Economics 240A, Section 4: Goldberger Ch.'s 19-22

Michael R. Roberts
Department of Economics and
Department of Statistics
University of California at Berkeley

April 21, 2000

1 Introduction

This handout reviews some of the key points regarding chapters 19-22 in Goldberger.

2 CNR Framework (σ^{2} Known)

The idea now is that we add a distributional assumption to the CR framework. This allows us to conduct statistical inference (confidence intervals and hypothesis testing). The assumptions are now:

1. $y^{\sim} M V N\left(X \beta, \sigma^{2} I\right)$
2. X nonstochastic and full rank.

Note that this is almost the same as the classical regression framework except for the normality assumption since

$$
\begin{aligned}
E(y) & =X \beta \\
V(y) & =\sigma^{2} I
\end{aligned}
$$

2.1 Sampling Distributions

Let's consider the implied distributions for the OLS estimator b and corresponding sum of square residuals $e^{\prime} e$.

1. Claim:

$$
b^{\sim M V N}\left(\beta, \sigma^{2}\left(X^{\prime} X\right)^{-1}\right)
$$

Proof:

$$
b=\left(X^{\prime} X\right)^{-1} X^{\prime} y
$$

b is a linear combination of the $y^{\prime} s$ which are $N\left(X \beta, \sigma^{2} I\right)$. This implies the $b^{\prime} s$ are normal with expectation

$$
\begin{aligned}
E(b) & =E\left\{\left(X^{\prime} X\right)^{-1} X^{\prime} y\right\} \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} E\{y\} \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} X \beta \\
& =\beta
\end{aligned}
$$

and variance covariance matrix

$$
\begin{aligned}
V(b) & =V\left(\left(X^{\prime} X\right)^{-1} X^{\prime} y\right) \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} V(y) X\left(X^{\prime} X\right)^{-1} \\
& =\left(X^{\prime} X\right)^{-1} X^{\prime} \sigma^{2} I X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1} X^{\prime} X\left(X^{\prime} X\right)^{-1} \\
& =\sigma^{2}\left(X^{\prime} X\right)^{-1}
\end{aligned}
$$

The key assumption here is that: σ^{2} is known. If it isn't we get a Student's t-distribution.
Note that any nonstochastic linear combination of the parameter vector, $H b$, will be normal with expectation $H \beta$ and variance $\sigma^{2} H\left(X^{\prime} X\right)^{-1} H^{\prime}$ (assuming $H \in R^{p \times k}$ and $\rho(H)=p$).
2. Claim:

$$
e^{\prime} e / \sigma^{2 \sim} \chi_{T}^{2}
$$

Proof: We'll use the general result that if $y \in R^{n}$ is distributed $M V N(\mu, \Sigma)$ then

$$
(y-\mu)^{\prime} \Sigma^{-1}(y-\mu) \sim \chi_{n}^{2}
$$

Since the residual vector has expectation 0,

$$
\begin{aligned}
e^{\prime} e & =(y-X \beta)^{\prime}(y-X \beta) \\
& =(y-X \beta)^{\prime}\left[\sigma^{2} I\right]^{-1}(y-X \beta) \times \sigma^{2}
\end{aligned}
$$

So, $e^{\prime} e / \sigma^{2 \sim} \chi_{T}^{2}$.

2.2 Confidence Intervals

In the CNR framework with σ^{2} known, we form a confidence interval as

$$
t \pm c \sigma_{t}
$$

where $t=h^{\prime} b$ is our estimated statistic, c is the appropriate critical value from the normal distribution (e.g. 1.96 for a 95% confidence interval, 1.00 for a 68% confidence interval, etc.) and $\sigma_{t}=\sqrt{h^{\prime} V(b) h}$ is the standard error of t.

This set-up subsumes the more basic idea of a confidence interval for one parameter b_{j}. In that case, h is a vector of all $0^{\prime} s$ except for a 1 in the $j^{\text {th }}$ position.

2.3 Joint Confidence Regions

We've got an unknown parameter vector $\theta=H \beta$ and we estiamte a sample value $t=H b$ (we continue to assume knowledge of σ^{2} which is an important assumption). From the results above

$$
(t-\theta)^{\prime}\left[\sigma^{2} H\left(X^{\prime} X\right)^{-1} H^{\prime}\right]^{-1}(t-\theta)^{\sim} \chi_{p}^{2}
$$

where p is the rank of the matrix H.(i.e. it's the number of linear restrictions). To form a confidence region for θ we would set

$$
(t-\theta)^{\prime}\left[\sigma^{2} H\left(X^{\prime} X\right)^{-1} H^{\prime}\right]^{-1}(t-\theta) \leq c_{p}
$$

where c_{p} is the critical value from the χ_{p}^{2} distribution. That is c_{p} is the number such that the area to the left of c_{p} under the χ_{p}^{2} pdf is equal to the relevant percentage. As a concrete example, consider a 95% confidence interval where the rank of H is $2 . c_{p}$ would be $c_{2}=5.99$.

Note that $(t-\theta)^{\prime}\left[\sigma^{2} H\left(X^{\prime} X\right)^{-1} H^{\prime}\right]^{-1}(t-\theta)$ can be written more generally as $(t-\theta)^{\prime}[V(t)]^{-1}(t-\theta)$.
Exercise 19.1: The CNR model applies with $k=4, X^{\prime} X=I, \sigma^{2}=2$, and $\beta=0$. Let $t=b^{\prime} b$. Find the number $c: \operatorname{Pr}(t>c)=0.10$.

$$
b^{\prime} b=\sigma^{2}\left\{b^{\prime}\left[\sigma^{2} I\right]^{-1} b\right\}
$$

The term in brackets is distributed χ_{4}^{2} so we need to find the c :

$$
\operatorname{Pr}\{t>2 c\}=0.10
$$

Using the χ^{2} table and the fact that $\operatorname{Pr}\{t \leq 2 c\}=0.90$, we get $2 c=7.78$ or $c=3.89$.

2.4 Hypothesis Testing

2.4.1 Univariate

Consider testing whether a particular parameter, β_{j}, is equal to β_{j}^{0}. The null and alternative hypotheses are

$$
\begin{aligned}
& H_{0}: \beta_{j}=\beta_{j}^{0} \\
& H_{1}:
\end{aligned} \beta_{j} \neq \beta_{j}^{0}
$$

Our test is a simple two-tail z-test,

$$
z=\frac{b_{j}-\beta_{j}^{0}}{\sigma_{j}} \sim N(0,1)
$$

Assuming our significance level is 5%, if $|z|>1.96$, then we reject the null hypothesis $H_{0}: \beta_{j}=\beta_{j}^{0}$. If $|z| \leq 1.96$, then we fail to reject the null.

We can just as easily test a linear combination of parameters with

$$
\frac{\left(t-\theta^{0}\right)}{\sigma_{t}} \sim N(0,1)
$$

where $t=h b$ and $\sigma_{t}=\sqrt{V(t)}=\sqrt{h^{\prime} V(b) h}$.
Example: Consider the following model

$$
y=x_{1} \beta_{1}+x_{2} \beta_{2}+\varepsilon
$$

under the assumptions of the CNR model. We want to test:

$$
\begin{aligned}
& H_{0}: \beta_{1}+\beta_{2}=1 \\
& H_{1}: \beta_{1}+\beta_{2} \neq 1
\end{aligned}
$$

Then

$$
\begin{aligned}
h & =(1,1)^{\prime} \\
b & =\left(b_{1}, b_{2}\right) \\
\theta^{0} & =1
\end{aligned}
$$

2.4.2 Multivariate

What about testing a set of parameters? We need a joint null hypothesis about β. Let $\theta=H \beta$ where H is a non-random $p \times k$ matrix with rank p (i.e. p linear restrictions on the parameters). The hypotheses are

$$
\begin{aligned}
& H_{0}: \theta=\theta^{0} \\
& H_{1}: \theta \neq \theta^{0}
\end{aligned}
$$

where θ^{0} is a vector of hypothesized values (numbers).
Consider testing at the 5% significance level. We will accept the null (or more accurately fail to reject the null) if θ^{0} lies within the 95% confidence region for θ :

$$
w=(\theta-t)^{\prime}[V(t)]^{-1}(\theta-t) \leq c_{p}
$$

and reject otherwise. Here, $t=H b$ while c_{p} is the 5% critical value from the χ_{p}^{2} table. We can equivalently think about rejecting the null if $w>c_{p}$ and accepting the null if $w \leq c_{p}$.

Example: Consider the following model

$$
y=x_{1} \beta_{1}+x_{2} \beta_{2}+x_{3} \beta_{3}+\varepsilon
$$

under the assumptions of the CNR model. We want to test:

$$
\begin{aligned}
& H_{0}: \beta_{1}=2 ; \beta_{2}-2 \beta_{3}=0 \\
& H_{1}: \\
& \beta_{1} \neq 2 ; \beta_{2}-2 \beta_{3} \neq 0
\end{aligned}
$$

Then

$$
\begin{aligned}
H & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -2
\end{array}\right) \\
b & =\left(b_{1}, b_{2}, b_{3}\right) \\
\theta^{0} & =\binom{2}{0}
\end{aligned}
$$

3 CNR Framework (σ^{2} Unknown)

The set-up is as before except now σ^{2} is not assumed known. It therefore must be estimated and the usual estimator is

$$
\hat{\sigma}^{2}=\frac{e^{\prime} e}{T-k}
$$

1. Claim:

$$
\hat{\sigma}^{2}=\chi_{T-k}^{2}
$$

Proof: See Goldberger pp. 223-224
2. Claim:

$$
b \text { is independent of } e
$$

Proof: See Goldberger p. 224
Therefore, any function of b is independent of any function of e (This is a basic fact of math-stat you should be familiar with).
3. The test statistic

$$
v=(t-\theta)^{\prime}[\hat{V}(t)]^{-1}(t-\theta) / p
$$

is distributed $F(p, T-k)$ where

$$
\begin{aligned}
t & =H b \\
\hat{V}(t) & =\hat{\sigma}^{2} H\left(X^{\prime} X\right)^{-1} H^{\prime}
\end{aligned}
$$

If we recall from Section 3 Handout, an $F(p, T-k)$ random variable takes the form

$$
f=\frac{x / n}{y / d}
$$

where $x^{\sim} \chi_{n}^{2}$ independently of $y^{\sim} \chi_{d}^{2}$. Rewriting v, this distributional result becomes immediately clear.

$$
v=\frac{(t-\theta)^{\prime}\left[H\left(X^{\prime} X\right)^{-1} H^{\prime}\right]^{-1}(t-\theta) / \sigma^{2} p}{\left[e^{\prime} e / T-k\right] / \sigma^{2}}
$$

The numerator is a χ_{p}^{2} random variable divided by its degrees of freedom p. It is also random only through its dependence on b. The denominator is a χ_{T-k}^{2} random variable and is random only through e. As noted above, e and b are independent as are any functions of these two random variables. The result follows.
4. The test statistic

$$
u=\frac{\left(b_{j}-\beta_{j}\right)}{\hat{\sigma}_{b_{j}}}
$$

is distributed t_{T-k}. Again, from section 3 handout, we know a t random variable is the ratio of a standard normal to a χ^{2} divided by its degrees of freedom where the random variables are independent of one another. Rewriting u below, we see this is clearly the case.

$$
u=\frac{\left(b_{j}-\beta_{j}\right) / \sigma_{b_{j}}}{\sqrt{\left[e^{\prime} e / T-k\right] / \sigma_{b_{j}}^{2}}}
$$

3.1 Confidence Intervals and Regions

To find confidence intervals, the methodology is exactly the same except now we use the t_{T-k} distribution to find the critical values.

$$
t \pm c \sigma_{t}
$$

For $(T-k)>50$ the difference between the t and normal distribution is negligible. It's even pretty close for $(T-k)>25$.

Confidence regions are found similarly using the $F_{p, T-k}$ distribution for the critical values.

$$
(t-\theta)^{\prime}\left[\hat{\sigma}^{2} H\left(X^{\prime} X\right)^{-1} H^{\prime}\right]^{-1}(t-\theta) \leq c_{p}
$$

3.2 Hypothesis Testing

3.2.1 Univariate

This is the standard t-test situation. Consider testing one parameter,

$$
\begin{aligned}
& H_{0}: \beta_{j}=\beta_{j}^{0} \\
& H_{1}:
\end{aligned} \beta_{j} \neq \beta_{j}^{0}
$$

Our test statistic is as before except $\sigma_{b_{j}}$ is replaced by its estimate $\hat{\sigma}_{b_{j}}$.

$$
t=\frac{b_{j}-\beta_{j}^{0}}{\hat{\sigma}_{b_{j}}}
$$

which now has the t_{T-k} distribution.

3.2.2 Multivariate

As with confidence intervals, the procedure and test statistic are the same except we use our estimator for σ^{2} and the $F_{p, T-k}$ distribution for defining the rejection region.

3.2.3 Zero Null Subvector Hypothesis

This subsection discusses the situation where we want to test wether a subvector of the $\beta^{\prime} s$ are equal to 0 . The idea is to relate this testing situation to the short regressions discussed earlier. For illustrative purposes, assume it is the last k_{2} elements of the following regression

$$
y=X_{1} \beta_{1}+X_{2} \beta_{2}+\varepsilon
$$

where $X_{1} \in R^{T \times k_{1}}, X_{2} \in R^{T \times k_{2}}, \beta_{1} \in R^{k_{1}}$ and $\beta_{2} \in R^{k_{2}}$. The null and alternative hypotheses are

$$
\begin{array}{ll}
H_{0} & : \quad \beta_{2}=0 \\
H_{1} & : \\
\beta_{2} \neq 0
\end{array}
$$

Using our standard hypothesis testing framework from above, we can write

$$
\begin{aligned}
t & =H b=b_{2} \\
\theta & =H \beta=\beta_{2}
\end{aligned}
$$

where $H=\left[0_{k_{2} \times k_{1}} ; I_{k_{2} \times k_{2}}\right]$. The estimated variance of t is simply, $\hat{V}(t)=\hat{\sigma}^{2} H\left(X^{\prime} X\right)^{-1} H^{\prime}$. If we partition the $\left(X^{\prime} X\right)^{-1}$ matrix according to the subvectors we see

$$
H\left(X^{\prime} X\right)^{-1} H^{\prime}=(0, I)\left(\begin{array}{cc}
Q^{11} & Q^{12} \\
Q^{21} & Q^{22}
\end{array}\right)\binom{0}{I}=Q^{22}
$$

Recall our test statistic,

$$
w=(t-\theta)^{\prime}[\hat{V}(t)]^{-1}(t-\theta) / p
$$

which can now be written

$$
v=b_{2}^{\prime}\left[\hat{\sigma}^{2} Q^{22}\right]^{-1} b_{2} / k_{2}
$$

Using the results from the FWL theorem (or simply the inverse of a partitioned matrix), we can write

$$
\left[Q^{22}\right]^{-1}=X_{2}^{\prime} M_{1} X_{2}
$$

so our statistic becomes

$$
v=b_{2}^{\prime} X_{2}^{\prime} M_{1} X_{2} b_{2} / \hat{\sigma}^{2} k_{2}
$$

Residual Sum of Squares: An alternative way of writing this test statistic is to recognize that

$$
e^{* \prime} e^{*}=e^{\prime} e+b_{2}^{\prime} X_{2}^{\prime} M_{1} X_{2} b_{2}
$$

(see Section 3 handout). Therefore

$$
\begin{aligned}
v & =\left(e^{* \prime} e^{*}-e^{\prime} e\right) / \hat{\sigma}^{2} k_{2} \\
& =\frac{(T-k)}{k_{2}} \frac{\left(e^{* \prime} e^{*}-e^{\prime} e\right)}{e^{\prime} e}
\end{aligned}
$$

Result 1 To calculate the test statistic:

1. Run a short (restricted) regression of y on X_{1} and compute the sum of square residuals, $e^{* /} e^{*}$.
2. Run the long (unrestricted) regression of y on X_{1} and X_{2} and compute the sum of square residuals, $e^{\prime} e$.
3. Using 1) and 2) compute v.

The intuition is as follows. A large value of v leads to a rejection of the null (i.e. $\beta_{2} \neq 0$) which occurs when the relative difference between the restricted and unrestricted sum of squares is large. This is saying the fit is significantly better when the X_{2} matrix is included in the regression.

Coefficient of Determination: When an intercept is included in both the restricted and unrestricted regressions, the R^{2} is well-defined. Recall

$$
R^{2}=1-\frac{e^{\prime} e}{y^{\prime} M_{i} y}
$$

where M_{i} projects into the orthocomplement of the summer vector space (it de-means things). This suggests another way of writing our test statistic,

$$
v=\frac{(T-k)}{k_{2}} \frac{\left(R^{2}-R^{2 *}\right)}{\left(1-R^{2}\right)}
$$

where $R^{2 *}$ is the R^{2} from the restricted regression.

Result 2 To calculate this test statistic:

1. Run a short (restricted) regression of y on X_{1} and compute the $R^{2}\left(\equiv R^{2 *}\right)$
2. Run the long (unrestricted) regression of y on X_{1} and X_{2} and compute the R^{2}.
3. Using 1) and 2) compute v.

As a special case, consider testing whether all the slope coefficients were 0 . That is, all coefficients except for the intercept. Our test statistic can be written as

$$
\frac{(T-k)}{k-1} \frac{R^{2}}{1-R^{2}}
$$

since the restricted regression sum of square residuals is $e^{* \prime} e^{*}=\sum\left(y_{t}-\bar{y}\right)^{2}=y^{\prime} M_{i} y$ implying $R^{2 *}$ is in effect 0 since

$$
R^{2 *}=1-\frac{e^{* \prime} e^{*}}{y^{\prime} M_{i} y}=1-\frac{y^{\prime} M_{i} y}{y^{\prime} M_{i} y}=0
$$

3.3 General Linear Hypotheses

Consider the following problem

$$
y=\beta_{0}+x_{1} \beta_{1}+x_{2} \beta_{2}+x_{3} \beta_{3}+\varepsilon
$$

where $x_{i}, i=1,2,3$ are $T \times 1$ column vectors.. Now consider testing the following hypotheses

$$
\begin{aligned}
& H_{0}: \beta_{3}=-\beta_{1} ; \beta_{1}=\beta_{2} \\
& H_{1}: \beta_{3} \neq-\beta_{1} ; \beta_{1} \neq \beta_{2}
\end{aligned}
$$

We can run this test in the usual manner by constructing the test statistic

$$
(\theta-t)^{\prime}[\hat{V}(t)]^{-1}(\theta-t)^{\sim} F_{p, T-k}
$$

where

$$
\begin{aligned}
t & =H b=\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right) \\
\theta & =\binom{0}{0} \\
\hat{V}(t) & =\hat{\sigma}^{2} H\left(X^{\prime} X\right)^{-1} H^{\prime} \\
p & =2 \\
k & =3
\end{aligned}
$$

The idea this section attempts to illustrate is that any general linear hypothesis can be converted into a zero-null subvector hypothesis. That is, we can solve out the restrictions, run a short regression and use methods zero subvector null hypotheses. For the above example we see the first restriction $\beta_{3}=-\beta_{1}$ implies

$$
y=\beta_{0}+\beta_{1}\left(x_{1}-x_{3}\right)+x_{2} \beta_{2}+\varepsilon
$$

The second restriction, $\beta_{1}=\beta_{2}$, implies

$$
y=\beta_{1}\left(x_{1}-x_{3}+x_{2}\right)+\varepsilon
$$

So our short regression is simply

$$
y=\gamma_{1} z+\varepsilon
$$

where $z=x_{1}-x_{3}+x_{2}$.
Another example is to consider

$$
y=\beta_{0}+x_{1} \beta_{1}+x_{2} \beta_{2}+x_{3} \beta_{3}+\varepsilon
$$

and the hypothesis $\beta_{1}+\beta_{2}+\beta_{3}=1$. But his implies $\beta_{1}=1-\beta_{2}-\beta_{3}$ so

$$
\begin{aligned}
y & =\beta_{0}+x_{1}\left(1-\beta_{2}-\beta_{3}\right)+x_{2} \beta_{2}+x_{3} \beta_{3}+\varepsilon \\
y & =\beta_{0}+x_{1}+\beta_{2}\left(x_{2}-x_{1}\right)+\beta_{3}\left(x_{3}-x_{1}\right)+\varepsilon \\
y-x_{1} & =\beta_{0}+\beta_{2}\left(x_{2}-x_{1}\right)+\beta_{3}\left(x_{3}-x_{1}\right)+\varepsilon
\end{aligned}
$$

Our short regression is thus

$$
y^{*}=\gamma_{0}+\gamma_{2} z_{1}+\gamma_{3} z_{2}+\varepsilon
$$

where $y^{*}=y-x_{1}, z_{1}=x_{2}-x_{1}$ and $z_{2}=x_{3}-x_{1}$.

