Econ 240A: Some Useful Inequalities: Theory, Examples and Exercises**

Chuan Goh

8 February 2001

Lawrence Klein: "If the Devil promised you a theorem in return for your immortal soul, would you accept the bargain?"
Harold Freeman: "No. But I would for an inequality."
(Reported in Klein, 1991)
This handout expands on the text by presenting a number of inequalities that are frequently used in proving theorems in statistics.

Theorem 1 (Markov's Inequality). Let Y be a random variable and $g(\cdot)$ be a function such that $g(y) \geq 0$ for all $y \in \Re$. Assume that $E[g(Y)]$ exists. Then for any $\epsilon>0$

$$
P[g(Y) \geq \epsilon] \leq \frac{1}{\epsilon} E[g(Y)]
$$

Proof. We give a proof for Y continuous. The proof for Y discrete is similar ${ }^{1}$. Let $B_{1}=\{y: g(y) \geq \epsilon\}$ and $B_{2}=\{y: g(y)<\epsilon\}$. Then

$$
\begin{aligned}
E[g(Y)] & =\int_{B_{1}} g(y) f(y) d y+\int_{B_{2}} g(y) f(y) d y \\
& \geq \int_{B_{1}} g(y) f(y) d y \\
& \geq \epsilon \int_{B_{1}} f(y) d y \\
& =\epsilon P[g(Y)] \geq \epsilon
\end{aligned}
$$

The next theorem will be used in the proof of the law of large numbers:

[^0]Corollary 1.1 (Chebyshev's Inequality). Let Y be a random variable with finite mean μ and variance σ^{2}. Then for all $\delta>0$

$$
P[|Y-\mu| \geq \delta \sigma] \leq \frac{1}{\delta^{2}}
$$

Proof. Set $g(y)=(y-\mu)^{2}$ and $\epsilon=\delta^{2} \sigma^{2}$ and apply Markov's Inequality.
Theorem 2 (Cauchy-Schwarz Inequality). Let random variables $Y_{n}, n=$ 1, 2 have finite second moments. Then

$$
\left[E\left(Y_{1} Y_{2}\right)\right]^{2} \leq E\left(Y_{1}^{2}\right) E\left(Y_{2}^{2}\right)
$$

with equality if $P\left(Y_{2}=k Y_{1}\right)=1$ for some constant k.
Proof. See the solution to Problem 22 from Chapter 3 in McFadden (2001) (Problem Set 3).

Note that if $\sigma_{n}^{2} \equiv \operatorname{Var}\left[Y_{n}\right]>0, n=1,2$ a direct consequence of the CauchySchwarz Inequality is that

$$
\rho_{12} \equiv \frac{\sigma_{12}}{\sqrt{\sigma_{1} \sigma_{2}}} \in[-1,1]
$$

where $\sigma_{12} \equiv \operatorname{Cov}\left[Y_{1}, Y_{2}\right]$. Also it follows from the same inequality that the covariance matrix

$$
\Sigma_{12} \equiv\left[\begin{array}{cc}
\sigma_{1}^{2} & \sigma_{12} \\
\sigma_{12} & \sigma_{2}^{2}
\end{array}\right]
$$

is positive definite if $\left|\rho_{12}\right|<1$ and positive semidefinite if $\left|\rho_{12}\right|=1$.
The following inequality is a generalization of the Cauchy-Schwarz Inequality:

Theorem 3 (Hölder's Inequality). Let c, d be real numbers such that $c>$ $1, d>1, c^{-1}+d^{-1}=1$. Let Y_{1}, Y_{2} be random variables such that $E\left[\left|Y_{1}\right|^{c}\right]<\infty$ and $E\left[\left|Y_{2}\right|^{d}<\infty\right.$. Then

$$
E\left[\left|Y_{1} Y_{2}\right|\right] \leq\left[E\left|Y_{1}\right|^{c}\right]^{\frac{1}{c}}\left[E\left|Y_{2}\right|^{d}\right]^{\frac{1}{d}} .
$$

Proof. See Billingsley (1995, p.80).
Definition 1. A continuous function $g(\cdot)$ is called convex iff $\forall x, y \in \Re$ and $\lambda \in[0,1], g[\lambda x+(1-\lambda) y] \leq \lambda g(x)+(1-\lambda) g(y) . g(\cdot)$ is strictly convex if the inequality is strict. $g(\cdot)$ is concave iff $-g(x)$ is convex and strictly concave iff $-g(x)$ is strictly convex.

Theorem 4 (Jensen's Inequality). Let Y be a random variable and $g(\cdot)$ a convex function. If $E[Y]$ and $E[g(Y)]$ exist, then

$$
E[g(Y)] \geq g[E(Y)]
$$

If $g(\cdot)$ is strictly convex, the inequality is strict unless Y is a constant with probability one.

Proof. See Lehmann \& Casella (1998, p. 46).
Example 1. $g(y)=y^{2}$ is convex, so Jensen's inequality implies that $E\left[Y^{2}\right] \geq$ $[E(Y)]^{2}$. It follows immediately that $\operatorname{Var}(Y)=E\left[Y^{2}\right]-[E(Y)]^{2} \geq 0$.

Example 2. Suppose Y is a nondegenerate positive random variable with finite mean. Then Jensen's Inequality implies
(a) $E\left[Y^{-1}\right]>[E(Y)]^{-1}$,
(b) $E[\log Y]<\log [E(Y)]$.

Theorem 5. Let Y be a positive random variable such that the required moments exist:
(a) $E\left(Y^{\alpha}\right) \leq[E(Y)]^{\alpha}, \alpha \in[0,1]$.
(b) $E\left(Y^{\alpha}\right) \geq[E(Y)]^{\alpha}, \alpha \leq 0$ or $\alpha \geq 1$.
(c) $h(\alpha) \equiv \frac{E\left(Y^{\alpha-1}\right)}{E\left(Y^{\alpha}\right)}$ is a nonincreasing function of $\alpha>0$.

Proof. Exercise. Use Jensen's inequality.
The following theorems are stated without proof:
Theorem 6. Let Y and Z be independent random variables such that the required moments exist:
(a) $E\left[\left(\frac{Y}{Z}\right)^{\alpha}\right] \geq \frac{E\left(Y^{\alpha}\right)}{E\left(Z^{\alpha}\right)}$ for all α.
(b) If $E(Y)=E(Z)=0$ and $E\left(Z^{-1}\right)$ exists, then $\operatorname{Var}\left(\frac{Y}{Z}\right) \geq \frac{\operatorname{Var}(Y)}{\operatorname{Var}(Z)}$.

Theorem 7. Suppose Y is a random variable with $E\left(|Y|^{\alpha}\right)<\infty$ for some $\alpha>0$. Then $E\left[|Y|^{\beta}\right]<\infty$ for $0 \leq \beta \leq \alpha$.

Theorem 8 (Minkowski's Inequality). Let Y, Z be random variables such that $E\left(|Y|^{\alpha}\right)<\infty$ and $E\left(|Z|^{\alpha}\right)<\infty$ for some $1 \leq \alpha<\infty$. Then

$$
\left[E\left(|Y+Z|^{\alpha}\right)\right]^{\frac{1}{\alpha}} \leq\left[E\left(|Y|^{\alpha}\right)\right]^{\frac{1}{\alpha}}+\left[E\left(|Z|^{\alpha}\right)\right]^{\frac{1}{\alpha}}
$$

Theorem 9. Let Y be a random variable such that $E\left[|Y|^{\alpha}\right]<\infty$. Then

$$
\lim _{y \rightarrow \infty} y^{\alpha} P(|Y| \geq y)=0
$$

Theorem 10 (Information Inequality). Let $\sum_{i} a_{i}$ and $\sum_{i} b_{i}$ be convergent series of positive numbers such that $\sum_{i} a_{i} \geq \sum_{i} b_{i}$. Then

$$
\sum_{i=1}^{\infty} a_{i} \log \left(\frac{b_{i}}{a_{i}}\right) \leq 0
$$

where the inequality is strict unless $a_{i}=b_{i}, i=1,2,3, \ldots$.

Exercises

1.

Let A and B be arbitrary events. Prove Boole's inequality: $P(A \cap B) \geq P(A)-$ $P\left(B^{c}\right)=1-P\left(A^{c}\right)-P\left(B^{c}\right)$.
2.

Let A, B, C be events such that $A \cap B \subset C$. Show that $P\left(C^{c}\right) \leq P\left(A^{c}\right)+P\left(B^{c}\right)$.
3.

Let Y be a discrete random variable with $P(Y=-1)=\frac{1}{8}, P(Y=0)=\frac{3}{4}$ and $P(Y=1)=\frac{1}{8}$. Show that Chebyshev's inequality holds exactly for $\delta=2$.
4.

Show that if $g(\cdot)$ is concave, $E[g(Y)] \leq g[E(Y)]$.
5.

Assume $\mu \equiv E(Y)<\infty$ and $g(\cdot)$ is a nondecreasing function. Use Jensen's inequality to show that $E[g(Y)(Y-\mu)] \geq 0$.
6.

Suppose $y_{n}, n=1, \ldots, N$ are positive numbers. Define the following:

- Arithmetic mean: $\bar{y}=\frac{1}{N} \sum_{n=1}^{N} y_{n}$,
- Geometric mean: $\bar{y}_{G}=\left[\prod_{n=1}^{N} y_{n}\right]^{\frac{1}{N}}$,
- Harmonic mean: $\bar{y}_{H}=\left[\frac{1}{N} \sum_{n=1}^{N} \frac{1}{y_{n}}\right]^{-1}$.

Use Jensen's inequality to show $\bar{y}_{H} \leq \bar{y}_{G} \leq \bar{y}$.
7.

Let $Y_{n}, n=1, \ldots, N$ be jointly distributed with $E\left(Y_{n}\right)=\mu_{n}$ and $\operatorname{Var}\left(Y_{n}\right)=$ $\sigma_{n}^{2}, n=1, \ldots, N$. Let $A_{n} \equiv\left\{Y_{n}:\left|Y_{n}-\mu_{n}\right| \leq \sqrt{N} \delta \rho_{n}\right\}$, where $\delta>0$. Prove the multivariate Chebyshev's inequality: $P\left(A_{1} \cap A_{2} \cap \cdots \cap A_{N}\right) \geq 1-\delta^{-2}$.
8.

Use Jensen's inequality to prove Liapounov's inequality: If $E\left[|Y|^{r}\right]$ exists and $0<s<r<\infty$, then $\left[E\left(|Y|^{s}\right)\right]^{\frac{1}{s}} \leq\left[E\left(|Y|^{r}\right)\right]^{\frac{1}{r}}$.
9.

Let $M_{Y}(t)$ be the mgf of a random variable Y. Show that $P(Y \geq c) \leq$ $\exp (-c t) M_{Y}(t)$ for $0<t<h<\infty$.

References

[1] Billingsley, P. (1995): Probability and Measure, Third Edition. New York: J. Wiley \& Sons.
[2] Klein, L. (1991): "The Statistics Seminar, MIT, 1942-1943." Statistical Science, 6, 320-338.
[3] Lehmann, E. L. and G. Casella (1998): Thoery of Point Estimation, Second Edition. New York: Springer.
[4] McFadden, D. L. (2001): Statistical Tools for Economists. Unpublished volume, University of California, Berkeley.
[5] Poirier, D. J. (1995): Intermediate Statistics and Econometrics: A Comparative Approach. Cambridge, Mass.: MIT Press.

[^0]: * The material in this handout is a slightly modified version of Section 2.8 in Poirier (1995)
 ${ }^{1}$ Of course Y may be neither discrete nor continuous, and so this proof would not be acceptable in a probability theory course like Stat 205A.

