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CHAPTER 6.  ESTIMATION

6.1.  DESIRABLE PROPERTIES OF ESTIMATORS
 

6.1.1 Consider data x that comes from a data generation process (DGP) that has a density f(x).
Suppose we do not know f(@), but do know (or assume that we know) that f(@) is a member of a
family of densities G.  The estimation problem is to use the data x to select a member of G which
is some appropriate sense is close to the true f(@).  Suppose we index the members of G by the
elements of some set , and identify f (@) with a particular index value o.  Then, another way of
stating the estimation problem is that in the family of densities f(x, ) parameterized by  0 , we
want to use the data x to estimate the true parameter value o.  The parameterization chosen for an
estimation problem is not necessarily unique; i.e., there may be more than one way to parameterize
the same family of densities G.  Sometimes this observation can be used to our advantage, by
choosing parameterizations that simplify a problem.  However, a parameterization can create
difficulties.  For example, you might set up  in such a way that more than one value of  picks out
the true density f; e.g., for some o ú 1, one has  f(x, o) = f(x, 1) for all x.   Then you are said to have
an identification problem.  Viewed within the context of a particular parameterization, identification
problems cause real statistical difficulties and have to be dealt with.  Viewed from the standpoint of
the fundamental estimation problem, they are an artificial consequence of an unfortunate choice of
parameterization.  Another possible difficulty is that the family of densities generated by your
parametric specification f(x, ),  0 , may fail to coincide with G.  A particularly critical question
is whether the true f(@) is in fact in your parametric family.  You cannot be sure that it is unless your
family contains all of G.  Classical statistics always assumes that the true density is in the parametric
family, and we will start from that assumption too.  In Chapter 28, we will ask what the statistical
properties and interpretation of parameter estimates are when the true f is not in the specified
parametric family.  A related question is whether your parametric family contains densities that are
not in G.  This can affect the properties of statistical inference; e.g., degrees of freedom for
hypothesis tests and power calculations.

In basic statistics, the parameter  is assumed to be a scalar, or possibly a finite-dimensional
vector.  This will cover many important applications, but it is also possible to consider problems
where  is infinite-dimensional.  It is customary to call estimation problems where  is finite-
dimensional parametric, and problems where  is infinite-dimensional semiparametric or
nonparametric.  (It would have been more logical to call them “finite-parametric” and “infinite-
parametric”, respectively, but the custom is too ingrained to change.)  Several chapters in the latter
half of this book, particularly Chapter 28, deal with infinite-parameter problems.

6.1.2. In most initial applications, we will think of x as a simple random sample of size n,
x = (x1,...,xn), drawn from a population in which x has a density f(x, o), so that the DGP density is
f(x, ) = f(x1, o)"..."f(xn, o).  However, the notation f(x, o) can also cover more complicated DGP, such
as time-series data sets in which the observations are serially correlated.  Suppose that o is an
unknown k×1 vector, but one knows that this DGP is contained in a family with densities f(x, )
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indexed by  0 .  An important leading case is k = 1, so that o is a scalar.  For many of the topics
in this Chapter, it is useful to concentrate first on this case, and postpone dealing with the additional
complications introduced by having a vector of parameters.  However, we will use definitions and
notation that cover the vector as well as the scalar case.  Let X denote the domain of x, and  denote
the domain of .  In the case of a simple random sample where an observation x is a point in a space
X, one has X = Xn.  The statistical inference task is to estimate o.  In Chapter 5, we saw that an
estimator T(x) of o was desirable from a Bayesian point of view if T(") minimized the expected cost
of mistakes.  For typical cost functions where the larger the mistake, the larger the cost, Bayes
estimators will try to get "close" to the true parameter value.  That is, the Bayes procedure will seek
estimators whose probability densities are concentrated tightly around the true o.  Classical
statistical procedures lack the expected cost criterion for choosing estimators, but also seek
estimators whose probability densities are near the true density f(x, o).

In this Chapter, we will denote the expectation of a function r(x, ) of x and a vector of
“parameters”  by E r(x, ), or when it is necessary to identify the parameter vector of the true DGP,

by Ex| r(x, ) =  r(x, )@f(x, )dx.  Sometimes, the notation Ex| r(x, ) is abbreviated to E r(x, ).m
%4
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This notation also applies when the parameters  are also in .  Then Ex| r(x, ) is the expectation of
r(x, ) when  is set equal to the true parameter vector , and Ex| r(x, ) is the expectation when r is
evaluated at an argument  that is not necessarily equal to the true parameter vector .  The first of
these expectations can be interpreted as a function of , and the second as a function of  and . 
 

6.1.3. Listed below are some of the properties that are deemed desirable for classical estimators.
Classical statistics often proceeds by developing some candidate estimators, and then using some
of these properties to choose among the candidates.  It is often not possible to achieve all of these
properties at the same time, and sometimes they can even be incompatible.  Some of the properties
are defined relative to a class of candidate estimators, a set of possible T(") that we will denote by
T.  The density of an  estimator T(") will be denoted (t, o), or when it is necessary to index the
estimator, T(t, o).  Sometimes the parameter vector  will consist of a subvector  that is of primary
interest for the application and a subvector  that is not.  Then,  is termed the primary parameter
vector,  is termed a nuisance parameter vector, and the DGP f(x,, ) depends on both the primary
and nuisance parameters.  In this case, the problem is often to estimate , dealing with the nuisance
parameters as expediently as possible.  One approach with fairly wide applicability is to replace 
in the DGP by some appropriate function r(x,), obtaining a concentrated DGP f(x, ,r(x, )) that is
a function only of the  parameters.  Some statistical analysis is needed to determine when this is
feasible and can be used as a device to get estimates of  with reasonable statistical properties.  A
specific choice of r(x,) that often works is the argument that solves the problem max f(x, , ).
Keep in mind that choice of parameterization is to some extent under the control of the analyst.
Then it may be possible to choose a parameterization that defines  and isolates nuisance parameters
in a way that helps in estimation of the primary parameters . 
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6.1.4. Sufficiency.  Suppose there is a one-to-one transformation from the data x into variables
(y,z).  Then the DGP density f(x, ) can be described in terms of the density of (y,z), which we might
denote g(y,z, ) and write as the product of the marginal density of y and the conditional density of
z given y, g(y,z, ) = g1(y, )"g2(z*y, ).  The relationship of the density f(x, ) and the density g(y,z, )
comes from the rules for transforming random variables; see Chapter 3.8.  Let x = x(y,z) denote the
inverse of the one-to-one transformation from x to y and z, and let J(y,z) denote the Jacobian of this
mapping; i.e., the determinant of the array of derivatives of x(y,z) with respect to its arguments,
signed so that it is positive.  Then g(y,z, ) = f(x(y,z))"J(y,z).  The Jacobian J(y,z) does not depend
on , so g(y,z, ) factors into a term depending only on y and  and a term independent of  if and
only if f(x(y,z)) factors in the same way.  

In general, both the marginal and the conditional densities depend on .  However, if the
conditional distribution of z given y is independent of , g2(z*y, ) = g2(z*y), then the variables y are
said to be sufficient for .  In this case, all of the information in the sample about  is summarized
in y, and once you know y, knowing z tells you nothing more about .  (In Chapter 5.4, we
demonstrated this by showing that the posterior density for , given y and z, depended only on y, no
matter what the prior.  Sufficiency of y is equivalent to a factorization g(y,z, ) = g1(y, )"g2(z*y) of
the density into one term depending only on y and  and a second term depending only on z and y,
where the terms g1 and g2 need not be densities; i.e., if there is such a factorization, then there is
always an additional normalization by a function of y that makes g1 and g2 into densities. This
characterization is useful for identifying sufficient statistics.  Sufficiency can also be defined with
respect to a subvector of primary parameters:  if g(y,z, , ) = g1(y, )"g2(z*y, ), then y is sufficient for

.  Another situation that could arise is g(y,z, , ) = g1(y, )"g2(z*y, , ), so the marginal distribution
of y does not depend on the nuisance parameters, but the conditional distribution of z given y
depends on all the parameters.  It may be possible in this case to circumvent estimation of the
nuisance parameters by concentrating on g1(y, ).  However, y is not sufficient for  in this case, as
g2(z*y, , ) contains additional information on , unfortunately entangled with the nuisance
parameters .

An implication of sufficiency is that the search for a good estimator can be restricted to
estimators T(y) that depend only on sufficient statistics y.  In some problems, only the full sample
x is a sufficient statistic, and you obtain no useful restriction from sufficiency.  In others there may
be many different transformations of x into (y,z) for which y is sufficient.  Then, among the
alternative sufficient statistics, you will want to choose a y that is a minimal sufficient statistic.  This
will be the case if there is no further one-to-one transformation of y into variables (u,v) such that u
is sufficient for  and of lower dimension than y.   Minimal sufficient statistics will be most useful
when their dimension is low, and/or they isolate nuisance parameters so that the marginal
distribution of y depends only on the primary parameters.

An example shows how sufficiency works.  Suppose one has a simple random sample x =
(x1,...,xn) from an exponential distribution with an unknown scale parameter .  The DGP density is
the product of univariate exponential densities, f(x, ) = ( "exp(- x1))@...@( "exp(- xn)) = n"exp(- (x1

+ ... +  xn)).  Make the one-to-one transformation y = x1 + ...  + xn, z1 = x1,..., zn-1 = xn-1, and note that
the inverse transformation implies xn = y - z1 - ...  - zn-1.  Substitute the inverse transformation into
f to obtain g(y,z) = f(x(y,z)) = n"e- y.  Then, g factors trivially into a marginal gamma density g1(y, )
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= nyn-1"e- y/(n-1)! for y, and a conditional uniform density g2(z|y) = (n-1)!/yn-1 on the simplex 0 # z1

- ...  - zn-1 # y.  Then, y is a sufficient statistic for , and one need consider only estimators for  that
are functions of the univariate statistic y = x1 + ...  + xn.  In this case, y is a minimal sufficient statistic
since obviously no further reduction in dimension is possible.

In this exponential example, there are other sufficient statistics that are not minimal.  For
example, any y such as y = (x1 + ...  + xn-2,xn-1,xn) whose components can be transformed to recover
the sum of the x’s is sufficient.  Knowing only that one can restrict the search for an estimator to
functions of such a y is not as useful as knowing that one only needs to look at the minimal sufficient
statistic.

6.1.5. Ancillarity.  As in the discussion of sufficiency, suppose there is a one-to-one
transformation from the data x into variables (y,z).  Also suppose that the parameter vector  is
composed of a vector  of primary parameters and a vector  of nuisance parameters.  Then the DGP
density can be written as the product of the marginal density of y and the conditional density of z
given y, g1(y, , )"g2(z*y, , ).  Both g1 and g2 depend in general on  and .  However, the data y are
ancillary to  if g1 does not depend on  and g2  does not depend on .  In this case, all the
information in the data about  is contained in the conditional distribution of z given y.  This implies
that the search for an estimator for  can concentrate solely on the conditional density of z given y,
and that the nuisance parameters drop out of this analysis.

An example where ancillarity is useful arises in data x = (x1,...,xn) where the xi are independent
observations from an exponential density and the sample size n is random with a Poisson density

n-1"e- /(n-1)! for n = 1,2,....  The DGP density is then n"exp(- (x1 + ... +  xn))@
n-1"e- /(n-1)!.  This

density factors into the density nyn-1"e- y, with y = x1 +...+ xn, that is now the conditional density of
y given n, times a marginal density that is a function of n, y, and , but not of .  Then, the principle
of ancillarity says that to make inferences on , one should  condition on n and not be concerned with
the nuisance parameter  that enters only the marginal density of n.

6.1.6. Admissibility.  An estimator T(") for a scalar parameter  from a class of estimators T is
admissible relative to T if there is no second estimator TN(") in T with the property that Ex|  (TN(x)
- )2 # Ex| (T(x) - )2 for all , with inequality strict for at least one  0 .   This is the same as the
definition of admissibility in statistical decision theory when the cost of a mistake is defined as mean
squared error (MSE), the expected value of the square of the difference between the estimate and
the true value of .  An inadmissible estimator is undesirable because there is an identified
alternative estimator that is more closely clustered around the true parameter value.  One limitation
of admissibility is that there will often be many admissible estimators, and this criterion does not
choose between them.  A second limitation is that one might in fact have a cost criterion that is
inconsistent with minimizing mean squared error.  Suppose, for example, you incur a cost of zero
if your estimate is no greater than a distance M from the true value, and a cost of one otherwise.
Then, you will prefer the estimator that gives a higher probability of being within distance M, even
if it occasionally has large deviations that make its MSE large.  The concept of admissibility can be
extended to vectors of parameters by saying that an estimator is admissible if it is admissible for each
linear combination of the parameter vector.
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6.1.7. Unbiasedness.  An estimator T(") is unbiased for  if Ex* T(x) /  for all ; i.e.,  /

T(x)f(x, )dx.  An estimator with this property is "centered" at the true parameter value, andm
%4
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will not systematically be too high or too low.  Unbiasedness is an intuitively appealing criterion that
is often used in classical statistics to select estimators.  However, unbiased estimators are usually
inadmissible, a conflict between two reasonable criteria.  An example illustrates the issue.  Suppose
T(@) is an unbiased estimator.  Suppose * is an arbitrary point in  and c is a small positive
constant, and define TN(@) = (1-c)T(@) + c * ; this is called a Stein shrinkage estimator.  Then 

Ex* (TN(x) - )2 = Ex*  [(1-c)(T(x) - ) - c( * - )]2 = c2( * - )2 + (1-c)2Ex*  [T(x) - ]2,

implying that  MEx* (TN(x) - )2/Mc = 2c( * - )2 - 2(1-c)E x*  [T(x) - ]2 < 0 for c sufficiently small.
Then, for a problem where ( * - )2 and E x*  [T(x) - ]2 are bounded for all  0 , one can find c for
which TN(@) has lower MSE than T(@), so that T(@) is inadmissible.

6.1.8. Efficiency.  An estimator T(") of a scalar parameter is efficient relative to an estimator TN(")
if for all  one has Ex* (T(x) - )2 # Ex* (TN(x) - )2.   The estimator T(") is efficient relative to a class
of estimators T if it is efficient relative to TN(") for all TN(") in T.  An efficient estimator provides
estimates that are most closely clustered around the true value of , by the MSE measure, among all
the estimators in T.  The limitation of efficiency is that for many problems and classes of estimators
T, there will be no efficient estimator, in that one cannot satisfy the required inequality uniformly
for all .   Note that every efficient estimator is admissible, but not every admissible estimator is
efficient.  If T contains a unique efficient estimator, then all the other estimators in T must be
inadmissible.  The concept of efficiency extends to parameter vectors by requiring that it apply to
each linear combination of the parameter vector.  The following theorem establishes an important
efficiency result for estimators that are functions of sufficient statistics:
 

Theorem 6.1. (Blackwell) If TN(") is any estimator of  from data x, and y is a sufficient statistic,
then there exists an estimator T(") that is a function solely of the sufficient statistic and that is
efficient relative to TN(").  If TN(") is unbiased, then so is T(").  If an unbiased estimator T(") is
uncorrelated with every unbiased estimator of zero, then T(") has a smaller variance than any other
unbiased estimator, and is the unique efficient estimator in the class of unbiased estimators.

Proof: Suppose there is a scalar parameter.  Make a one-to-one transformation of the data x into
(y,z), where y is the sufficient statistic, and let g1(y, )"g2(z*y) denote the DGP density.  Define T(y)
= Ez*yTN(y,z).  Write TN(y,z) -  = TN(y,z) - T(y) + T(y) - .   Then

 E(TN(y,z) - )2 = E(TN(y,z) - T(y))2 + E(T(y) - )2 + 2"E(T(y) - )"(TN(y,z) - T(y)) .

But the last term satisfies

 2"E(T(y) - )"(TN(y,z) - T(y)) = 2"Ey(T(y) - )"Ez*y(TN(y,z) - T(y)) = 0 .
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Therefore, E(TN(y,z) - )2 $ E(T(y) - )2.   If TN(y,z) is unbiased, then ET(y) = EyEz*yTN(y,z) = , and
T(") is also unbiased.  Finally, suppose T(") is uncorrelated with any estimator U(@) that is an unbiased
estimator of zero, i.e., EU(y,z) = 0 implies EU(y,z)@(T(y) - ) = 0.  Then, any unbiased TN(y,z) has
U(y,z)@= TN(y,z) - T(y) an unbiased estimator of zero, implying 

 E(TN(x) - )2 = E(TN(x) - T(x) + T(x) - )2= E(TN(x) - T(x))2 + E(T(x) - )2 + 2"ET(x)"(TN(x) - T(x))
= E(TN(x) - T(x))2 + E(T(x) - )2 > E(T(x) - )2.  

The theorem also holds for vectors of parameters, and can be established by applying the arguments
above to each linear combination of the parameter vector.  * 

6.1.9 (MVUE) If T is a class of unbiased estimators of a scalar parameter, so that Ex* TN(x) / 
for every estimator TN(") in this class, then an estimator is efficient in this class if its variance is no
larger than the variance of any other estimator in the class, and is termed a minimum variance
unbiased estimator (MVUE).  There are many problems for which no MVUE estimator exists.  We
next give a lower bound on the variance of an unbiased estimator.   If a candidate satisfies this
bound, then we can be sure that it is MVUE.  However, the converse is not true: There may be a
MVUE, its variance may still be larger than this lower bound; i.e., the lower bound may be
unobtainable.  Once again, the MVUE concept can be extended to parameter vectors by requiring
that it apply to each linear combination of parameters.  

Theorem 6.2. (Cramer-Rao Bound)   Suppose a simple random sample x = (x1,...,xN) with f(x, )
the density of an observation x.  Assume that log f(x, ) is twice continuously differentiable in a
scalar parameter , and that this function and its derivatives are bounded in magnitude by a function
that is independent of  and has a finite integral in x.  Define the Fisher information in an
observation, J = Ex*  [L log f(x, )][L log f(x, )]N.  Suppose T(x) has Ex* T(x) /  + µ( ).  Then µ()
is the bias of the estimator.  Suppose that µ() is differentiable.    Then, the variance of T(x) satisfies

 Vx* (T(x)) $ (I + L µ( ))(nJ)-1(I + L µ( ))N.  

If the estimator is unbiased, so µ() / 0, this bound reduces to 

 Vx* (T(X)) $ (nJ)-1,

so that the variance of an unbiased estimator is at least as large as the inverse of the Fisher
information in the sample.  This result continues to hold when  is a vector, with  Vx* (T(x)) a
covariance matrix and “$” interpreted to mean than the matrix difference is positive semidefinite.

Proof:  Assume  is a scalar.  Let L(x, ) = log f(xi, ), so that the DGP density is f(x, ) =jn
i'1

eL(x, ).  By construction, 
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1 / eL(x, )dx   and    + µ( ) / T(x)"eL(x, )dx.  m
%4

&4 m
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The conditions of the Lebesgue dominated convergence theorem are met, allowing differentiation
under the integral sign.  Then, differentiate each integral with respect to  to get 

 0 / L L(x, )"eL(x, )dx   and   1 + µN( ) / T(x)"L L(x, )"eL(x, )dx .m
%4

&4 m
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Combine these to get an expression for the covariance of T and L L,

 1 + µN( ) / [T(x) - ]"L L(x, )"eL(x, )dx .m
%4

&4

Apply the Cauchy-Schwartz inequality; see 3.5.9.  In this case, the inequality can be written

    (1 + µN( ))2 = # [Ex* (T(x) - )2]"]Ex* [L L(x, )]2]  .  m
%4

&4
[T(x) & ]"L L(x, )"e L(x, )dx

2

Dividing both sides by the Fisher information in the sample, which is simply the variance of the
sample score, Ex*  [L L(x, )]2, gives the bound.  

When  is k×1, one has  + µ( ) = .  Differentiating with respect to  givesm
%4

&4
T(x)eL(x, )dx

I + L µ( ) = = .  The vectorm
%4

&4
T(x) "L L(x, )"eL(x, )dx m

%4

&4
(T(x)& &µ( ))"L L(x, )"eL(x, )dx

(T(x) -  - µ( ))N, L L(x, )) has a positive semidefinite covariance matrix that can be written in

partitioned form as .  If one premultiplies this matrix by W, and
Vx* (T(x)) [I%L µ( )]

[I%L µ( )]N nJ

postmultiplies by WN, the result is positive semidefinite.  Taking W = givesI &[I%L µ( )](nJ)&1

the Cramer-Rao bound for the vector case.  ~

6.1.10. Invariance.  In some conditions, one would expect that a change in a problem should not
alter an estimate of a parameter, or should alter it in a specific way.  Generically, these are called
invariance properties of an estimator.  For example, when estimating a parameter from data obtained
by a simple random sample, the estimate should not depend on the indexing of the observations in
the sample; i.e., T(x1,...,xn) should be invariant under permutations of the observations.  A second
example is invariance with sample scale:  if Tn(x1,...,xn) denotes the estimator for a sample of size
n, and the observations all equal a constant c, then the estimator should not change with sample size,
or Tn(c,...,c) = T1(c).  A sample mean, for example, has these two invariance properties. 

Sometimes a parameter enters a DGP in such a way that there is a simple relationship between
shifts in the parameter and the shifts one would expect to observe in the data.  For example, suppose
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the density of an observation is of the form f(xi* ) / h(xi- ); in this case,  is called a location
parameter.  If the true value of  shifts up by an amount , one would expect observations on
average to shift up by the same amount .  If Tn(x1,...,xn) is an estimator of o in this problem, a
reasonable property to impose on Tn(") is that Tn(x1+ ,...,xn+ ) = Tn(x1,...,xn) + .  In this case, Tn(")
is termed location invariant.  For this problem, one can restrict attention to estimators with this
invariance property.

Another example is scale invariance.  Suppose the density of an observation has the form f(xi* )
/ "h( xi).  Then  is called a scale parameter.  If  is reduced by a proportion , one would expect
observations on average to be scaled up by .   The corresponding invariance property on an
estimator Tn(") is that Tn( "x1,..., "xn) = Tn(x1,...,xn)/ .

To illustrate the use of invariance conditions, consider the example of a simple random sample
x = (x1,...,xn) from an exponential distribution with an unknown scale parameter , with  the DGP
density f(x, ) = nexp(- (x1 + ...  + xn)).  Then y = x1 + ...  + xn is sufficient and we need consider
only estimators Tn(y).   Invariance with respect to scale implies Tn(y) = Tn(1)/y.  Invariance with
sample scale requires that if x1 = ... = xn = 1, so that y = n, then Tn(n) = T1(1).  Combining these
conditions, T1(1) = Tn(1)/n and hence Tn(y) = T1(1)/yG, so that an estimator that is a function of the
sufficient statistic and has these invariance properties must be inversely proportional to the sample
mean.

6.1.11. The next group of properties refer to the limiting behavior of estimators in a sequence
of larger and larger samples, and are sometimes called asymptotic properties.  The rationale for
employing these properties is that when one is working with a large sample, then properties that hold
in the limit will also hold, approximately, for this sample.  The reason for considering such
properties at all, rather than concentrating on the sample you actually have, is that one can use these
approximate properties to choose among estimators in situations where the exact finite sample
property cannot be imposed or is analytically intractable to work out.  

Application of asymptotic properties raises several conceptual and technical issues.  The first
question is what it would mean to increase sample size indefinitely, and whether various methods
that might be used to define this limit correspond to approximations that are likely to be relevant to
a specific problem.  There is no ambiguity when one is drawing simple random samples from an
infinite population.  However, if one samples from a finite population, a finite sequence of samples
of increasing size will terminate in a complete census of the population.  While one could imagine
sampling with replacement and drawing samples that are larger than the population, it is not obvious
why estimators that have some reasonable properties in this limit are necessarily appropriate for the
finite population.  Put another way, it is not obvious that this limit provides a good approximation
to the finite sample.  

The issue of the appropriate asymptotic limit is particularly acute for time series.  One can
imagine extending observations indefinitely through time.  This may provide approximations that
are appropriate in some situations for some purposes, but not for others.  For example, if one is
trying to estimate the timing of a particular event, a local feature of the time series, it is questionable
that extending the time series indefinitely into the past and future leads to a good approximation to
the statistical properties of the estimator of the timing of an event.  Other ways of thinking of
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increasing sample sizes for time series, such as sampling from more and more "parallel" universes,
or sampling at shorter and shorter intervals, have their own idiosyncrasies that make them
questionable as useful approximations.  

A second major issue is how the sequence of estimators associated with various sample sizes is
defined.  A conceptualization introduced in Chapter 5 defines an estimator to be a functional of the
empirical CDF of the data, T(Fn).  Then, it is natural to think of T(F(", )) as the limit of this sequence
of estimators, and the Glivenko-Cantelli theorem stated in Chapter 5.1 establishes an approximation
property that the estimator T(Fn) converges almost surely to T(F(", )) if the latter exists. This
suggests that defining estimators as “continuous” functions of the CDF leads to a situation in which
the asymptotic limit will have reasonable approximation properties in large samples.  However, tt
is important to avoid reliance on asymptotic arguments when it is clear that the asymptotic
approximation is irrelevant to the behavior of the estimator in the range of sample sizes actually
encountered.  Consider an estimation procedure which says "Ignore the data and estimate o to be
zero in all samples of size less than 10 billion, and for larger samples employ some computationally
complex but statistically sound estimator".  This procedure may technically have good asymptotic
properties, but this approximation obviously tells you nothing about the behavior of the estimator
in economic sample sizes of a few thousand observations.  

6.1.12. Consistency.  A sequence of estimators Tn(x) = Tn(x1,...,xn) for samples of size n are
consistent for o if the probability that they are more than a distance g > 0 from o goes to zero as n
increases; i.e., limn64 P(*Tn(x1,...,xn) - o* > g) = 0.  In the terminology of Chapter 4, this is weak
convergence or convergence in probability, written Tn(x1,...,xn) 6p o.  One can also talk about strong
consistency, which holds when limn64 P(supm$n*Tm(x1,...,xnN) - o* > g) = 0, and corresponds to almost
sure convergence, Tn(x1,...,xn) 6as o.

6.1.13. Asymptotic Normality.  A sequence of estimators Tn(") for samples of size n are consistent
asymptotically normal (CAN) for  if there exists a sequence rn of scaling constants such that rn 6
+4 and rn"(Tn(xn) - ) converges in distribution to a normally distributed random variable with some
mean µ = µ() and variance 2 = ( )2.  If n(t) is the CDF of Tn(xn), then Qn = rn"(Tn(xn) - ) has the
CDF P(Qn # q) =  n(  + q/rn).  From Chapter 4, one will have convergence in distribution to a
normal, rn(Tn(xn) - ) 6d Z with Z ~ N(µ, 2), if and only if for each q, the CDF of Qn satisfies

 * n(  + q/rn) - ((q-µ)/ )* = 0.  This is the conventional definition of convergence inlimn64

distribution, with the continuity of the normal CDF  permitting us to state the condition without
excepting jump points in the limit distribution.  In this setup, n(t) is converging in distribution to
1(t$ ), the CDF of the constant random variable equal to .  However, rn is blowing up at just the
right rate so that  

n(  + q/rn) has a non-degenerate asymptotic distribution, whose shape is
determined by the local shape of n in shrinking neighborhoods of .  The mean µ is termed the
asymptotic bias, and 2 is termed the asymptotic variance.  If µ = 0, the estimator is said to be
asymptotically unbiased.   An unbiased estimator will be asymptotically unbiased, but the reverse
is not necessarily true.  Often, when a sequence of estimators is said to be asymptotically normal,
asymptotic unbiasedness is taken to be part of the definition unless stated explicitly to the contrary.
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 The scaling term rn can be taken to be n1/2 in almost all finite-parameter problems, and unless it is
stated otherwise, you can assume that this is the scaling that is being used.  When it is important to
make this distinction clear, one can speak of Root-n consistent asymptotically normal (RCAN)
sequences of estimators.  

Convergence in distribution to a normal is a condition that holds pointwise for each true
parameter .  One could strengthen the property by requiring that this convergence be uniform in ;
i.e., by requiring for each g > 0 and q that there be a sample size n(g,q) beyond which sup  * ( o +
q/rn) - ((q-µ( o))/ ( o))* < g.  If this form of convergence holds, and in addition µ() and ( )2 are
continuous functions of , then the estimator is said to be consistent uniformly asymptotically normal
(CUAN).

6.1.14. Asymptotic Efficiency.  Consider a family T of sequences of estimators Tn(") that are
CUAN for a parameter  and have asymptotic bias µ() / 0.  An estimator T*(") is asymptotically
efficient relative to class T if its asymptotic variance is no larger than that of any other member of
the family.  The reason for restricting attention to the CUAN class is that in the absence of
uniformity, there exist “super-efficient” estimators, constructed in the following way:  Suppose Tn(")
is an asymptotically efficient estimator in the CUAN class.  For an arbitrary *, define Tn*( ") to equal
Tn(") if n

1/2|Tn(x) - *| $ 1, and equal to * otherwise.  This estimator will have the same asymptotic
variance as Tn(") for fixed  ú *, and an asymptotic variance of zero for  = *.  Thus, it is more
efficient.  On the other hand, it has a nasty asymptotic bias for parameter vectors that are “local” to
*, so that it is not CUAN, and would be an unattractive estimator to use in practice.  Once these

non-uniform superefficient estimators are excluded by restricting attention to the CUAN class, one
has the result that under reasonable regularity conditions, an asymptotic version of the Cramer-Rao
bound for unbiased estimators holds for CUAN estimators. 
  

6.1.15. Asymptotic sufficiency.  In some problems, sufficiency does not provide a useful
reduction of dimension in finite samples, but a weaker "asymptotic" form of sufficiency will provide
useful restrictions.  This could arise if the DGP density can be written g1(y, )"g2(z*y, ) for a
low-dimensional statistic y, but both g1 and g2 depend on  so y is not sufficient.  However, g2(z*y, )
may converge in distribution to a density that does not depend on .  Then, there is a large sample
rationale for concentrating on estimators that depend only on y.

6.2.  GENERAL ESTIMATION CRITERIA

6.2.1. It is useful to have some general methods of generating estimators that as a consequence
of their construction will have some desirable statistical properties.  Such estimators may prove
adequate in themselves, or may form a starting point for refinements that improve statistical
properties.  We introduce several such methods:

6.2.2. Analogy Estimators.  Suppose one is interested in a feature of a target population that can
be described as a functional of its  CDF F("), such as its mean, median, or variance, and write this
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feature as  = µ(F).  An analogy estimator exploits the similarity of a population and of a simple
random sample drawn from this population, and forms the estimator T(x) = µ(Fn), where µ is the
functional that produces the target population feature and Fn is the empirical distribution function.
For example, a sample mean will be an analogy estimator for a population mean.

6.2.3. Moment Estimators.  Population moments will depend on the parameter index in the
underlying DGP.  This is true for ordinary moments such as means, variances, and covariances, as
well as more complicated moments involving data transformations, such as quantiles.  Let m(x)
denote a function of an observation and Ex* m(x) = ( ) denote the population moment formed by
taking the expectation of m(x).  In a sample x = (x1,...,xn), the idea of a moments estimator is to form

a sample moment m(xi) / Enm(x), and then to use the analogy of the population and samplen &1j
n

i'1

moments to form the approximation Enm(x) . Ex*  = ( ).  The sample average of a function m(x)
of an observation can also be interpreted as its expectation with respect to the empirical distribution
of the sample; we use the notation Enm(x) to denote this empirical expectation.  The moment
estimator T(x) solves Enm(x) = (T(x)).  When the number of moment conditions equals the number
of parameters, an exact solution is normally obtainable, and T(x) is termed a classical method of
moments estimator.  When the number of moment conditions exceeds the number of parameters, it
is not possible in general to find T(x) that sets them all to zero at once.  In this case, one may form
a number of linear combinations of the moments equal to the number of parameters to be estimated,
and find T(x) that sets these linear combinations to zero.  The linear combinations in turn may be
derived starting from some metric that provides a measure of  the distance of the moments from zero,
with T(x) interpreted as a minimand of this metric.  This is called generalized method of moments
estimation.

6.2.4. Maximum likelihood estimators.  Consider the DGP density f(x, ) for a given sample as
a function of .  The maximum likelihood estimator of the unknown true value  is the statistic T(x)
that maximizes f(x, ).  The intuition behind this estimator is that if we guess a value for  that is far
away from the true o, then the probability law for this  would be very unlikely to produce the data
that are actually observed, whereas if we guess a value for  that is near the true o, then the
probability law for this  would be likely to produce the observed data.  Then, the T(x) which
maximized this likelihood, as measured by the probability law itself, should be close to the true .
The maximum likelihood estimator plays a central role in classical statistics, and can be motivated
solely in terms of its desirable classical statistical properties in large samples.

When the data are a sample of n independent observations, each with density f(x, ), then the

likelihood of the sample is f(x, ) = f(xi, ).  It is often convenient to work with the logarithmkn
i'1

of the density, l(x, ) / Log f(x, ).  Then, the Log Likelihood of the sample is L(x, ) / Log f(x, ) =
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l(xi, ).  The maximum likelihood estimator is the function t = T(x) of the data that whenjn
i'1

substituted for  maximizes f(x, ), or equivalently L(x, ).  
The gradient of the log likelihood of an observation with respect to  is denoted s(x, ) / L l(x, ),

and termed the score.  The maximum likelihood estimator is a zero of the sample expectation of the
score, Ens(x,T(x)).  Then, the maximum likelihood estimator is a special case of a moments
estimator.  

Maximum likelihood estimators will under quite general regularity conditions be consistent and
asymptotically normal.  Under uniformity conditions that rule out some odd non-uniform "super-
efficient" alternatives, they are also asymptotically efficient.   They often have good finite-sample
properties, or can be easily modified so that they do.  However, their finite-sample properties have
to be determined on a case-by-case basis.  In multiple parameter problems, particularly when there
are primary parameters  and nuisance parameters , the maximum likelihood principle can
sometimes be used to handle the nuisance parameters.  Specifically, maximum likelihood estimation
for all parameters will find the parameter values that solve max ,  L(x, , ).  But one could get the
same solution by first maximizing in the nuisance parameters , obtaining a solution  = r(x, ), and
substituting this back into the likelihood function to obtain L(x, ,r(x, )).  This is called the
concentrated likelihood function, and it can now be maximized in  alone.  The reason this can be
an advantage is that one may be able to obtain r(x, ) “formally” without having to compute it.

6.3.  ESTIMATION IN NORMALLY DISTRIBUTED POPULATIONS

6.3.1. Consider a simple random sample x = (x1,...,xn) from a population in which observations
are normally distributed with mean µ and variance 2.  Let n(v) = (2 )-1/2exp(- 2/2) denote the
standard normal density.  Then the density of observation xi is n((xi - µ)/ )/ .  The log likelihood
of the sample is 

L(x,µ, 2) = - "Log(2 ) - "Log 2 - (xi- µ)2/ 2.  
n
2

n
2

1
2 jn

i'1

We will find estimates µe and e
2 for the parameters µ and 2 using the maximum likelihood method,

and establish some of the statistical properties of these estimators.

6.3.2. The first-order-conditions for maximizing L(x,µ, 2) in µ and 2 are 

 0 = (xi-µ)/ 2 ~|  µe = xG / xi, jn
i'1 n&1jn

i'1

0 = -n/2 2 + (xi-µ)2/2 4  ~|  e
2 = (xi-xG)2.  jn

i'1 n&1jn
i'1
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The maximum likelihood estimator of µ is then the sample mean, and the maximum likelihood

estimator of 2 is the sample variance.  Define s2 = e
2"n/(n-1) = (xi-xG)2, the sample1

n&1j
n
i'1

variance with a  sample size correction.  The following result summarizes the properties of these
estimators:

Theorem 6.3. If x = (x1,...,xn) is a simple random sample from a population in which
observations are normally distributed with mean µ and variance 2, then

(1) (xG,s2) are joint minimal sufficient statistics for (µ,2).  
(2) xG is an unbiased estimator for µ, and s2 an unbiased estimator for 2.  
(3) xG is a Minimum Variance Unbiased Estimator (MVUE) for µ; s2 is MVUE for 2.  
(4) xG is Normally distributed with mean µ and variance 2/n.  
(5) (n-1)s2/ 2 has a Chi-square distribution with n-1 degrees of freedom.
(6) xG and s2 are statistically independent.
(7) n1/2(xG - µ)/s has a Student's-T distribution with n-1 degrees of freedom.
(8) (xG - µ)2/s2 has an F-distribution with 1 and n-1 degrees of freedom.

Proof:  (1)  Factor the log likelihood function as

 L(x,µ, 2) = - "Log(2 ) - "Log 2 - " (xi - xG + xG - µ)2/ 2n
2

n
2

1
2 jn

i'1

 = - "Log(2 ) - "Log 2 - " (xi - xG)2/ 2 - " (xG-µ)2/ 2n
2

n
2

1
2 jn

i'1
1
2 jn

i'1

 = - "Log(2 ) - "Log 2 - "  - (xG-µ)2/ 2
  .

n
2

n
2

1
2

(n&1)s 2

2

n
2

This implies that xG and s2 are jointly sufficient for µ and 2.   Because the dimension of (xG,s2) is the
same as the dimension of (µ,2), they are obviously minimal sufficient statistics.  

(2) The expectation of xG is E xG =  Exi = µ, since the expectation of each observationn&1jn
i'1

is µ.  Hence xG is unbiased.  To establish the expectation of s2, first form the n×n matrix M = In -
1n1nN/n, where In is the n×n identity matrix and 1n is a n×1 vector of ones.  The matrix M is
idempotent (check) and its trace satisfies tr(M) = tr(In) - tr(1n1nN/n) = n - tr(1nN1n/n) = n - 1.  The
result then follows from Theorem 3.11 (viii).  For a direct demonstration, let ZN = (x1-µ,...,xn-µ)
denote the vector of deviations of observations from the population mean.  This vector contains
independent identically distributed normal random variables with mean zero and variance 2, so that
EZZN = 2In.  Further, ZNM = (x1 - xG,...,xn - xG) and s2 = ZNM"MZ/(n-1) = ZNMZ/(n-1).  Therefore, Es2
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= E(ZNMZ)/(n-1) = E tr(ZNMZ)/(n-1) = E tr(MZZN)/(n-1) = tr(M "E(ZZN))/(n-1) = 2"tr(M )/(n-1) =
2.  Hence, s2 is unbiased.

(3) The MVUE property of xG and s2 is most easily proved by application of the Blackwell
theorem.  We already know that these estimators are unbiased.  Any other unbiased estimator of µ
then has the property that the difference of this estimator and xG, which we will denote by h(x), must
satisfy Eh(x) / 0.   Alternately, h(x) could be the difference of s2 and any other unbiased estimator

of 2.  We have condition (a) that  0 / Eh(x) / h(x)@exp( L(x,µ, 2))dx.  Striking terms that canm
%4

&4

be taken outside the integral gives condition (b) that   0 / h(x)@exp(- (xi- µ)2/2 2)dx .m
%4

&4
jn

i'1

Differentiate (b) with respect to 2 and strike out terms that can be taken outside the integral to

obtain condition (c) that  0 / h(x)@ (xi- µ)2@exp(- (xi- µ)2/2 2)dx.  Differentiatem
%4

&4
jn

i'1 jn
i'1

(b) with respect to µ, again strike out terms that can be taken outside, and use (b) to obtain condition

(d) that 0 / h(x)@ xi@exp(- (xi-µ)2/2 2)dx, which implies that Eh(x)"xG / 0.m
%4

&4
jn

i'1 jn
i'1

Differentiate (d) with respect to µ, once again strike out terms and eliminate terms that are zero by

property (b) to obtain the condition (e) that  0 / h(x)@ xi@exp(- (xi- µ)2/2 2)dx,m
%4

&4
jn

i'1 jn
i'1

which implies that  Eh(x)"xG2 = 0, and hence by (b) and (d),  Eh(x)"(xG-µ)2 = 0.  But (c) can be written
0 = Eh(x)@[((n-1)s2 + n (xG-µ)2], and this combined with the last result implies Eh(x)@s2 = 0.  Then,
the estimators xG and s2 are uncorrelated with any unbiased estimator of zero.  The Blackwell theorem
then establishes that they are the unique minimum variance estimators among all unbiased
estimators.

(4) Next consider the distribution of xG.  We use the fact that linear transformations of
multivariate normal random vectors are again multivariate normal: If Z ~ N(µ, ) and W = CZ, then
W ~ N(Cµ,C CN).  This result holds even if Z and W are of different dimensions, or C is of less
than full rank.  (If the rank of C CN is less than full, then the random variable has all its density
concentrated on a subspace.)  Now xG = Cx when C = (1/n,...,1/n).  We have  x  multivariate normal
with mean 1nµ and covariance matrix 2In, where 1n is a n×1 vector of ones and In is the n×n identity
matrix.  Therefore, xG ~ N(µC1n,

2CCN) = N(µ, 2/n).
(5) Next consider the distribution of s2.  Consider the quadratic form (x/ )NM(x/ ), where M is

the idempotent matrix  M = In - 1n1nN/n from (2).  The vector (x/ ) is independent standard normal,
so that Theorem 3.11(iii) gives the result.

(6) The matrices C = (1/n,...,1/n)  = 1nN and M = In - 1n1nN/n have CM = 0.  Then Theorem
3.11(vii) gives the result that C(x/ ) = xG/  and (x/ )NM(x/ ) = (n-1)s2/ 2 are independent.

For (7), Use Theorem 3.9(ii), and for (8), use Theorem 3.9(iii).  ~
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4.  LARGE SAMPLE PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATES

This section provides a brief and informal introduction to the statistical properties of maximum
likelihood estimators and similar estimation methods in large samples.  Consider a simple random
sample x = (x1,...,xn) from a population in which the density of an observation is f(x, o).  The DGP
density or likelihood of the sample is then f(x, ) = f(x1, )"..."f(xn, ), with o the true value of .  The
log likelihood of an observation is l(x, ) = log f(x, o), and the log likelihood of the sample is Ln(x, )

= l(xn, ).   The maximum likelihood estimator Tn(x) is a value of  which maximizesjn
i'1

Ln(x, ).  The first-order condition for this maximum is that the sample score, 

 L Ln(x, ) =  L l(xi, ) ,  jn
i'1

equal zero at  = Tn(x).  The second order condition is that the sample hessianL Ln(x, ) =

L l(xi, ) , be negative at  = T(x).  When the parameter  is more than one-dimensional, thejn
i'1

second-order condition is that the sample hessian is a negative definite matrix.
Under very mild regularity conditions, the expectation of the score of an observation is zero at

the true parameter vector.  Start from the identity exp(l(x, ))"dx / 1 and differentiate withm
%4

&4

respect to  under the integral sign to obtain the condition L l(x, )"exp(l(x, ))"dx / 0.m
%4

&4

(Regularity conditions are needed to assure that one can indeed differentiate under the integral; this
will be supplied by assuming a dominance condition so that the Lebesgue dominated convergence
theorem can be applied; see Theorem 3.1 and the discussion following.)  Then, at the true parameter
,one has Ex* L l(x, ) = 0, the condition that the population score is zero when  = o.  Another

regularity condition requires that L l(x, ) = 0 only if  = o; this has the interpretation of anEx* o

identification condition.  The maximum likelihood estimator can be interpreted as an analogy
estimator that chooses Tn(x) to satisfy a sample condition (that the sample score be zero) that is
analogous to the population score condition.  One could sharpen the statement of this analogy by
writing the population score as an explicit function of the population DGP, µ(,F(", o)) /

L l(x, ), and writing the sample score as µ(,Fn) / EnL l(x, ), where “En” stands forEx* o

empirical expectation, or sample average.  The mapping  µ(,") is linear in its second argument, and
this is enough to assure that it is continuous (in an appropriate sense) in this argument.  Then one has
almost sure convergence of µ(,Fn) to µ( ,F(", o)) for each , from the Glivenko-Cantelli theorem.
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A few additional regularity conditions are enough to ensure that this convergence is uniform in ,
and that a solution Tn(x) that sets the sample score to zero converges almost surely to the value o

that sets the population score to zero.
The basic large sample properties of maximum likelihood estimators are that, subject to suitable

regularity conditions, Tn converges in probability to the true parameter vector o, and n1/2(Tn - o)
converges in distribution to a normal random variable with mean zero and a variance which achieves
the Cramer- Rao bound for an unbiased estimator.  These results imply that in large samples, Tn will
become a more and more precise estimate of the true parameter.  Further, the convergence in
distribution to a Normal permits one to use the properties of a Normal population to construct
approximate hypothesis tests and confidence bounds, and get  approximations for significance levels
and power whose accuracy increases with sample size.  The achievement of the Cramer-Rao lower
bound on variance indicates that in large samples there are no alternative estimators which are
uniformly more precise, so MLE is the "best" one can do.  

We next list a series of regularity conditions under which the results stated above can be shown
to hold.  Only the single parameter case will be presented.  However, the conditions and results have
direct generalizations to the multiple parameter case.  This list is chosen so the conditions are easy
to interpret and to check in applications.  Note that these are conditions on the population DGP, not
on a specific sample.   Hence, "checking" means verifying that your model of the DGP and your
assumptions on distributions of random variables are logically consistent with the regularity
conditions.  They cannot be verified empirically by looking at the data, but it is often possible to set
up and carry out empirical tests that may allow you to conclude that some of the regularity conditions
fail.  There are alternative forms for the regularity conditions, as well as weaker conditions, which
give the same or similar limiting results.  The regularity conditions are quite generic, and will be
satisfied in many economic applications.  However, it is a serious mistake to assume without
checking that the DGP you assume for your problem is consistent with these conditions.  While in
most cases the mantra "I assume the appropriate regularity conditions" will work out, you can be
acutely embarrassed if your DGP happens to be one of the exceptions that is logically inconsistent
with the regularity conditions, particularly if it results in estimators that fail to have desirable
statistical properties.  Here are the conditions:

A.1. There is a single parameter  which is permitted to vary in a closed bounded subset .
The true value o is in the interior of .  
A.2. The sample observations are realizations of independently identically distributed random
variables x1,...,xn,  with a common density f(x, o).  
A.3. The density f(x, ) is continuous in , and three times continuously differentiable in , for
each x, and is "well behaved" (e.g., measurable or piecewise continuous or continuous) in x
for each .  
A.4. There exists a bound (x) on the density and its derivatives which is uniform in  and
satisfies *l(x, )* # (x), (L l(x, ))2 # (x), *L l(x, )* # (x), *L l(x, )* # (x), and

(x)2f(x* o)dx < + 4.  (Then, (x) is a dominating, square-integrable function.)  m
%4

&4
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A.5 The function ( ) = Ex|  l(x, ) has ( ) < ( o) and L ( ) ú 0 for  ú o and J = -L ( o)
> 0.  

The expression J in A.5 is termed the Fisher information in an observation.  The first two
assumptions mostly set the problem.   The restriction of the parameter to a closed bounded set
guarantees that a MLE exists, and can be relaxed by adding conditions elsewhere.  Requiring o

interior to  guarantees that the first-order condition EnL l(x,Tn(")) = 0 for a maximum holds for
large n, rather than an inequality condition for a maximum at a boundary.  This really matters
because MLE at boundaries can have different asymptotic distributions and rates of convergence
than the standard n1/2 rate of convergence to the normal.  The continuity conditions A.3 are satisfied
for most economic problems, and in some weak form are critical to the asymptotic distribution
results.  Condition A.4 gives bounds that permit exchange of the order of differentiation and
integration in forming expectations with respect to the population density.   Condition A.5 is an
identification requirement which implies there cannot be a parameter vector other than o that on
average always explains the data as well as o.

The next result establishes that under these regularity conditions, a MLE is consistent and
asymptotically normal (CAN): 

Theorem 6.4.  If A.1-A.5 hold, then a maximum likelihood estimator Tn satisfies
(1) Tn is consistent for o.  
(2) Tn is asymptotically normal: n1/2(Tn(x) - o) 6d Zo~ N(0,J-1), with J equal to the Fisher

information in an observation, J = L l(x, o)
2.  Ex* o

(3) En[L l(x,Tn)]
2 6p J  and  -EnL l(x,Tn) 6p  J.

(4) Suppose TnN is any sequence of estimators that solve equations of the form Eng(x, ) = 0,

where g is twice continually differentiable and satisfies g(x, ) = 0 if and only if  = o;Ex* o

uniform bounds *g(x, )* # (x), *L g(y, )2* # (x),  *L g(x, )* # (x), where E (x)2 < + 4;
and R = -EL g(y, o) ú 0.  Let S = Eg(x, o)

2.  Then TnN6p o and n1/2(TnN - 
*)  6d  Z1 ~ N(0,V),

where V = R-1SRN-1.  Further, V $ J-1, so that the MLE Tn is efficient relative to TnN.  Further,
Z0 and Z1 have the covariance property cov(Z0,Z1 - Z0) = 0. 

Result (2) in this theorem implies that to a good approximation in large samples, the estimator Tn

is normal with mean o and variance (nJ)-1, where J is the Fisher information in an observation.
Since this variance is the Cramer-Rao bound for an unbiased estimator, this also suggests that one
is not going to be able to find other estimators that are also unbiased in this approximation sense and
which have lower variance.  Result 3 gives two ways of estimating the asymptotic variance J-1

consistently, where we use the fact that J-1 is a continuous function of J for J ú 0, so that it can be
estimated consistently by the inverse of a consistent estimator of J..  Result (4) establishes that MLE
is efficient relative to a broad class of estimators called M-estimators.  
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Proof:  An intuitive demonstration of the Theorem will be given rather than formal proofs.  Consider
first the consistency result.  The reasoning is as follows.  Consider the expected likelihood of an
observation, 

 ( ) / l(x, ) = l(x, )f(x, o)dx. Ex* o m
%4

&4

We will argue that ( ) has a unique maximum at o.  Then we will argue that any function which
is uniformly very close to ( ) must have its maximum near o.  Finally, we argue by applying a
uniform law of large numbers that the likelihood function is with probability approaching one
uniformly very close to  for n sufficiently large.  Together, these results will imply that with
probability approaching one, Tn is close to o for n large.

Assumption A.4 ensures that ( ) is continuous, and that one can reverse the order of
differentiation and integration to obtain continuous derivatives 

 L ( ) / L l(x, )f(x, o)dx / L l(x, )  m
%4

&4
Ex* o

L ( ) / L l(x, )f(x, o)dx / L l(x, )  m
%4

&4
Ex* o

Starting from the identity 

1 / f(x, )dx / el(x, )dx, m
%4

&4 m
%4

&4

one obtains by differentiation 

 0 / L l(x, )el(x, )dx m
%4

&4

0 / [L l(x, ) + L l(x, )2]el(x, )dx m
%4

&4

Evaluated at o, these imply 0 = L ( o)  and  -L ( o) = L l(x, )2 = J .Ex* o

Assumption A.5 requires further that J ú 0, and that o is the only root of L ( ).  Hence, ( ) has
a unique maximum at o, and at no other  satisfies a first-order condition or boundary condition for
a local maximum.  

We argue next that any function which is close enough to L ( ) will have at least one root near

o and no roots far away from o.  The figure below graphs L ( ), along with a "sleeve" which is a
vertical distance  from L .  Any function trapped in the sleeve must have at least one root between

o - g1 and o  + g2, where [ o-g1, o+g2] is the interval where the sleeve intersects the axis, and must
have no roots outside this interval.  Furthermore, the uniqueness of the root o of L ( ) plus the
condition L ( o) < 0 imply that as  shrinks toward zero, so do g1 and g2.  In the graph, the sample
score intersects the axis within the sleeve, but for parameter values near two is outside the sleeve.
The last step in the consistency argument is to show that with probability approaching one the
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sample score will be entirely contained within the sleeve; i.e., that Ln(x, ) is with probability
approaching one contained in a -sleeve around ( ).  For fixed , Ln(x, ) = l(xi, ) is a sample
average of i.i.d.  random variables l(x, ) with mean ( ).  Then Kolmogorov’s SLLN implies Ln(x, )
6as ( ).  This is not quite enough, because there is a question of whether Ln(x, ) could converge
non-uniformly to ( ), so that for any n there are some values of  where Ln(x, ) is outside the
sleeve.  However, assumptions A.1, A.3, and A.4 imply max 0  *Ln(x, ) - ( )* 6as 0.  This follows
in particular because the differentiability of f(x, ) in  from A.3 and the bound on L l(x, ) from A.4
imply that l(", ) is almost surely continuous on the compact set , so that the uniform SLLN in
Chapter 4.5 applies.  This establishes that Tn6as .  

We next demonstrate the asymptotic normality of Tn.  A TaylorNs expansion about  of the
first-order condition for maximization of the log likelihood function gives 

(1)    0 = L Ln(Tn) = L Ln( ) + L Ln( )"(Tn- ) + L Ln(Tan)"(Tn- )2/2 , 

where Tan is some point between Tn and .  Define the quantities

  Bn =  L l(yi, ), Cn =  L l(yi, ), Dn =  L l(yi,Tan)n&1jn
i'1 n&1jn

i'1 n&1jn
i'1

Multiply equation (1) by n1/2/(1+n1/2*Tn- *) and let  Zn = n1/2(Tn- )/(l + n1/2*Tn- *).  Then, one gets

0 = n1/2Bn/(1+n1/2*Tn- *) + Cn Zn + DnZn(Tn- )/2.
   
We make a limiting argument on each of the terms.  First, the L l(yi, o) are i.i.d. random variables
with EL l(yi, o) = L ( o) = 0 and E[L l(yi, o)]

2 = - L ( o) = J.  Hence the Lindeberg-Levy CLT
implies Bn  6d Wo ~ N(0,J).  Second, L l(Yi, o) are i.i.d. random variables with EL l(Yi, o) = -J.
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Hence the Khinchine WLLN implies Cn 6p -J.  Third, *Dn* #  *L l(yi,Tan)* #n&1jn
i'1

(yi) 6p E (Y) < +4, by A.4 and KhinchineNs WLLN, so that *Dn* is stochasticallyn&1jn
i'1

bounded.  Furthermore, *Zn* # 1, implying Zn = Op(1).  Since Tn is consistent, (Tn - o) = op(1).
Therefore, by rule 6 in Figure 4.3, DnZn(Tn- o)/2 = op(1).

Given J/2 > g > 0, these arguments establish we can find no such that for n > no with probability
at least 1-g, we have *DnZn(Tn- o)/2* < g, *Cn+J* < g and *Bn* < M for a large constant M (since Bn

6d Wo Y Bn implies Op(1)).  In this event, *Cn* > J-g, *Bn + Cn n
1/2(Tn- o)* < g(1 + n1/2"*Tn- o*), and

*Bn* # M imply *Cn*n
1/2*Tn- o* - *Bn* # *Bn+Cnn

1/2*Tn- o)* < g"(1 - n1/2 "*Tn- o*).  This implies the
inequality (J - 2g)n1/2"*Tn- o* < M + g.  Therefore n1/2(Tn- o) = Op(1); i.e., it is stochastically bounded.
Therefore, by rule 6 in Figure 3.3, multiplying (2) by 1 + n1/2"*Tn- o* yields 0 = Bn + Cnn

1/2"*Tn- o*
+ op(1).  But Cn 6p -J < 0 implies Cn

-1 6p -J
-1.  By rule 6, (Cn+J-1)Bn = op(1) and n1/2(Tn- o) = J-1Bn +

op(1).   The limit rules in Figure 3.1 then imply J-1Bn 6d Zo ~ N(0,J-1), n1/2"*Tn- o* - J
-1Bn 6p 0, and

hence n1/2"*Tn- o* 6d Zo.  
The third result in the theorem is that J is estimated consistently by

  

(3)    Jn =  L l(yi,Tn)
2. n&1jn

i'1

 
To show this, make a TaylorNs expansion of this expression around o,
 

(4)    Jn =  l (yi, o)
2 + 2 L l(yi,Tan)"L l(yi,Tan)(Tn- o). n&1jn

i'1 n&1jn
i'1

 
We have already shown that the first term in (4) converges in probability to J.  The second term

is the product of (Tn - o) 6p 0 and an expression which is bounded by   2 (yi)
2 6pn&1jn

i'1

2EY (Y)2 < + 4, by KhinchineNs WLLN.  Hence the second term is op(1) and Jn 6p J.  
The final result in the theorem establishes that the MLE is efficient relative to any M-estimator

TnN satisfying g(yi,TnN) = 0, where g meets a series of regularity conditions.  The firstn&1jn
i'1

conclusion in this result is that TnN is consistent and n1/2(TnN- o) is asymptotically normal.  This is
actually of considerable independent interest, since many of the alternatives to MLE that are used
in econometrics for reasons of computational convenience or robustness are M-estimators.  Ordinary
least squares is a leading example of an estimator in this class.  The argument for the properties of
TnN are exactly the same as for the MLE case above, with g replacing L l.  The only difference is that
R and S are not necessarily equal, whereas for g = L l in the MLE case, we had R = S = J.  To make
the efficiency argument, consider together the TaylorNs expansions used to get the asymptotic
distributions of Tn and TnN, 
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 0 = L l(yi,Tn) = L l(yi, o) + L l(yi, o) n
1/2(Tn- o) + op(1)n&1jn

i'1 n&1jn
i'1

  

0 = g(yi,TnN) = g(yi, o) + g (Yi, o)n
1/2(TnN- o) + op(1)n&1jn

i'1 n&1jn
i'1

  
Solving these two equations gives

n1/2(Tn- o) = J-1Wn + op(1) 

n1/2(TnN- o) = R-1Un + op(1) 

with Wn = L l(yi, o) and Un = g(yi, o).  Consider any weighted averagen&1/2jn
i'1 n&1/2jn

i'1

of these equations,
 

n1/2((1- )Tn + TnN - o) = J-1(1- )Wn + R-1 Un + op(1) .  

The Lindeberg-Levy CLT implies that this expression is asymptotically normal with mean zero and
variance 

  = J-2(1- )2EL l(Y* o)
2 + R-2 2Eg(Y, o)

2 + 2J-1R-1(1- ) El (Y* o)g(Y, o) 

.  
The condition 0 / I g(y, )f(y* )dy / I g(y, )e l(y* )dy, implies, differentiating under the integral sign,

 0 / I L g(y, )el(y, )dy + I L l(y, )g(y, )el(y, )dy .  

Evaluated at o, this implies 0 / -R + EL l(Y* o)g(Y, o).  Hence, 

  = J-1(1- )2 + R-2S 2 + 2(1- )  J-1R-1R  = J-1 + [R-2S - J-1] 2. 
 
Since  $ 0 for any , this requires V = R-2S $ J-1, and hence  $ J-1.  Further, note that
 
  = var(Zo+ (Z1-Zo)) = var(Zo) + 2 var(Z1-Zo) + 2  cov(Zo,Z1- Zo) ,
 
and var(Zo) = J-1, implying
 
 2  cov(Zo, Z1 - Zo) $ - 2 var(Z1 - Zo) . 
 
Taking  small positive or negative implies cov(Zo, Z1 - Zo) = 0.  ~
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