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CHAPTER 7.   HYPOTHESIS TESTING

7.1.  THE GENERAL PROBLEM 

It is often necessary to make a decision, on the basis of available data from an experiment
(carried out by yourself or by Nature), on whether a particular proposition Ho (theory, model,
hypothesis) is true, or the converse H1 is true.  This decision problem is often encountered in
scientific investigation.   Economic examples of hypotheses are 

(a) The commodities market is efficient (i.e., opportunities for arbitrage are absent).  
(b) There is no discrimination on the basis of gender in the market for academic economists.  
(c) Household energy consumption is a necessity, with an income elasticity not exceeding one.
(d) The survival curve for Japanese cars is less convex than that for Detroit cars. 
 

Notice that none of these economically interesting hypotheses are framed directly as precise
statements about a probability law (e.g., a statement that the parameter in a family of probability
densities for the observations from an experiment takes on a specific value).  A challenging part of
statistical analysis is to set out maintained hypotheses that will be accepted by the scientific
community as true, and which in combination with the proposition under test give a probability law.
Deciding the truth or falsity of a null hypothesis Ho presents several general issues: the cost of
mistakes, the selection and/or design of the experiment, and the choice of the test.  

7.2.  THE COST OF MISTAKES 

Consider a two-by-two table that compares the truth with the result of the statistical decision.
For now, think of each of the alternatives Ho and H1 as determining a unique probability law for the
observations; these are called simple alternatives.   Later, we consider compound hypotheses or
alternatives that are consistent with families of probability laws.

Truth

H0 H1

Decision

H0 Accepted Cost = 0
Probability = 1 - α

Cost = CII
Porbability = β

H0 Rejected Cost = CI
Probability = α

Cost = 0
Probability = π = 1 - β

  
There are two possible mistakes, Type I in which a true hypothesis is rejected, and Type II in which
a false hypothesis is accepted.  There are costs associated with these mistakes -- let CI denote the cost
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associated with a Type I mistake, and CII denote the cost associated with a Type II mistake.  If the
hypothesis is true, then there is a probability α that a particular decision procedure will result in
rejection; this is also called the Type I error probability or the significance level.  If the hypothesis
is false, there is a probability β that it will be accepted; this is called the Type II error probability.
The probability π � 1-β is the probability that the hypothesis will be rejected when it is false, and is
called the power of the decision procedure.  

This table is in principle completely symmetric between the states Ho and H1:  You can call your
favorite theory Ho and hope the evidence leads to it being accepted, or call it H1 and hope the
evidence leads to Ho being rejected.  However, classical statistical analysis is oriented so that α is
chosen by design, and β requires a sometimes complex calculation.  Then, the Type I error is easier
to control.  Thus, in classical statistics, it is usually better to assign your theory between Ho and H1
so that the more critical mistake becomes the Type I mistake.  For example, suppose you set out to
test your favorite theory.  Your study will be convincing only if your theory passes a test which it
would have a high (and known) probability of failing if it is in fact false.  You can get such a
stringent test by making your theory H1 and selecting a null and a decision procedure for which α is
known and small; then your theory will be rejected in favor of Ho with large known probability 1-α
if in fact Ho rather than H1 is true.  (This will not work if you pick a "straw horse" for the null that
no one thinks is plausible.)  Conversely, if you set out to do a convincing demolition of a theory that
you think is false, then make it the null, so that there is a small known probability α of rejecting the
hypothesis if it is in fact true.

A common case for hypothesis testing is that the null hypothesis Ho is simple, but the alternative
hypothesis H1 is compound, containing a family of possible probability laws.  Then, the probability
of a Type II error depends on which member of this family is true.  Thus, the power of a test is a
function of the specific probability law in a compound alternative.  When both the null hypothesis
and alternative are compound, the probability of a Type I error is a function of which member of the
family of probability laws consistent with Ho is true.  In classical statistics, the significance level is
always defined to be the "worst case":  the largest α for any probability law consistent with the null.

Given the experimental data available and the statistical procedure adopted, there will be a trade
off between the probabilities of Type I and Type II errors.  When the cost CI is much larger than the
cost CII, a good decision procedure will make α small relative to β.  Conversely, when CI is much
smaller than CII, the procedure will make α large relative to β.  For example, suppose the null
hypothesis is that a drug is sufficiently safe and effective to be released to the market.  If the drug
is critical for treatment of an otherwise fatal disease, then CI is much larger than CII, and the decision
procedure should make α small.  Conversely, a drug to reduce non-life-threatening wrinkles should
be tested by a procedure that makes β small. 

7.3.  DESIGN OF THE EXPERIMENT 

One way to reduce the probability of Type I and Type II errors is to collect more observations
by increasing sample size.  One may also by clever design be able to get more information from a
given sample size, or more relevant information from a given data collection budget.  One has the
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widest scope for action when the data is being collected in a laboratory experiment that you can
specify.  For example, the Negative Income Experiments in the 1960's and 1970's were able to
specify experimental treatments that presented subjects with different trade offs between wage and
transfer income, so that labor supply responses could be observed.  However, even in investigations
where only natural experiments are available, important choices must be made on what events to
study and what data to collect.  For example, if a survey of 1000 households is to be made to
determine the income elasticity of the demand for energy, one can get more precision by
oversampling high income and low income households to get a greater spread of incomes.  

There is an art to designing experiments or identifying natural experiments that allow tests of a
null hypothesis without confounding by extraneous factors.  For example, suppose one wishes to test
the null hypothesis that Japanese cars have the same durability as Detroit cars.  One might consider
the following possible experiments:
 

(a) Determine the average age, by origin, of registered vehicles.  
(b) Sample the age/make of scrapped cars as they arrive at junk yards.  
(c) Draw a sample of individual new cars, and follow them longitudinally until they are scrapped.
(d) Draw a sample of individual new cars, and operate them on a test track under controlled
conditions until they fail.   

Experiment (a) is confounded by potential differences in historical purchase patterns; some of this
could be removed by econometric methods that condition on the number of original purchases in
earlier years.  Experiments (a)-(c) are confounded by possible variations in usage patterns
(urban/rural, young/old, winter roads/not).  For example, if rural drivers who stress their cars less
tend to buy Detroit cars, this factor rather than the intrinsic durability of the cars might make Detroit
cars appear to last longer.  One way to reduce this factor would be to assign drivers to car models
randomly, as might be done for example for cars rented by Avis in the "compact" category.  The
ideal way to do this is a "double blind" experiment in which neither the subject nor the data recorder
knows which "treatment" is being received, so there is no possibility that bias in selection or
response could creep in.  Most economic experimental treatments are obvious to aware subjects, so
that "double blind" designs are impossible.  This puts an additional burden on the researcher to
carefully randomize assignment of treatments and to structure the treatments so that their form does
not introduce factors that confound the experimental results.

Economists are often confronted with problems and data where a designed experiment is
infeasible and Nature has not provided a clean "natural experiment", and in addition sample frames
and protocols are not ideal.  It may nevertheless be possible to model the data generation process to
take account of sampling problems, and to use multivariate statistical methods to estimate and test
hypotheses about the separate effects of different factors.  This exercise can provide useful insights,
but must be used cautiously and carefully to avoid misattribution and misinterpretation.
Econometricians should follow the rule "Do No Harm".  When a natural experiment or data are not
adequate to resolve an economic hypothesis, econometric analysis should stop, and not be used to
dress up propositions that a righteous analysis cannot support.  Every econometric study should
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consider very carefully all the possible processes that could generate the observed data, candidly
discuss alternative explanations of observations, and avoid unsupportable claims..

7.4.  CHOICE OF THE DECISION PROCEDURE 

Suppose one thinks of hypothesis testing as a statistical decision problem, like the problem faced
by Cab Franc in Chapter 1, with a prior po that Ho is true and p1 = 1 - po that H1 is true.  Let f(x|Ho)
denote the likelihood of x if Ho is true, and f(x�H1) denote the likelihood if H1 is true.  Then, the
posterior likelihood of Ho given x is, by application of Bayes Law, q(Ho�x) = f(x�Ho)po/[f(x�Ho)po
+ f(x�H1)p1)].  The expected cost of rejecting Ho given x is then CIq(Ho�x), and the expected cost of
accepting Ho given x is CIIq(H1�x).  The optimal decision rule is then to reject Ho for x in the critical
region C where CIq(Ho�x) < CIIq(H1�x).  This inequality simplifies to CIf(x�Ho)po < CIIf(x�H1)p1,
implying

 x � C (i.e., reject Ho) if and only if f(x�H1)/f(x�Ho) > k � Cipo/CIIp1.

The expression f(x�H1)/f(x�Ho) is termed the likelihood ratio.  The optimal criterion is then to reject
Ho if and only if the likelihood ratio exceeds a threshold k.  The larger CI or po, the larger this
threshold.  

A classical statistical treatment of this problem will also pick a critical region C of x for which

Ho will be rejected, and will do so by maximizing power π = f(x�H1)dx subject to the constraint�C

α = f(x�Ho)dx.  But this is accomplished by picking C = {x�f(x�H1)/f(x�Ho) > k}, where k is�C

a constant chosen so the  constraint is satisfied.  To see why observe that if C contains a little
rectangle [x,x+δ1], where δ is a tiny positive constant, then this rectangle contributes f(x�Ho)δn to
meeting the constraint and f(x�H1)δn  to power.  The ratio f(x�H1)/f(x�Ho) then gives the rate at which
power is produced per unit of type I error probability used up. The optimal critical region will start
where this rate is the highest, and keep adding to C until by decreasing the rate threshold k until the
type I error constraint is met.  

The optimal decision rule for various prior probabilities and costs and the classical statistical test
procedure trace out the same families of procedures, and will coincide when the critical likelihood
ratio k in the two approaches is the same.  In more general classical hypothesis testing situations
where the alternative is compound, there is no longer an exact coincidence of the classical and
statistical decision theory approaches to decisions.  However, the likelihood ratio often remains a
useful basis for constructing good test procedures.  In many cases, a "best" test by some classical
statistical criterion and a test utilizing the likelihood ratio criterion will be the same or nearly the
same.  

In general, we will consider DGP which we maintain are members of a family f(x,θ) indexed by
a parameter θ.  The null hypothesis is that the true value θo of θ is contained in a set N, and the
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alternative is that it is contained in a set A, with A and N partitioning the universe Θ of possible
values of θo.  The value θe of θ that maximizes f(x,θ) over θ � Θ is the maximum likelihood
estimator.  The theory of the maximum likelihood estimator given in Chapter 6 shows that it will
have good statistical properties in large samples under mild regularity conditions.  The value θoe that
maximizes f(x,θ) over θ � N is called the constrained maximum likelihood estimator subject to the
null hypothesis.  When the null hypothesis is true, the constrained maximum likelihood estimator
will also have good statistical properties.  Intuitively, the reason is that when the null hypothesis is
true, the true parameter satisfies the hypothesis, and hence the maximum value of the constrained
likelihood will be at least as high as the value of the likelihood at the true parameter.  If an
identification condition is met, the likelihood at the true parameter converges in probability to a
larger number than the likelihood at any other parameter value.  Then, the constrained maximum
likelihood must converge in probability to the true parameter.  A rigorous proof of the properties of
constrained estimators is given in Chapter 22.  

A likelihood ratio critical region for the general testing problem is usually defined as a set of the
form

C = {x� supθ�Af(x,θ)/supθ�Nf(x,θ) > k}.

The likelihood ratio in this criterion is less than or equal to one when the maximum likelihood
estimator of θo falls in N, and otherwise is greater than one.  Then a critical region defined for some
k > 1 will include the observed vectors x that are the least likely to have been generated by a DGP
with a parameter in N.  The significance level of the test is set by adjusting k.  An equivalent way
to characterize the likelihood ratio critical region C is in terms of the log likelihood function,

C = {x� supθ�Θ  log f(x,θ) - supθ�Nlog f(x,θ) > κ = log k}.

Clearly, the log ratio in this expression equals the difference in the log likelihood evaluated at the
maximum likelihood estimator and the log likelihood evaluated at the constrained maximum
likelihood estimator.  This difference is zero if the maximum likelihood estimator is in N, and is
otherwise positive.  

The analyst will often have available alternative testing procedures in a classical testing situation.
For example, one procedure to test a hypothesis about a location parameter might  be based on the
sample mean, a second might be based on the sample median, and a third might be based on the
likelihood ratio.  Some of these procedures may be better than others in the sense of giving higher
power for the same significance level.  The ideal, as in the simple case, is to maximize the power
given the significance level.  When there is a compound alternative, so that power is a function of
the alternative, one may be able to tailor the test to have high power against alternatives of particular
importance.  In a few cases, there will be a single procedure that will have uniformly best power
against a whole range of alternatives.  If so, this will be called a uniformly most powerful test.

The figure below shows power functions for some alternative test procedures.  The null
hypothesis is that a parameter θ is zero.  Power curves A and B equal 0.05 when Ho: θ = 0 is true.
Then, the significance level of these three procedures is α = 0.05.  The significance level of D is
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much higher, 0.5.  Compare the curves A and B.  Since A lies everywhere above B and has the same
significance level, A is clearly the superior procedure.  A comparison like A and B most commonly
arises when A uses more data than B; that is, A corresponds to a larger sample.  However, it is also
possible to get a picture like this when A and B are using the same sample, but B makes poor use
of the information in the sample.

Compare curves A and C.  Curve C has significance level α = 0.05, and has lower power than
A against alternatives less than θ = 0, but better power against alternatives greater than θ = 0.  Thus,
A is a better test it we want to test against all alternatives, while C is a better test if we are mainly
interested in alternatives to the right of θ = 0 (i.e., we want to test Ho: θ � 0).  Compare curves A and
D.  Curve D has high power, but at the cost of a high probability of a Type I error.  Thus, A and  D
represent a trade off between Type I and Type II errors.  

Finally, suppose we are most interested in the alternative H1: θ = 1.5.  The procedure giving curve
A has power 0.61 against this alternative, and hence has a reasonable chance of discriminating
between Ho and H1.  On the other hand, the procedure B has power 0.32, and much less chance of
discriminating.  We would conclude that the procedure A is a moderately satisfactory statistical test
procedure, while B is of limited use.  
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7.5.  HYPOTHESIS TESTING IN NORMAL POPULATIONS 
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This section provides a summary of hypothesis test calculations for standard setups involving
data drawn from a normal population, including power calculations.  Assume that we start from a
simple random sample of size n, giving i.i.d.  observations x1,...,xn.  Recall from Chapter 6.3 that the
log likelihood of a normal random sample is

L(x,µ,σ2) = - �Log(2π) - �Log σ2 - � (xi-µ)2/σ2n
2

n
2

1
2 �

n
i�1

= - �Log(2π) - �Log σ2 - �  - (x� - µ)2
�� L(x�,s2,µ,σ2) .n

2
n
2

1
2

(n�1)s 2

σ2

n
2σ2

where the sample mean x� = xi and the sample variance s2 =  (xi-x�)2 are unbiased�
n

i�1

1
n�1 �

n

i�1

estimators of µ and σ2, respectively.  If N denotes the set of parameter values (µ,σ2) consistent with
a null hypothesis, then a likelihood ratio critical set for this hypothesis will take the form

C = {(x�,s2)� supθ�Θ L(x�,s2,µ,σ2) - supθ�N L(x�,s2,µ,σ2) > κ}.  

We consider a sequence of hypotheses and conditions.  See Chapter 3.7 for the densities and other
properties of the distributions used in this section, and Chapter 6.3 for the relation of these
distributions to data from a normal population.  The following table gives the statistical functions
that are available in many econometrics software packages; the specific notation is that used in the
Statistical Software Tools (SST) package.  Tables at the end of most statistics texts can also be used
to obtain values of the central versions of these distributions.  The direct functions give the CDF
probability for a specified argument, while the inverse functions give the argument that yields a
specified probability.
 

Distribution CDF Inverse CDF
Normal cumnorm(x) invnorm(p)
Chi-Square cumchi(x.df) invchi(p,df)
F-Distribution cumf(xdf1,df2) invf(p,df1,df2)
T-Distribution cumt(x,df) invt(p,df)
Non-central Chi-Square cumchi(x,df,δ)  NA
Non-central F-Distribution cumf(x,df1,df2,δ)  NA
Non-Central T-Distribution cumt(x,df,λ)  NA

 

In this table, df denotes degrees of freedom, and λ and δ are non-centrality parameters.  Inverse
CDF's are not available for non-central distributions in most packages, and are not needed.  In most
statistical packages, values of these functions can either be printed out or saved for further
calculations.  For example, in SST, the command “calc cumnorm(1.7)” will print out the probability
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that a standard normal random variable is less than 1.7, the command “calc p = cumnorm(1.7)” will
store the result of this calculation in the variable p for further use, and a subsequent command “calc
p” will also print out its value.

Problem 1: Testing the mean of a normal population that has known variance  
Suppose a random sample of size n from a normal population with an unknown mean µ and a

known variance σ2.  The null hypothesis is Ho: µ = µo, and the alternative is H1: µ � µo.  Verify that
the likelihood ratio, Maxµn(x�,µ,1)/n(x�,µo,1), is an increasing function of (x� - µo)2.  Hence, a test
equivalent to a likelihood ratio test can be based on (x� - µo)2.  From Chapter 6.3(8), one has the result
that under the null hypothesis, the statistic n(x� - µo)2/σ2 is distributed χ1

2.  Alternately, from Chapter
6.3(5), the square root of this expression, n1/2(x� - µo)/σ, has a standard normal distribution.  

Using the Chi-Square form of the statistic, the critical region will be values exceeding a critical
level zc, where zc is chosen so that the selected significance level α satisfies χ1

2(zc) = 1 - α.  For
example, taking α = 0.05 yields zc = 3.84146.  This comes from a statistical table, or from the SST
command “calc invchi(1- α,k)”, where α is the significance level and k is degrees of freedom.  The
test procedure rejects Ho whenever 

(1)      n(x� - µo)2/σ2 > zc = 3.84146.

Consider the power of the Chi-square test against an alternative such as µ = µ1 � µo.  The
non-centrality parameter is 

(2)     δ = n(µ1-µo)2/σ2.

For example, if µ1-µo = 1.2, σ2 = 25, and n = 100, then δ = 1.44�100/25 = 5.76.  The power is
calculated from the non-central Chi-square distribution (with 1 degree of freedom), and equals the
probability that a random draw from this distribution exceeds zc.  This probability π is readily
calculated using the SST command “calc 1 - cumchi(zc,k,δ)”.  In the example, π = calc 1 -
cumchi(3.84146,1,5.76) = 0.67006.  Then, a test with a five percent significance level has power of
67 percent against the alternative that the true mean is 1.2 units larger than hypothesized.  

An equivalent test can be carried out using the standard normal distributed form n1/2(x� - µo)/σ.
The critical region will be values of this expression that in magnitude exceed a critical level wc,
where wc is chosen for a specified significance level α so that a draw from a standard normal density
has probability α/2 of being below -wc, and symmetrically a probability α/2 of being above +wc.  One
can find wc from statistical tables, or by using a SST command “calc invnorm(1-α/2)”.  For example,
if α = 0.05, then wc = calc invnorm(0.975) = 1.95996.  The test rejects Ho whenever 

(3)   n1/2(x� - µo)/σ < -wc or n1/2(x� - µo)/σ > wc.

For example, if n = 100, σ = 5, and µo = 0, the critical region for a test with significance level α =
0.05 is 10 x�/5 < -1.95996 or 10x�/5 > +1.95996.  Note that wc

2 = zc, so this test rejects exactly when
the Chi-square test rejects.  The power of the test above against the alternative µ = µ1 � µo is the
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probability that the random variable n1/2(x� - µo)/σ lies in the critical region when x� ~ N(µ1,σ2).  In this
case, n1/2(x� - µ1)/σ � Y is standard normal, and therefore n1/2(x� - µo)/σ � Y + λ, where 

(4)      λ = n1/2(µ1 - µo)/σ.  

Note that λ2 = δ, where δ is given in (2).  The probability of rejection in the left tail is Pr(n1/2(x� - µo)/σ
< -wc�µ = µ1) = Pr(Y < - wc- λ).  For the right tail, Pr(n1/2(x� - µo)/σ > wc�µ = µ1) = Pr(Y > wc- λ).
Using the fact that the standard normal is symmetric, we then have 

(5)     π = Φ(-wc- λ) + 1 - Φ(wc- λ) � Φ(-wc- λ) + Φ(-wc+ λ).  

This can be calculated using the SST command 

     π = calc cumnorm(-wc-λ) + cumnorm(-wc+λ).

For example, σ = 5, N = 100, µ1- µo = 1.2, wc = 1.95996 give δ = 2.4 and power π = calc
cumnorm(-wc - 2.4) + cumnorm(-wc + 2.4) = 0.670.  Note this is the same as the power of the
Chi-square version of the test.   

Suppose that instead of testing the null hypothesis Ho: µ = µo against the alternative H1: µ � µo,
you want to test the one-sided hypothesis Ho: µ � µo against the alternative H1: µ > µo.  The

likelihood ratio in this case is n(x�,µ,σ2)/ n(x�,µ,σ2), which is constant for x� � µoSupµ>µo
Supµ�µo

and is monotone increasing in (x� - µo) for x� > µo.  Hence, a test that rejects Ho for x� - µo large appears
desirable.  This suggests using a test based on the statistic n1/2(x�-µo)/σ, which is normal with variance
one, and has a non-positive mean under the null.  Pick a critical level wc > 0 such that 

 Prob(n1/2(x�-µ)/σ > wc) = α.Supµ�µo

Note that the sup is taken over all the possible true µ consistent with Ho, and that α is the selected
significance level.  The maximum probability of Type I error is achieved when µ = µo.  (To see this,
note that Prob(n1/2(x�-µo)/σ > wc) � Pr(Y � n1/2(x�-µ)/σ > wc + n1/2(µo- µ)/σ, where µ is the true value.
Since Y is standard normal, this probability is largest over µ � µo at µ = µo.) Then, wc is determined
to give probability α that a draw from a standard normal exceeds wc.  For example, if n = 100, α =
0.05, σ = 5, and Ho is that µ � 0, then wc = calc invnorm(0.95) = 1.64485.  The power of the test of
µ � µo = 0 against the alternative µ = µ1 = 1.2 is given by 

(6)     π = Pr(n1/2(x�-µo)/σ > wc�µ = µ1) � Pr(Y � n1/2(x�-µ1)/σ > wc - λ) 
� 1 - Φ(wc- λ) � Φ(-wc+ λ) � calc cumnorm(-wc + λ), 

where λ is given in (4).  In the example, π = calc cumnorm(- 1.64485 + 2.4) = 0.775.  Hence, a test
which has a probability of at most α = 0.05 of rejecting the null hypothesis when it is true has power
0.775 against the specific alternative µ1 = 1.2.



McFadden, Statistical Tools © 2000                     Chapter 7-11, Page 151
______________________________________________________________________________

 Problem 2.  Testing the Mean of a Normal Population with Unknown Variance  
This problem is identical to Problem 1, except that σ2 must now be estimated.  Use the estimator

s2 for σ2 in the Problem 1 test statistics.  From Chapter 6.3(8), the Chi-square test statistic with σ
replaced by s, F = n(x� - µo)2/s2, has an F-distribution with degrees of freedom 1 and N-1.  Hence, to
test Ho: µ = µo against the alternative H1: µ � µo, find a critical level zc such that a specified
significance level α equals the probability that a draw from F1,n-1 exceeds zc.  The SST function calc
zc = invf(1-α,1,n-1) gives this critical level; it can also be found in standard tables.  For n = 100 and
α = 0.05, the critical level is zc = 3.93694.

The power of the test against an alternative µ1 is the probability that the statistic F exceeds zc.
Under this alternative, F has a non-central F-distribution (from Chapter 3.9) with the non-centrality
parameter δ = n(µ1- µo)2/σ2 given in (2).  Then, the power is given by 

(7)    π = calc 1 - cumf(zc,1,n-1,δ).  

In the example with µ1- µo = 1.2 and σ2 = 25, one has δ = 144/25, and the power is

(8)    π = calc 1 - cumf(3.93694,1,99,144/25) = 0.662.  

The non-centrality parameter is defined using the true σ2 rather than the estimate s2.  Calculating
power at an estimated non-centrality parameter δe = n(µ1- µo)2/s2 introduces some error -- you will
evaluate the power curve at a point somewhat different than you would like.  For most practical
purposes, you do not need an exact calculation of power; you are more interested in whether it is 0.1
or 0.9.  Then, the error introduced by this approximation can be ignored.  In particular, for large
sample sizes where the power against economically interesting alternatives is near one, this error is
usually negligible.  Note that δ/δe = s2/σ2, so (n-1)δ/δe is distributed χ2(n-1).  For the rare application
where you really need to know how precise your power calculation is, you can form a confidence
interval as follows:  Given a "significance level" α, compute z1 = calc invchi(α/2,n-1) and z2 = calc
invchi(1-α/2,n-1).  Then, with probability α, δ1 � z1δe/(n-1) < δ < z1δe/(n-1) � δ2.  The power π1
calculated at δ1 and the power π2 calculated at δ2 give a α-level confidence bound on the exact power.
For example, α = 0.5, n = 100, µ1 - µo = 1.2, and s2 = 25 imply δe = 144/25, z1 = calc invchi(.25,99)
= 89.18, δ1 = 5.189, and π1 = calc 1-cumf(3.93694,1,99,5.189) = 0.616.  Also, z2 = calc
invchi(.75,99) = 108.093, δ2 = 6.289, and π2 = calc 1-cumf(3.93694,1,99,6.289) = 0.700.  Then, with
probability 0.5, the exact power for the alternative µ1 - µo = 2 is in the interval [0.616,0.700].  

The test of Ho: µ = µo can be carried out equivalently using

(9)     T = n1/2(x� - µo)/s, 

which by Chapter 6.3(7) has a t-distribution with n-1 degrees of freedom under Ho: µ = µo.  For a
significance level α, choose a critical level wc, and reject the null hypothesis when �T� > wc.   The
value of wc satisfies α/2 = tn-1(-wc), and is given in standard tables, or in SST by wc = invt(1-α/2,n-1).
For the example α = 0.05 and n = 100, this value is wc = calc invt(.975,99) = 1.9842.  
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The power of the test is calculated as in Problem 1, replacing the normal distribution by the
non-central t-distribution:  π = tn-1,λ(-wc) + 1 - tn-1,λ(wc), where λ = n1/2(µ1- µo)/σ as in equation (4).
Points of the non-central t are not in standard tables, but are provided by a SST function, π =
cumt(-wc,n-1,λ) + 1 - cumt(wc,n-1,λ).  For the example α = 0.05, N = 100, σ = 5, and µ1-µo = 1.2
imply λ = 2.4, and this formula gives π = 

The T-statistic (9) can be used to test the one-sided hypothesis Ho: µ � µo.  The hypothesis will
be rejected if T > wc, where wc satisfies α = tn-1(-wc), and is given in standard tables, or in  SST by
wc = invt(1-α,n-1).  The power of the test is calculated in the same way as the one-sided test in
Problem 1, with the non-central t-distribution replacing the normal: π = 1 - cumt(wc,n-1,λ).

Problem 3.  Testing the Variance of a Normal Population with Unknown Mean 
Suppose Ho: σ2 = σo

2 versus the alternative H1 that this equality does not hold..  Under the null,
the statistic X � (n-1)s2/σo

2 is distributed χ2(n-1).  Then, a test with significance level α can be made
by rejecting Ho if X < zc1 or X > zc2, where zc1 and zc2 are chosen so the probability is α/2 that a draw
from χ2(n-1) is less than zc1, and α/2 that it is greater than zc2.  These can be calculated using zc1 =
calc invchi(α/2,n-1) and zc2 = calc invchi(1-α/2,n-1).  To calculate the power of the test against the
alternative H1: σ2 = σ1

2, note that in this case (n-1)s2/σ1
2 = Xσo

2/σ1
2 � Y is χ2(n-1).  Then, 

π = 1 - Pr(zc1 � X � zc2�σ2=σ1
2) = 1 - Pr(zc1σo

2/σ1
2 � Y � zc2σo

2/σ1
2) 

= calc cumchi(zc1σo
2/σ1

2,n-1) + 1 - cumchi(zc2σo
2/σ1

2,n-1).  

Problem 4.  Testing the Equality of Unknown Variances in Two Populations
Suppose independent random samples of sizes ni are drawn from normal populations with means

µi and variances σi
2, respectively, for i = 1,2.  The null hypothesis is Ho: σ1

2 = σ2
2, and the alternative

is σ1
2 � σ2

2.  For each population, we know from 3.6 that (ni-1)si
2/σi

2 has a Chi-square distribution
with ni-1 degrees of freedom.  Further, we know that the ratio of two independent Chi-square
distributed random variables, each divided by its degrees of freedom, has an F-distribution with these
respective degrees of freedom.  Then, R = s1

2/s2
2 is distributed F(n1-1,n2-1) under Ho.  One can form

a critical region C = {R|R<cL or R > cU} that has significance level α by choosing the lower and
upper tails cL and cU of the F-distribution so that each has probability α/2.  

Under alternatives to the null, the ratio s1
2/s2

2, multiplied by the ratio σ2
2/σ1

2, has a central
F(n1-1,n2-1)-distribution, and the power of the test is

π = 1 - Prob(cL � R � cU) = 1 - Prob(cL σ2
2/σ1

2 � R σ2
2/σ1

2 � cU σ2
2/σ1

2)
= F(cL�σ2

2/σ1
2,n1-1,n2-1) + 1 - F(cU�σ2

2/σ1
2,n1-1,n2-1).

Problem 5.  Testing the Equality of Unknown Means in Two Populations with a Common
Unknown Variance

Suppose independent random samples of sizes ni are drawn from normal populations with means
µi for i = 1,2 and a common variance σ2.  The null hypothesis is Ho: µ1 = µ2, and the alternative is
µ1 � µ2.  Then x�1 - x�2 is normally distributed with mean µ1 - µ2 and variance σ2(n1

-1 + n2
-1).  Further,
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(n1-1)s1
2/σ2 is chi-square with n1-1 degrees of freedom, (n2-1)s2

2/σ2 is chi-square with n2-1 degrees
of freedom, and all three random variables are independent.  Then ((n1-1)s1

2 + (n2-1)s2
2)/σ2 is chi-

square with n1 + n2 - 2 degrees of freedom.  It follows that

s2 = (n1
-1 + n2

-1)�((n1-1)s1
2 + (n2-1)s2

2)/(n1 + n2 - 2)

is an unbiased estimator of  σ2(n1
-1 + n2

-1), with (n1 + n2 - 2)s2/σ2(n1
-1 + n2

-1) distributed Chi-square
with n1 + n2 - 2 degrees of freedom. Therefore, the statistic

 (x�1 - x�2)/s = (x�1 - x�2)/[(n1
-1 + n2

-1)�((n1-1)s1
2 + (n2-1)s2

2)/(n1 + n2 - 2)]1/2 

is distributed under the null hypothesis with a T-distribution with n1 + n2 - 2 degrees of freedom.
The power against an alternative µ1 � µ2 is calculated exactly as in Problem 2, following (9), except
the degrees of freedom is now n1 + n2 - 2 and the non-centrality parameter is 

λ =(µ1- µ2)/σ(n1
-1 + n2

-1)1/2.

7.6.   HYPOTHESIS TESTING IN LARGE SAMPLES 

Consider data x = (x1,...,xn) obtained by simple random sampling from a population with density
f(x,θo), where θo is a k×1 vector of unknown parameters contained in the interior of a set Θ.  The

sample DGP is f(x,θo) = f(xi,θo) and log likelihood is Ln(x,θ) = l(xn,θ), where l(x,θ)�
n
i�1 �

n
i�1

= log f(x,θ) is the log likelihood of an observation.  Consider the maximum likelihood estimator
Tn(x), given by the value of θ that maximizes Ln(x,θ).  Under general regularity conditions like those
given in Chapter 6.4, the maximum likelihood estimator is consistent and asymptotically normal.
This implies specifically that n1/2(Tn(x)-θo) �d Zo with Zo ~ N(O,J-1) and J the Fisher information in
an observation, J = E [	θl(x,θo)][	θl(x,θo)]
.  The Chapter 3.1.18 rule for limits of continuous
transformations implies n1/2

�J1/2(Tn(x)-θo) �d N(0,I), and hence that the quadratic form W(x,θo) �
n�(Tn(x)-θo)
J(Tn(x)-θo) � (Tn(x)-θo)
V(Tn(x))-1(Tn(x)- θo) �d χ2(k), the Chi-square distribution with
k degrees of  freedom.  When k = 1, this quadratic form equals the square of the difference between
Tn(x) and θo, divided by the variance V(Tn(x)) of Tn(x).  The square root of this expression, (Tn(x)-
θo)/(V(Tn(x)))1/2, converges in distribution to a standard normal.

Consider the null hypothesis Ho: θ = θo.  When this null hypothesis is true, the quadratic form
W(x,θo) has a limiting Chi-square distribution with k degrees of freedom.  Then, a test of the
hypothesis with a significance level α can be carried out by choosing a critical level c from the upper
tail of the χ2(k) distribution so that the tail has probability α, and rejecting Ho when W(x,θo) > c.  We
term W(x,θo) the Wald statistic.

Suppose an alternative H1: θ = θ1 to the null hypothesis is true.  The power of the Wald test is
the probability that the null hypothesis will be rejected when H1 holds.  But in this case,
n1/2

�J1/2(Tn(x)-θo) = n1/2
�J1/2(Tn(x)-θ1) + n1/2

�J1/2(θ1-θo), with the first term converging in distribution to
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N(0,I).  For fixed θ1 � θo, the second term blows up.  This implies that the probability that
n1/2

�J1/2(Tn(x)-θo) is small enough to accept the null hypothesis goes to zero, and the power of the test
goes to one.  A test with this property is called consistent, and consistency is usually taken to be a
minimum requirement for a hypothesis testing procedure to be statistically satisfactory.  A closer
look at the power of a test in large samples is usually done by considering what is called local power.
Suppose one takes a sequence of alternatives to the null hypothesis that get closer and closer to the
null as sample size grows.  Specifically, consider H1: θ = θo + λ/n1/2.  For this sequence of
alternatives, the term n1/2

�J1/2(θ1-θo) = J1/2δ is a constant, and we have the result that n1/2
�J1/2(Tn(x)-θo)

�d N(J1/2 λ,I).   This implies that (Tn(x)-θo)
(nJ)�(Tn(x)-θo), the Wald statistic, converges in
distribution to a noncentral Chi-square distribution with k degrees of freedom and a noncentrality
parameter λ
Jλ.  The local power of the test is the probability in the upper tail of this distribution
above the critical level c for the Wald statistic.  The local power will be a number between zero and
one which provides useful information on the ability of the test to distinguish the null from nearby
alternatives.  In finite sample applications, the local power approximation can be used for a specific
alternative θ1 of interest by taking λ  = n1/2

�(θ1-θo) and using the noncentral Chi-square distribution
as described above.

In practice, we do not know the Fisher Information J exactly, but must estimate it from the
sample by 

(10)     Jen = En[	θl(x,Tn)][	θl(xi,Tn)]
 �  [	θl(xi,Tn)][	θl(xi,Tn)]
.n �1�
n
i�1

The expression in (10) is termed the outer product of the score 	θl(xi,Tn) of an observation.  When
there is a single parameter, this reduces to the square of 	θl(xi,Tn); otherwise, it is a k×k array of
squares and cross-products of the components of 	θl(xi,Tn).  From the theorem in Chapter 6.4, Jen �p
J, and the rule 1.17 in Chapter 4 implies that replacing J by Jen in the Wald test statistic does not
change its asymptotic distribution.

In the discussion of maximum likelihood estimation in Chapter 6.4 and the proof of its
asymptotic normality, we established that when θo is the true parameter,

(11)     n1/2
�(Tn(x)-θo) = J-1

�	θLn(x,θo)/n1/2 + op(1);

that is, the difference of the maximum likelihood estimator from the true parameter, normalized by
n1/2, equals the normalized score of the likelihood at θo, transformed by J-1, plus asymptotically
negligible terms.  If we substitute (11) into the Wald statistic, we obtain LM(x,θo) = W(x,θo) + op(1),
where 

(12)     LM(x,θo) = [	θL(x,θo)]
(nJ)-1[	θL(x,θo)].

The statistic (12) is called the Lagrange Multiplier (LM) statistic, or the score statistic.  The name
Lagrange Multiplier comes from the fact that if we maximize Ln(x,θ) subject to the constraint θo -
θ = 0 by setting up the Lagrangian Ln(x,θ) + λ(θo-θ), we obtain the first order condition λ = 	θLn(x,θ)
and hence LM(x,θo) =λ
(nJ)-1λ.  Because LM(x,θo) is asymptotically equivalent to the Wald statistic,
it will have the same asymptotic distribution, so that the same rules apply for determining critical
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levels and calculating power.  The Wald and LM statistics will have different numerical values in
finite samples, and sometimes one will accept a null hypothesis when the other rejects.  However,
when sample sizes are large, their asymptotic equivalence implies that most of the time they will
either both accept or both reject, and that they have the same power.  In applications, J in (11) must
be replaced by an estimate, either Jen from (10), or Joen = En[	θl(x,θo)][	θl(xi,θo)]
 in which the score
is evaluated at the hypothesized θo.  Both converge in probability to J, and substitution of either in
(12) leaves the asymptotic distribution of the LM statistic unchanged.  A major advantage of the LM
form of the asymptotic test statistic is that it does not require that one compute the estimate Tn(x).
 Computation of maximum likelihood estimates can sometimes be difficult.  In these cases, the LM
statistic avoids the difficulty.

The generalized likelihood ratio criterion was suggested in a number of simple tests of
hypotheses as a good general procedure for obtaining test statistics.  This method rejects Ho if 

(13)     κ < maxθ Ln(x,θ) - Ln(x,θo), 

where κ is a constant that is adjusted to give the desired significance level for the test.  A Taylor
s
expansion of  Ln(x,θo) about Tn(x) yields 

(14)    Ln(x,Tn(x)) - Ln(x,θo) = 	θLn(x,Tn(x))�(Tn(x)-θo)  - (Tn(x)-θo)
	θθLn(x,θen)(Tn(x)-θo), 

where θen is between θo and θn.  But 	θLn(x,Tn(x)) = 0.  Under the regularity conditions in Chapter
6.4, 	θθLn(x,θen)/n �p J.  (To make the last statement rigorous, one needs to either establish that the
convergence in probability of 	θθLn(x,θ)/n to J(θ) is uniform in θ, or expand 	θθLn(x,θen)/n to first
order about θo and argue that the first term goes in probability to -J and the second term goes in
probability to zero.)  Then, LR(x,θo) = 2�[Ln(x,Tn(x)) - Ln(x,θo)], termed the likelihood ratio statistic,
satisfies

(15)     LR(x,θo) = (Tn(x)-θo)
(nJ)(Tn(x)-θo) + op(1) � W(x,θo) + op(1),

and the LR statistic is asymptotically equivalent to the Wald statistic.  Therefore, the LR statistic will
be asymptotically distributed Chi-square with k degrees of freedom, where k is the dimension of θo,
and its local power is the same as that of the Wald statistic, and calculated in the same way.

The major advantage of the LR statistic is that its computation requires only the values of the log
likelihood unrestricted and with the null imposed; it is unnecessary to obtain an estimate of J or
perform any matrix calculations.  We conclude that the trinity consisting of the Wald, LM, and LR
statistics are all asymptotically equivalent, and provide completely substitutable ways of testing a
hypothesis using a large sample approximation.


