu

u

& @
x&µx

x

2

The bivariate normal density is f(u,x) = [2u x(1- 2)1/2] -1@exp(-Q/2).  The marginal density of X is
normal with mean µx and variance x

2:  n(x-µx, x) = (2 x
2)-1@exp(-(x-µx)

2/2 x
2) .  This can be derived

from the bivariate density by completing the square for u in Q and integrating over u.  The
conditional density of U given X then satisfies 

  f(u*x) = [2 u x(1- 2)½]-1@exp(-Q/2)/(2 x
2)-1@exp(-(x-µx)

2/2 x
2).

  = [2 u
2(1- 2)]-½@ . exp

&1

2@(1& 2)
@

u&µu

u

& @
x&µx

x

2

Hence the conditional distribution of U, given X = x, is normal with conditional mean E(U*X=x)
= µu + u(x � µx)/ x  / µu + ux(x-µx)/ x

2 and variance V(U*X=x) / E((U-E(U*X=x))2*X=x) =

u
2(1- 2) / u

2 - ux
2/ x

2.  When U and X are joint normal random vectors with EU = µu, EX = µx,
E(U-µu)(U-µu)N = uu, E(X-µx)(X-µx)N= xx, and E(U-µu)(X-µx)N = ux, then (U*X=x) is normal with
E(U*X=x) = µu + ux xx

-1(x - µx) and V(U*X=x) = uu - ux xx
-1

 xu.  
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3.5.11.  Conditional densities satisfy f(u,x) = f(u*x)g(x) = f(x*u)h(u), where h(u) is the marginal
density of U, and hence f(u*x) = f(x*u) h(u)/g(x).  This is called Bayes Law.  When U and X are
independent, f(u,x) = h(u)"g(x), or f(u*x) = h(u) and f(x*u) = g(x).  For U and X independent, and
r(") and s(") any functions, one has E(r(U)*X=x) = Ir(u)f(u*x)du / Ir(u)h(u)du = Er(U), and
E(r(U)s(X)) = Ir(u)s(x)f(u,x)dudx = Is(x)g(x)Ir(u)f(u*x)du dx = Is(x)g(x)Er(U*x)dx =
[Es(X)][Er(U)], or cov(r(U),s(X)) = 0, provided Er(U) and Es(X) exist.  If r(u) = u - EU, then
E(r(U)*X=x) = 0 and cov(U,X) = E(U-EU)X = 0.  Conversely, suppose U and X are jointly
distributed.  If cov(r(U),s(X)) = 0 for all functions r ("), s(") such that Er(U) and Es(X) exist, then X
and U are independent.  To see this, choose r(u) = 1 for u # u*, r(u) = 0 otherwise; choose s(x) = 1
for x # x*, s(x) = 0 otherwise.  Then Er(U) = H(u*) and Es(X) = G(x*), where H and G are the
marginal cumulative distribution functions, and 0 = cov = F(u*,x*) - H(u*)"G(x*), where F is the joint
cumulative distribution function.   Hence, F(u,x) = H(u)"G(x), and X, U are independent.  

Note that cov (U,X) = 0 is not sufficient to imply U,X independent.  For example, g(x) = ½ for
-1 # x # l and f(u*x) = ½ for -1 # u-x2 # 1 is nonindependent with E(U*X=x) = x2, but cov(U,X) =
EX3 = 0.  Furthermore, E(U*X=x) / 0 is not sufficient to imply U,X independent.  For example, g(x)
= ½ for -1 # x # 1 and f(u*x)= 1/2(1 + x2) for -(1+ x2) # u # (1 + x2) is nonindependent with E
(U2*x) = (1 + x2 )2 ú E U2 = 28/15, but E(U*X=x) / 0.

Example 11. Suppose monthly family income (in thousands of dollars) is a random variable Y
with a CDF F(y) = 1 - y-2 for y > 1.  Suppose a random variable Z is one for home owners and zero
otherwise, and that the conditional probability of the event Z = 1, given Y, is (Y-1)/Y.  The
unconditional expectation of Y is 2.  The joint density of Y and Z is f(y)@g(z|y) = (2y-3) (1 - y-1) for

z = 1.  The unconditional probability of Z = 1 is then f(y)@g(z|y)dy = 1/3.  Bayes Law givesm
%4

y'1

the conditional density of Y given z = 1, f(y|z) = f(y)@g(z|y)/ f(y)@g(z|y)dy = (6y-3) (1 - y-1), som
%4

y'1

that the conditional expectation of Y given z = 1 is E(Y|Z=1) = y f(y|z)dy = 3.m
%4

y'1

Example 12. The problem of interpreting the results of medical tests illustrates Bayes Law.  A
blood test for prostate cancer is known to yield a “positive” with probability 0.9 if cancer is present,
and a false “positive” with probability of 0.2 if cancer is not present.  The prevalence of the cancer
in the population of males is 0.05.  Then, the conditional probability of cancer, given a “positive”
test result, equals the joint probability of cancer and a positive test result, (0.05)(0.9), divided by the
probability of a positive test result, (0.05)(0.9)+(0.95)(0.2), or 0.235.  Thus, a “positive” test has  a
low probability of identifying a case of cancer, and if all “positive” tests were followed by surgery,
about 75 percent of these surgeries would prove unnecessary.
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3.5.12.  The discussion of expectations will be concluded with a list of detailed properties of
characteristic functions and moment generating functions:

a.  (t) = EetY / Ecos(tY) + Esin(tY), 
b.  Z = a + bY has the cf eta (bt), 
c.  If EYk exists, then (k)(t) / dk (t)/dtk exists, satisfies the bound *dk (t)/dtk* # E*Y*k, and is
uniformly continuous, and EYk = (- )k (k)(0).  If (k)(t) exists, then EYk exists.  
d.  If Y has finite moments through order k, then (t) has a Taylor's expansion 

  (t) =  j(EY j)tj/j! + [ (k)( t) - (k)(0)]tk/k!  jk
j'0

where  is a scalar with 0 <  < 1; the Taylor's expansion satisfies the bounds 

   * (t) - j (EY j)tj/j!* # *t*kE*Y*k/k! jk&1
j'0

and

* (t) - j (EY j)tj/j!* # 2*t*kE*Y*k/k!  jk
j'0

If EYk exists, then the expression (t) = Ln (t), called the second characteristic function or
cumulant generating function, has a Taylor's expansion 

  (t) = j
jtj/j! + [ (k)( t) - (k)(t)],   jk

j'1

where (k) / dk /dtk, and  is a scalar with 0 <  < 1.  The expressions j are called the cumulants
of the distribution, and satisfy 1 = EY and 2 = Var(Y).  The expression 3/ 2

3/2 is called the
skewness, and the expression 4/ 2

2 - 3 is called the kurtosis (i.e., thickness of tails relative to
center), of the distribution.  
e.  If Y is normally distributed with mean µ and variance 2, then its characteristic function is
exp(µt- 2t2/2).  The normal has cumulants 1 = µ, 2 = 2, 3 = 4 = 0.   
f.  Random variables X and Y have identical distribution functions if and only if they have
identical characteristic functions.  
g.  If Yn 6p Y (see Chap. 4.1), then the associated characteristic functions satisfy n(t) 6 (t) for
each t.  Conversely, if Yn has characteristic function n(t) converging pointwise to a function (t)
that is continuous at t = 0, then there exists Y such that (t) is the characteristic function of Y
and Yn 6p Y.  
h.  The characteristic function of a sum of independent random variables equals the product of
the characteristic functions of these random variables, and the second characteristic function of
a sum of independent random variables is the sum of the second characteristic functions of these
variables; the characteristic function of a mean of n independently identically distributed random
variables, with characteristic function (t), is (t/n)n.  
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Similar properties hold for proper moment generating functions, with obvious modifications:
Suppose a random variable Y has a proper mgf m(t), finite for *t* < , where  is a positive constant.
Then, the following properties hold: 

a.  m(t) = EetY for *t* < .  
b.  Z = a + bY has the mgf etam(bt).  
c.  EYk exists for all k > 0, and m / dkm(t)/dtk exists and is uniformly continuous for *t* < , with
EYk = mY(0).  
d.  m(t) has a Taylor's expansion (for any k) mY(t) = (EY j)tj/j! + [m( t) - m(0)]tk/k!, where  is
a scalar with 0 <  < 1.   
e.  If Y is normally distributed with mean µ and variance 2, then it has mgf exp(µt+2t2).  
f.  Random variables X and Y with proper mgf have identical distribution functions if and only
if their mgf are identical.  
g.  If Yn 6p Y and the associated mgf are finite for *t* < , then the mgf of Yn converges pointwise
to the MGF of Y.  Conversely, if Yn have proper MGF which converges pointwise to a function
m(t) that is finite for *t* < , then there exists Y such that m(t) is the mgf of Y and Yn 6p Y.  
h.  The mgf of a sum of independent random variables equals the product of the mgf of these
random variables; the mgf of the mean of n independently identically distributed random
variables, each with proper mgf m(t), is m(t/n)n.  

The definitions of characteristic and moment generating functions can be extended to vectors of
random variables.  Suppose Y is a n×1 random vector, and let t be a n×1 vector of constants.  Then

(t) = EetNY is the characteristic function and m(t) = EetNY is the moment generating function.  The
properties of cf and mgf listed above also hold in their multivariate versions, with obvious
modifications.  For characteristic functions, two of the important properties translate to

(b’) Z = a + BY, where a is a m×1 vector and B is a m×n matrix, has cf etNa (Bt).
(e’) if Y is multivariate normal with mean µ and covariance matrix G, then its characteristic
function is exp( µNt - tNGt/2).

A useful implication of (b’) and (e’) is that a linear transformation of a multivariate normal vector
is again multivariate normal.  Conditions (c) and (d) relating Taylor’s expansions and moments for
univariate cf have multivariate versions where the expansions are in terms of partial derivatives of
various orders.  Conditions  (f) through (h) are unchanged in the multivariate version.  

The properties of characteristic functions and moment generating functions are discussed and
established in C. R. Rao Linear Statistical Inference, 2b.4, and W. Feller An Introduction to
Probability Theory, II, Chap. 13 and 15.  
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6.  TRANSFORMATIONS OF RANDOM VARIABLES

  6.1.  Suppose X is a measurable random variable on (ß,B) with a distribution F(x) that is absolutely
continuous with respect to Lebesgue measure, so that X has a density f(x).  Consider an increasing
transformation Y = H(X); then Y is another random variable.  Let h denote the inverse function of
H; i.e., y = H(x) implies x = h(y).  The distribution function of Y is given by

  G(y) = Pr(Y # y) = Pr(H(X) # y) = Pr(X # h(y)) = F(h(y)).

When h(y) is differentiable, with a derivative hN(y) = dh(y)/dy, the density of Y is obtained by
differentiating, and satisfies  g(y) = f(h(y))hN(y).  Since y / H(h(y)), one obtains by differentiation
the formula 1 / HN(h(y))hN(y), or hN(y) = 1/HN(h(y)).  Substituting this formula gives g(y) =
f(h(y))/HN(h(y)).

Example 13.  Suppose X has the distribution function F(x) = 1-e-x for x > 0, with F(x) = 0 for
x # 0; then X is said to have an exponential distribution.  Suppose Y = H(X) / log X, so that X =
h(Y) / eY.  Then, G(y) = 1-exp(-ey) and G(y) = exp(-ey)ey = exp(y-ey) for -4 < y < +4.  This is called
an extreme value distribution.  A third example is X with some distribution function F and density
f, and Y = F(X), so that for any value of X, the corresponding value of Y is the proportion of all X
that are below this value.  Let xp denote the solution to F(x) = p.  The distribution function of Y is
G(y) = F(xy) = y.  Hence, Y has the uniform density on the unit interval.

The rule for an increasing transformation of a random variable X can be extended in several
ways.  If the transformation Y = H(X) is decreasing rather than increasing, then

  G(y) = Pr(Y # y) = Pr(H(X) # y) = Pr(X $ h(y)) = 1-F(h(y)),

where h is the inverse function of H.  Differentiating,

  g(y) = f(h(y))(-hN(y)).

Then, combining cases, one has the result that for any one-to-one transformation Y = H(X) with
inverse X = h(Y), the density of Y is

  g(y) = f(h(y))*hN(y)* / f(h(y))/*HN(h(y)*.

An example of a decreasing transformation is X with the exponential density e-x for x > 0, and Y =
1/X.  Show as an exercise that G(y) = e-1/y and g(y) = e-1/y/y2.
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Consider a transformation Y = H(X) that is not one-to-one.  The interval (-4,y)  is the image of
a set Ay of x values that may have a complicated structure.  One can write

  G(y) = Pr(Y # y) = Pr(H(X) # y) = Pr(X 0 Ay) = F(Ay).

If this expression is differentiable, then its derivative gives the density.  

Example 14.  If X has a distribution F and density f, and Y = *X*, then Ay = [-y,y], implying
G(y) = F(y) - F(-y) and f(y) = f(y) + f(-y).  

Example 15.  If Y = X2, then Ay = [-y1/2,y1/2], G(y) = F(y1/2) - F(-y1/2).  Differentiating for y ú 0,
g(y) = (f(y1/2) + f(-y1/2))/2y1/2.  Applying this to the standard normal with F(x) = (x), the density of
Y is g(y) =n(y1/2)/y1/2  = (2 y)-½@e-y/2, called the chi-square with one degree of freedom.

3.6.2.  Next consider transformations of random vectors.  These transformations will permit us
to analyze sums or other functions of random variables.  Suppose X is a n×1 random vector.
Consider first the transformation Y = AX, where A is a nonsingular n×n matrix.  The following
result from multivariate calculus relates the densities of X and Y:  

Theorem 3.8. If X has density f(x), and Y = AX, with A nonsingular, then the density of Y is

  g(y) = f(A-1y)/*det(A)* .

Proof:  We will prove the result in two dimensions, leaving the general case to the reader.  First,

consider the case with a11 > 0 and a22 > 0.  One has G(y1,y2) / F(y1/a11,y2/a22).
Y1

Y2

'

a11 0

0 a22

X1

X2

Differentiating with respect to y1 and y2, g(y1,y2) / f(y1/a11,y2/a22)/a11a22.  This establishes the result

for diagonal transformations.  Second, consider  with a11 > 0 and a22 > 0.  Then
Y1

Y2

'

a11 0

a21 a22

X1

X2

G(y1,y2) / f(x1,x2)dx2dx1.
  Differentiating with respect to y1 and y2 yields m

y1/a11

x1'&4
m

(y2&a21)/a22

x2'&4

  M2G(y1,y2)/My1My2 / g(y1,y2) = (a11a22)
-1f(y1/a11,(y2-y1a21/a11)/a22).  
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This establishes the result for triangular transformations.  Finally, consider the general

transformation with a11 > 0 and a11a22-a12a21 > 0.  Apply the result for triangular
Y1

Y2

'

a11 a12

a21 a22

X1

X2

transformations first to , and second to .  This
Z1

Z2

'
1 a12/a11

0 1

X1

X2

Y1

Y2

'

a11 0

a21 a22&a12a21/a11

Z1

Z2

gives the general transformation, as .  The  density of
a11 a12

a21 a22

'

a11 0

a21 a22&a12a21/a11

1 a12/a11

0 1

Z is h(z1,z2) = f(z1-z2a12/a11,z2), and of Y is g(y1,y2) = h(y1/a11,(y2-y1a21/a11)/(a22-a12a21/a11)).
Substituting for h in the last expression and simplifying gives
 

  g(y1,y2) = f((a22y1-a12y2)/D,(a11y2-a21y1)/D)/D,
 

where D = a11a22-a12a21 is the determinant of the transformation.  
We leave as an exercise the proof of the theorem for the density of Y = AX in the general case

with A n×n and nonsingular.  First, recall that A can be factored so that A = PLDUNQN,  where P and
Q are permutation matrices, L and U are lower triangular with ones down the diagonal, and D is a
nonsingular diagonal matrix.  Write Y = PLDUQNX.  Then consider the series of intermediate
transformations obtained by applying each matrix in turn, constructing the densities as was done
previously.  ~

3.6.3.  The extension from linear transformations to one-to-one nonlinear transformations of
vectors is straightforward.  Consider Y = H(X), with an inverse transformation X = h(Y).  At a point
yo and xo = h(yo), a first-order Taylor's expansion gives

  y - yo = A(x - xo) + o(x - xo),

where A is the Jacobean matrix 

   A =  

MH 1(x o)/Mx1 ... MH 1(x o)/Mxn

| |

MH n(x o)/Mx1 ... MH n(x o)/Mxn

and the notation o(z) means an expression that is small relative to z.  Alternately, one has
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B = A-1 = .

Mh 1(y o)/My1 ... Mh 1(y o)/Myn

| |

Mh n(x o)/My1 ... Mh n(y o)/Myn

The probability of Y in the little rectangle [yo,yo+ y] is approximately equal to the probability of X
in the little rectangle [xo,xo+A-1 y].  This is the same situation as in the linear case, except there the
equality was exact.  Then, the formulas for the linear case carry over directly, with the Jacobean
matrix of the transformation replacing the linear transformation matrix A.  If f(x) is the density of
X, then g(y) = f(h(y))@*det(B)* = f(h(y))/*det(A)* is the density of Y.

Example 16. Suppose a random vector (X,Z) has a density f(x,z) for x,z > 0, and consider the
nonlinear transformation W = X@Z and Y = X/Z, which has the inverse transformation X = (WY)1/2

and Z = (W/Y)1/2.  The Jacobean matrix is B = , and det(B) = 1/2y.
W &1/2Y 1/2/2 W 1/2Y &1/2/2

W &1/2Y &1/2/2 &W 1/2Y &3/2/2

Hence, the density of (w,y) is f((wy)1/2,(w/y)1/2)/2y.

In principle, it is possible to analyze n-dimensional nonlinear transformations that are not
one-to-one in the same manner as the one-dimensional case, by working with the one-to-many
inverse transformation.  There are no general formulas, and each case needs to be treated separately.

Often in applications, one is interested in a transformation from a n×1 vector of random variables
X to a lower dimension.  For example, one may be interested in the scalar random variable S = X1

+ ...  + Xn.  If one "fills out" the transformation in a one-to-one way, so that the random variables of
interest are components of the complete transformation, then Theorem 3.6 can be applied.  In the
case of S, the transformation Y1 / S filled out by Yi = Xi for i = 2,...,n is one-to-one, with 

     . 

Y1

Y2

Y3

|

Yn

'

1 1 1 ... 1

0 1 0 ... 0

0 0 1 ... 0

| | | |

0 0 0 ... 1

X1

X2

X3

|

Xn
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Example 17.  Consider a random vector (X,Z) with a density f(x,z), and the transformation S =

X + Z and T = Z, or .  The Jacobean of this transformation is one, and its inverse is
S

T
'

1 1

0 1

X

Z

, so the density of (S,T) is g(s,t) = f(s-t,t).  The marginal density of S is then g1(s)
X

Z
'

1 &1

0 1

S

T

= f(s-t,t)dt.  If X and Z are statistically independent, so that their density is f(x,z) = f1(x)@f2(z),m
%4

t'&4

then this becomes g1(s) = f1(s-t)@f2(t)dt.  This is termed a convolution formula.m
%4

t'&4

7.  SPECIAL DISTRIBUTIONS

3.7.1. A number of special probability distributions appear frequently in statistics and
econometrics, because they are convenient for applications or illustrations, because they are useful
for approximations, or because they crop up in limiting arguments.   The tables at the end of this
Chapter list many of these distributions.  

3.7.2. Table 3.1 lists discrete distributions.  The binomial and geometric distributions are
particularly simple, and are associated with statistical experiments such as coin tosses.  The Poisson
distribution is often used to model the occurrence of rare events.  The hypergeometric distribution
is associated with classical probability experiments of drawing red and white balls from urns, and
is also used to approximate many other distributions.

3.7.3. Table 3.2 list a number of continuous distributions, including some basic distributions such
as the gamma and beta from which other distributions are constructed.  The extreme value and
logistic distributions are used in the economic theory of discrete choice, and are also of statistical
interest because they have simple closed form CDF’s.  

3.7.4. The normal distribution and its related distributions play a central role in econometrics,
both because they provide the foundation for finite-sample distribution results for regression models
with normally distributed disturbances, and because they appear as limiting approximations in large
samples even when the finite sample distributions are unknown or intractable.  Table 3.3 lists the
normal distribution, and a number of other distributions that are related to it.  The t and F
distributions appear in the theory of hypothesis testing, and the chi-square distribution appears in
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large-sample approximations.  The non-central versions of these distributions appear in calculations
of the power of hypothesis tests.

It is a standard exercise in mathematical statistics to establish the relationships between normal,
chi-square, F, and t distributions.  For completeness, we state the most important result:

Theorem 3.9.  Normal and chi-square random variables have the following properties:
(I) If S = Y1

2 + ... + Yk
2, where the Yk are independent normal random variables with means µk

and unit variances, then S has a non-central chi-square distribution with degrees of freedom
parameter k and non-centrality parameter  = µ1

2 + ... + µk
2, denoted N2(k, ).  If  = 0, this is

a (central) chi-square distribution with degrees of freedom parameter k, denoted 2(k).
(ii) If Y and S are independent, Y is normal with mean  and unit variance, and S is chi-square
with k degrees of freedom, then T = Y/(S/k)½ is non-central t-distributed with degrees of
freedom parameter k and non-centrality parameter , denoted tN(k, ).  If  = 0, this is a (central)
t-distribution with degrees of freedom parameter k, denoted t(k).
(iii) If R and S are independent, R is non-central chi-square with degrees of freedom parameter
k and non-centrality parameter , and S is central chi-square with degrees of freedom parameter
n, then F = nR/kS is non-central F-distributed with degrees of freedom parameters (k,n) and
non-centrality parameter , denoted FN(k,n, ).  If  = 0, this distribution is F-distributed with
degrees of freedom parameters (k,n), and is denoted F(k,n).
(iv) T is non-central t-distributed with degrees of freedom parameter k and non-centrality
parameter  if and only if F = T2 is non-central F-distributed with degrees of freedom
parameters (1,k) and non-centrality parameter  = 2. 

Proof: These results can be found in most classical texts in mathematical statistics; see particularly
Rao (1973), pp. 166-167, 170-172, 181-182, Johnson & Kotz (1970), Chap. 26-31, and Graybill
(1961), Chap. 4.. ~  

In applied statistics, it is important to be able to calculate values x = G-1(p), where G is the CDF
of the central chi-square, F, or t, distribution, and values p = G(x) where G is the CDF of the non-
central chi-square, F, or t distribution.  Selected points of these distributions are tabled in many
books of mathematical and statistical tables, but it is more convenient and accurate to calculate these
values within a statistical or econometrics software package.  Most current packages, including TSP,
STATA, and SST, can provide these values.

3.7.5. One of the most heavily used distributions in econometrics is the multivariate normal.  We
describe this distribution and summarize some of its properties.  A n×1 random vector Y is
multivariate normal with a vector of means µ and a positive definite covariance matrix  if it has
the density
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n(y - µ,G) = (2 )-n/2 det(G)-1/2 exp(-((y - µ)NG-1(y - µ)/2).

This density is also sometimes denoted n(y;µ,G), and the CDF denoted N(y;µ,G).  Its characteristic
function is exp( µNt - tNGt/2), and it has the moments E Y = µ and E (Y-µ)(Y-µ)N = G.  From the
characteristic function and the rule for linear transformations, one has immediately the property that
a linear transformations of a multivariate normal vector is again multivariate normal.  Specifically,
if Y is distributed N(y;µ,G), then the linear transformation Z = a + BY, which has mean a + Bµ and
covariance matrix BNGB, is distributed N(z;a + Bµ,BNGB).  The dimension of Z need not be the same
as the dimension of Y, nor does B have to be of maximum rank; if BNGB is less than full rank, then
the distribution of Z is concentrated on an affine linear subspace of dimension n through the point
a + Bµ.  Let k = (Gkk)

½ denote the standard deviation of Yk, and let kj = Gkj/ k j denote the
correlation of Yk and Yj.  Then the covariance matrix G can be written

G = = DRD,

1 0 ... 0

0 2 ... 0

! ! !

0 0 ... n

1 k12 .. k1n

k21 1 ... k2n

! ! !

kn1 kn2 .. 1

1 0 ... 0

0 2 ... 0

! ! !

0 0 ... n

where D = diag( 1,..., n) and R is the array of correlation coefficients.  

Theorem 3.10. Suppose Y is partitioned YN = (Y1N Y2N), where Y1 is m×1, and let µN = (µ1N µ2N)

and  be commensurate partitions of µ and .  Then the marginal density of Y1 is
G11 G12

G21 G22

multivariate normal with mean µ1 and covariance matrix 11.  The conditional density of Y2, given
Y1 = y1, is multivariate normal with mean µ2 + G22

-1G21(y1 - µ1) and covariance matrix 22 - G21 G11
-

1G12.  Then, the conditional mean of a multivariate normal is linear in the conditioning variables.

Proof:  The easiest way to demonstrate the theorem is to recall from Chapter 2 that the positive
definite matrix  has a Cholesky factorization  = LL N, where L  is lower triangular, and that L  has
an inverse K  that is again lower triangular.  If Z is a n×1 vector of independent standard normal
random variables (e.g., each Zi has mean zero and variance 1), then Y = µ + LZ  is normal with mean
µ and covariance matrix .  Conversely, if Y has density n(y - µ,G), then Z = K (Y - µ) is a vector
of i.i.d. standard normal random variables.  These statement use the important property of normal
random vectors that a linear transformation is again normal.  This can be shown directly by using
the formulas in Section 3.6 for densities of linear transformations, or by observing that the
(multivariate) characteristic function of Y with density n(y - µ,G) is exp( tNµ - tNGt/2), and the form
of this characteristic function is unchanged by linear transformations.
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The Cholesky construction Y = µ + LZ  provides an easy demonstration for the densities of
marginal or conditional subvectors of Y.  Partition L  and Z commensurately with (Y1N Y2N), so that

L  = and ZN = (Z1N Z2N).  Then G11 = L 11L 11N, G21 = L21 L11N,  G22 = L 22L 22N + L 21L 21N, and
L11 0

L21 L22

hence G21G11
-1 = L 21L 11

-1, implying L 22L 22N = G22 - G21G11
-1G12.  Then, Y1 = µ1 + L11Z1 has a marginal

multivariate normal density with mean µ1 and covariance matrix L 11L11N = G11.  Also, Y2 = µ2 + L21Z1

+ L 22Z2, implying Y2 = µ2 + L21L11
-1(Y1 - µ1) + L 22Z2.  Conditioned on Y1 = y1, this implies Y2 = µ2

+ G21G11
-1(y1 - µ1) + L 22Z2 is multivariate normal with mean µ2 - G21G11

-1µ1 and covariance matrix
G22 - G21G11

-1G12.  ~

The next theorem gives some additional useful properties of the multivariate normal and of
quadratic forms in normal vectors. 

Theorem 3.11.  Let Y be a n×1 random vector.  Then,
(i) If YN = (Y1N Y2N) is multivariate normal, then Y1 and Y2 are independent if and only if they
are uncorrelated.  However, Y1 and Y2 can be uncorrelated and each have a marginal normal
distribution without necessarily being independent.
(ii) If every linear combination cNY is normal, then Y is multivariate normal.
(iii) If Y is i.i.d. standard normal and A is an idempotent n×n matrix of rank k, then YNAY is
distributed 2(k).
(iv) If Y is distributed N(µ,I ) and A is an idempotent n×n matrix of rank k, then YNAY is
distributed N2(k, ) with  = µNAµ.
(v) If Y is i.i.d. standard normal and A and B are positive semidefinite n×n matrices, then
YNAY and YNBY are independent if and only if AB = 0.
(vi) If Y is distributed N(µ,I ), and A i is an idempotent n×n matrix of rank ki for I = 1,...K, then
the YNAi Y are mutually independent and distributed N2(ki, i) with i = µNA iµ if and only if
either (a) A iA j = 0 for I ú j or (b) A1 + ... + AK is idempotent.
(vii) If Y is distributed N(µ,I ), A is a positive semidefinite n×n matrix, B is a k×n matrix, and
BA = 0, then BY and YNAY are independent.
(viii) If Y is distributed N(µ,I ) and A is a positive semidefinite n×n matrix, then E YNAY =
µNAµ + tr(A).

Proof:  Results (i) and (ii) are proved in Anderson (1958), Thm. 2.4.2 and 2.6.2.  For (iii) and (iv),
write A = UUN, where this is its singular value decomposition with U a n×k column orthogonal
matrix.  Then UNY is distributed N(UNµ,I k), and the result follows from Theorem 3.8.  For (v), let k
be the rank of A and m the rank of B.  There exists a n×k matrix U of rank k and a n×m matrix V
of rank m such that A = UUN and B = VVN.  The vectors UNY and VNY are uncorrelated, hence
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independent, if and only if UNV = 0.  But AB = U(UNV)VN is zero if and only if UNV = 0 since U and
VN are of maximum rank.  For (vi), use the SVD decomposition as in (iv).  For (vii), write A = UUN
with U of maximum rank as in (v).  Then BA = (BU)UN = 0 implies BU = 0, so that BY and UNY are
independent by (i).  For (vii), E YNAY = µNAµ + E (Y-µ)NA(Y-µ) = µNAµ + tr(E (Y-µ)NA(Y-µ)) =
µNAµ +tr(A).  ~

NOTES AND COMMENTS

The purpose of this chapter has been to collect the key results from probability theory that are
used in econometrics.  While the chapter is reasonably self-contained, it is expected that the reader
will already be familiar with most of the concepts, and can if necessary refer to one of the excellent
texts in basic probability theory and mathematical statistics, such as P. Billingsley, Probability and
Measure, Wiley, 1986; or Y. Chow and H. Teicher, Probability Theory, 1997.  A classic that
provides an accessible treatment of fields of subsets, measure, and statistical independence is J.
Neveu, Mathematical Foundations of the Calculus of Probability, Holden-Day, 1965.  Another
classic that contains many results from mathematical statistics is C. R. Rao (1973) Linear Statistical
Inference and Its Applications, Wiley.  A comprehensive classical text with treatment of many
topics, including characteristic functions, is W. Feller, An Introduction to Probability Theory and
Its Applications, Vol. 1&2, Wiley, 1957.  For special distributions, properties of distributions, and
computation, a four-volume compendium by N. Johnson and S. Kotz, Distributions in Statistics,
Houghton-Mifflin, 1970, is a good source.  For the multivariate normal distribution, T. Anderson
(1958) An Introduction to Multivariate Statistical Analysis, Wiley, and F. Graybill (1961) An
Introduction to Linear Statistical Models, McGraw-Hill, are good sources.  Readers who find some
sections of this chapter unfamiliar or too dense may find it useful to first review an introductory text
at the undergraduate level, such as K. Chung, A Course in Probability Theory, Academic Press, New
York, or R. Larsen and M. Marx, Probability Theory, Prentice-Hall.
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   TABLE 3.1. SPECIAL DISCRETE DISTRIBUTIONS 
NAME & DOMAIN DENSITY MOMENTS CHAR.  FN.
1.  Binomial

n

k
p k(1&p)n&k

µ = np (1-p+pet)n

k = 0,1,...,n 0 < p < 1 2 = np(1-p) Note 1
2.  Hypergeometric

÷
r

k

w

n&k

r%w

n

µ = nr/(r+w) Note 2

k an integer
max{0,n-w} # k
& k # min{r,n}

r+w > n 
r,w,n positive integers 2 = "nrw

(r%w)2

r%w&n
r%w&1

3.  Geometric p(1-p)k µ = (1-p)/p Note 3
k = 0,1,2,... 0 < p < 1 2 = (1-p)/p2

4.  Poisson e- k/k! µ = exp[ (et-1)]
k = 0,1,2,...  > 0 2 = 2 Note 4
5.  Negative Binomial

pr(1-p)k
r%k&1

k

µ = r(1-p)/p

k = 0,1,2,... r integer, r > 0 & 0 < p < 1 2 = r(1-p)/p2 Note 5
 

NOTES
1.  µ / EX (the mean), and 2 = E(X-µ)2 (the variance).  The density is often denoted b(k;n,p).  The moment
generating function is (1-p+pet)n .  
2.  The characteristic and moment generating functions are complicated.  
3.  The characteristic function is p/(1-(1-p)et) and the moment generating function is p/(1-(1-p)et), defined for t <
-ln(1-p).  
4.  The moment generating function is exp((et-1)), defined for all t.  
5.  The characteristic function is pr/(1-(1-p)et)r, and the moment generating function is pr/(1-(1-p)et)r, defined for
t < -ln(1-p).  
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TABLE 3.2. SPECIAL CONTINUOUS DISTRIBUTIONS
NAME & DOMAIN DENSITY MOMENTS CHAR.  FN.
1.  Uniform

a # x # b 

                  1/(b-a) µ = (a+b)/2
2 = (b-a)2/12 e bt&e at

t(b&a)

Note 1
2.  Triangular (1-|x|/a)/a µ = 0

2
1&cosat

a 2t 2|x| < a 2 = a2 /6

3. Cauchy a/(a2 + (x-µ)2) none etµ-|t |

-4 < x < +4 

4.  Exponential e-x/ / µ = 1/(1- t)
x $ 0 

2 = 2 Note 2
5.  Pareto babx--b-1 µ = ab/(b-1) Note 3

x $ a 2 = ba2/(b-1)2(b-2)
6.  Gamma

x > 0             
x a&1e x/b

(a)b a

µ = ab
2 = ab2

(1- bt)-a

Note 4

7.  Beta
0 < x < 1 

xa-1(1-x)b-1(a%b)
(a) (b)

µ = a/(a+b)

2 = ab

(a%b)2(a%b%1)

Note 5

8.  Extreme Value
exp

1
b

&
x&a

b
& e &(x&a)/b

µ = a + 0.57721"b Note 6

-4 < x < +4 
2 = ( b)2/12

9.  Logistic
"1

b
exp((a&x)/b)

(1%exp((a&x)/b))2

µ = a Note 7

-4 < x < +4 
2 = ( b)2/6

 NOTES
 1.  The moment generating function is (ebt - eat)/(b-a)t, defined for all t.   
 2.  The moment generating function is 1/(1 - t), defined for t < 1/ .  
 3.  The moment generating function does not exist.  The mean exists for b > 1, the variance exists for b > 2.  
 4.  For a > 0, (a) = Io

4 x a-1e-xdx is the gamma function.  If a is an integer, (a) = (a-1)!.  
 5.  For the characteristic function, see C. R. Rao, Linear Statistical Inference, Wiley, 1973, p. 151.
 6.  The moment generating function is eat (1 - tb) for t < 1/b .  
 7.  The moment generating function is eat bt/sin( bt) for *t*< 1/2b.  
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TABLE 3.3. THE NORMAL DISTRIBUTION AND ITS RELATIVES
NAME & DOMAIN DENSITY MOMENTS CHAR.  FN.

1.  Normal
n(x-µ, )

-4 < x < +4,  > 0
(2 2)-½@exp( )(x&µ)2

2 2

µ = mean
2 = variance

exp(tµ- 2t2/2)
Note 1

2.  Standard Normal
-4 < x < +4

(x) = (2 )-½@exp(-x2/2) µ = 0
2 = 1

exp(-t2/2)

3.  Chi-Square
0 < x < +4 2(x;k) = 

x (k/2)&1"e x/2

(k/2)2k/2

µ = k
2 = 2k

k = 1,2,...

(1- t/2)-k/2

Note 2

4.  F-distribution
0 < x < +4

F(x;k,n)
k,n positive integers

µ = if n > 2

2'
2n 2(k%n&2)

k(n&2)2(n&4)

           if n > 4

Note 3

5.  t-distribution
-4 < x < +4 (

k%1
2

)(1%x 2/k)&(k%1)/2

k (
1
2

) (
1%2k

2
)

µ = 0 if k > 1
2 = k/(k-2) if k > 2

Note 4

1.  Noncentral 2(x;k, ) µ = k+ Note 5
  Chi-Squared k pos.  integer 2 = 2(k+2 )

x > 0  $ 0
2.  Noncentral F(x;k,n,) if n > 2, µ = n(k+)/k(n-2) Note 6
  F-distribution

x > 0
k,n positive integers
 $ 0

if n > 4, 2 =

2(n/k)2(k% )2%(k%2 )(n&2)

(n&2)2(n&4)

3.  Noncentral
t-distribution

t(x;k, )
k pos.  integer µ =  if k > 1

((k&1)/2)
(k/2)

Note 7

 2 = (1+ 2)k/(k-2) - µ2 
       if k > 2
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NOTES TO TABLE 3.3
1.  The density is often denoted n(x-µ, 2), and the cumulative distribution referred to as N(x-µ, 2), or simply N(µ, 2).
The moment generating function is exp(µt+2t2/2), defined for all t.  The standard normal density is often denoted n(x),
and the standard normal CDF is denoted (x).  The general normal and standard normal formulas are related by
n(x-µ, 2) = ((x-µ)/ )/  and N(x-µ, 2) = ((x-µ)/ ).  
2.  The moment generating function is (1-t/2)-k/2 for t < 2.  The Chi-Square distribution with parameter k (/ degrees of
freedom) is the distribution of the sum of squares of k independent standard normal random variables.  The Chi-Square
density is the same as the gamma density with b = 2 and a = k/2.
3.  The F-distribution is the distribution of the expression nU/kV, where U is a random variable with a Chi-square
distribution with parameter k, and V is an independent random variable with a Chi-square distribution with parameter

n.  The density is .  For n # 2, the mean does not exist, and for n # 4, the variance does not
( k%n

2
)

( k
2

) ( n
2

)
@ k

k/2n n/2x k/2&1

(n%kx)(k%n)/2

exist.  The characteristic and moment generating functions are complicated.   

4.  If Y is standard normal and Z is independently Chi-squared distributed with parameter k, then Y/  has aZ/k

T-Distribution with parameter k (/ degrees of freedom).  The characteristic function is complicated; the moment
generating function does not exist.  
5.  The Noncentral Chi-square is the distribution of the sum of squares of k independent normal random variables, each
with variance one, and with means whose squares sum to .  The Noncentral Chi-Square density is a Poisson mixture

of (central) Chi-square densities, [e- /2( /2)j/j!] 2(x;k+2j).j4

j'0

6.  The Non-central F-distribution has a density that is a Poisson mixture of rescaled (central) F-distributed densities,

[e- /2( /2)j/j!] F( ;k+2j,n).   It is the distribution of the expression nUN/kV, where UN is aj4

j'0
k

k%2j
kx

k%2j

Noncentral Chi-Squared random variable with parameters k and , and V is an independent central Chi-Squared
distribution with parameter n.  

7.  If Y is standard normal and Z is independently Chi-squared distributed with parameter k, then (Y+)/  has(Z/k)

a Noncentral T-Distribution with parameters k and .  The density is a Poisson mixture of scaled Beta distributed
densities,

 [ ( 2/2)j/j!] B( ).  j4

j'0 e&
2/2 xk

(k%x 2)2

k

k%x 2
, k
2

,1%2j
2

The square of a Noncentral T-Distributed random variable has a Noncentral F-Distribution with parameters 1, k, and
 = 2.  
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