Econ 240A: Problem Set 3 Solutions to Selected Problems from Chapter 3

Chuan Goh

7 February 2001

16.

Note that c is a median of a random variable X iff $P(X \leq c) \geq \frac{1}{2}, P(X \geq c) \geq \frac{1}{2}$. Note the following two facts:

- The definition of a median is equivalent to the statement that c is a median of X iff $P(X<c) \leq \frac{1}{2}$ and $P(X>c) \leq \frac{1}{2}$.
- It can be shown that the set of all medians $\operatorname{med}(X)$ of X is a closed interval (or generalized rectangle): that is, there exist medians c_{0}, c_{1} such that for every median $c, c_{0} \leq c \leq c_{1} .{ }^{1}$

We use the above two facts to show that $E|X-c|$ is minimized by requiring $c \in \operatorname{med}(X)$:
Let $d>c_{1}$. Let c be a median of X. Therefore $c_{0} \leq c \leq c_{1}$. We have

$$
\begin{aligned}
E|X-d|-E|X-c|= & \int_{x>d}(x-d) d P(x)-\int_{x<d}(x-d) d P(x) \\
& -\int_{x>c}(x-c) d P(x)+\int_{x<c}(x-c) d P(x) \\
= & \int_{x<d}(d-x) d P(x)+\int_{x \leq c}(x-d+d-c) d P(x) \\
& +\int_{x>d}(x-d) d P(x)-\int_{x>c}(x-d+d-c) d P(x) \\
= & \int_{c<x<d}(d-x) d P(x)+(d-c) P(X \leq c)
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& -\int_{x \geq d}(d-x) d P(x)+\int_{x>c}(d-x) d P(x) \\
& -(d-c) P(X>c) \\
= & \int_{c<x<d}(d-x) d P(x)+(d-c)[P(X \leq c)-P(X>c)] \\
& +\int_{c<x<d}(d-x) d P(x) \\
= & (d-c)[P(X \leq c)-P(X>c)]+2 \int_{c<x<d}(d-x) d P(x) \\
\geq & 0 .
\end{aligned}
$$
\]

Similarly, we can show
$E|X-f|-E|X-c|=2 \int_{f<x<c}(x-f) d P(x)+(c-f)[P(X \geq c)-P(X<c)] \geq 0$
for any $f<c_{0}$.

22.

We have $E(X+a Z)^{2}=E X^{2}+2 a E[X Z]+a^{2} E Z^{2} \geq 0 \forall a \in \Re$. If $E\left[Z^{2}\right]=0$ then $E\left[X^{2}\right]=E[X Z]=0$ and the Cauchy-Schwarz inequality holds with equality. Now assume $E\left[Z^{2}\right]>0$. Note that if $E(X+a Z)^{2}>0$, the roots of $E(X+a Z)^{2}$ are nonreal ${ }^{2}$ and are given by

$$
a=\frac{-2 E[X Z] \pm \sqrt{4(E[X Z])^{2}-4 E\left[Z^{2}\right] E\left[X^{2}\right]}}{2 E\left[Z^{2}\right]} .
$$

Complexity requires $(E[X Z])^{2}<E\left[Z^{2}\right] E\left[X^{2}\right]$.
Now $\forall \epsilon>0$ we have by Markov's inequality that

$$
P[|X+a Z|>\epsilon] \leq \frac{E(X+a Z)^{2}}{\epsilon^{2}}
$$

If $E(X+a Z)^{2}=0$ it follows that for any scalar $a, P(X=-a Z)=1$, so $(E[X Z])^{2}=E\left[Z^{2}\right] E\left[X^{2}\right]$.
25.

We assume that $\operatorname{Cov}(X, Z)=2 \rho$ for $-1 \leq \rho \leq 1$. Let

$$
\Sigma \equiv\left[\begin{array}{cc}
1 & 2 \rho \\
2 \rho & 4
\end{array}\right]
$$

[^1]which implies that
\[

\Sigma^{-1}=\left[$$
\begin{array}{cc}
\frac{1}{1-\rho^{2}} & -\frac{\rho}{2-2 \rho^{2}} \\
-\frac{\rho}{2-2 \rho^{2}} & \frac{1}{4-4 \rho^{2}}
\end{array}
$$\right]
\]

Also, let $Y \equiv\left[\begin{array}{c}X \\ Z\end{array}\right], \mu \equiv\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Note that

$$
\begin{aligned}
(y-\mu)^{\prime} \Sigma^{-1}(y-\mu) & =\frac{(x-1)^{2}}{1-\rho^{2}}+2(x-1)(z-2)\left(-\frac{2 \rho}{4-4 \rho^{2}}\right)+\frac{(z-2)^{2}}{4-4 \rho^{2}} \\
& =\frac{1}{1-\rho^{2}}\left((x-1)-\frac{\rho}{2}(z-2)\right)^{2}-\frac{\rho^{2}(z-2)^{2}}{4\left(1-\rho^{2}\right)}+\frac{(z-2)^{2}}{4-4 \rho^{2}} \\
& =\frac{1}{1-\rho^{2}}\left(x-1-\frac{\rho}{2}(z-2)\right)^{2}+\frac{(z-2)^{2}}{4}
\end{aligned}
$$

Therefore $p(x, z)=p(x \mid z) p(z) \propto \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{\left(x-1-\frac{\rho}{2}(z-2)\right)^{2}}{1-\rho^{2}}\right] \cdot \frac{1}{2} \exp \left[-\frac{1}{2} \frac{(z-2)^{2}}{4}\right]$.
It follows that $X \left\lvert\, Z=z \sim N\left(1+\frac{\rho}{2}(z-2), 1-\rho^{2}\right)\right.$.
Bayes' theorem states that $p(Z \mid X)=\frac{P(X \mid Z) P(Z)}{\int p(X \mid z) p(z) d z}$. We have

$$
\begin{aligned}
(y-\mu)^{\prime} \Sigma^{-1}(y-\mu) & =\frac{(x-1)^{2}}{1-\rho^{2}}+2(x-1)(z-2)\left(-\frac{2 \rho}{4-4 \rho^{2}}\right)+\frac{(z-2)^{2}}{4-4 \rho^{2}} \\
& =\frac{(x-1)^{2}}{1-\rho^{2}}\left(1-\rho^{2}\right)+\frac{1}{4-4 \rho^{2}}(z-2-2 \rho(x-1))^{2} \\
& =(x-1)^{2}+\frac{1}{4-4 \rho^{2}}(z-2-2 \rho(x-1))^{2}
\end{aligned}
$$

so $p(x, z) \propto \exp \left[-\frac{1}{2}(x-1)^{2}\right] \cdot \frac{1}{2 \sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{(z-2-2 \rho(x-1))^{2}}{4-4 \rho^{2}}\right]$.
We have $\int p(x \mid z) p(z) d z=\int p(z \mid x) p(x) d z=p(x) \propto \exp \left[-\frac{1}{2}(x-1)^{2}\right]$. Therefore $p(z \mid x) \propto \frac{1}{2 \sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{z-2-2 \rho(x-1))^{2}}{4-4 \rho^{2}}\right]$, so $Z \mid X=x \sim N(2+2 \rho(x-1), 4-$ $4 \rho^{2}$).

34.

Note that the moment-generating function of $X-Y$ is given by $M_{X-Y}(t)=$ $M_{X}(t) M_{Y}(-t)$. We show that $M_{X-Y}(t)$ is in fact the mgf of a member of the class of logistic distributions.

If X is distributed as an extreme value (or Gumbel) random variable with parameters a and b we have that

$$
M_{X}(t)=\int_{-\infty}^{\infty} e^{t x} \cdot \frac{1}{b} \exp \left[-\frac{x-a}{b}-e^{-\frac{x-a}{b}}\right] d x
$$

Let $y=\exp \left[-\frac{x-a}{b}\right]$. Changing the variable of integration gives us

$$
M_{X}(t)=e^{a t} \int_{0}^{\infty} y^{-b t} e^{-y} d y=e^{a t} \Gamma(1-b t)
$$

assuming that $t<\frac{1}{b}$.
Now if Z is a logistic random variable with parameters a and b we have

$$
M_{Z}(t)=\int_{-\infty}^{\infty} e^{t z} \cdot \frac{1}{b} \frac{\exp \left(\frac{a-z}{b}\right)}{\left(1+\exp \left(\frac{a-z}{b}\right)\right)^{2}} d z
$$

Let $y=\frac{1}{1+\exp \left[\frac{a-z}{b}\right]}$. Changing variables allows us to write
$M_{Z}(t)=e^{a t} \int_{0}^{1} y^{b t}(1-y)^{-b t} d y=e^{a t} B(1+b t, 1-b t)=e^{a t} \Gamma(1+b t) \Gamma(1-b t)$.
Therefore $L=X-Y$ is distributed as a logistic random variable with density $\frac{1}{b} \cdot \frac{\exp \left[\frac{-l}{b}\right]}{\left(1+\exp \left[\frac{-l}{b}\right]\right)^{2}}$. As expected, L has mean 0 and variance equal to twice the variance of X and Y, namely $\frac{(\pi b)^{2}}{6}$.
37.

Let $Z=\log Y$. We have that $Z \sim N\left(\mu, \sigma^{2}\right)$. One should check that Y does not in fact have a mgf. However one can in fact derive an expression for $E\left[Y^{t}\right]$:

Proceed by noting that the density of Y is given by transforming from the density of a normal (μ, σ^{2}) distribution:

$$
p\left(y \mid \mu, \sigma^{2}\right) \propto \frac{1}{\sigma} \exp \left[-\frac{1}{2 \sigma^{2}}(\log y-\mu)^{2}\right] \frac{1}{y}
$$

Therefore

$$
\begin{aligned}
E\left[Y^{t}\right] & =\int_{0}^{\infty} \frac{1}{\sigma} \exp \left[-\frac{1}{2 \sigma^{2}}(\log y-\mu)^{2}\right] y^{t-1} d y \\
& =\int_{-\infty}^{\infty} e^{z(t-1)+z} \frac{1}{\sigma} \phi\left(\frac{z-\mu}{\sigma}\right) d z
\end{aligned}
$$

where $\phi(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right) . .^{3}$ It follows that $E\left[Y^{t}\right]=M_{Z}(t)=\exp \left[\mu t+\frac{1}{2} \sigma^{2} t^{2}\right]$ (i.e., the mgf for a $N\left(\mu, \sigma^{2}\right)$ random variable). Therefore

$$
\begin{aligned}
E[Y] & =e^{\mu+\frac{1}{2} \sigma^{2}} \\
\operatorname{Var}[Y] & =e^{2 \mu+2 \sigma^{2}}-e^{2 \mu+\sigma^{2}}=e^{2 \mu+\sigma^{2}}\left(e^{\sigma^{2}}-1\right)
\end{aligned}
$$

[^2]40.

Suppose

$$
\left[\begin{array}{c}
X \\
Y
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mu_{X} \\
\mu_{Y}
\end{array}\right],\left[\begin{array}{cc}
\sigma_{X}^{2} & \rho \sigma_{X} \sigma_{Y} \\
\rho \sigma_{Y} \sigma_{X} & \sigma_{Y}^{2}
\end{array}\right]\right),
$$

where $-1<\rho<1$. Proceeding as in Problem 25 above, one can show that

$$
\begin{aligned}
E[X \mid Y=y] & =\mu_{X}+\rho \frac{\sigma_{X}}{\sigma_{Y}}\left(y-\mu_{Y}\right), \\
\operatorname{Var}[X \mid Y=y] & =\sigma_{X}^{2}\left(1-\rho^{2}\right), \\
E[Y \mid X=x] & =\mu_{Y}+\rho \frac{\sigma_{Y}}{\sigma_{X}}\left(x-\mu_{X}\right), \\
\operatorname{Var}[Y \mid X=x] & =\sigma_{Y}^{2}\left(1-\rho^{2}\right) .
\end{aligned}
$$

So if $\mu_{X}=1, \mu_{Y}=3$ and $\sigma_{X}^{2}=4, \sigma_{Y}^{2}=9, \rho=\frac{5}{6}$, we have

$$
X \left\lvert\, Y=y \sim N\left(1+\frac{5}{9}(y-3), \frac{11}{9}\right)\right.
$$

and

$$
Y \left\lvert\, X=x \sim N\left(3+\frac{25}{4}(x-1), \frac{11}{4}\right) .\right.
$$

Therefore
(a)

$$
\begin{aligned}
E[2 X-Y] & =E(E[2 X-Y] \mid Y) \\
& =E(2 E[X \mid Y]-Y) \\
& =E\left(2\left[1+\frac{5}{9} Y-3\right]-Y\right) \\
& =-\frac{11}{3} ;
\end{aligned}
$$

(b)

$$
\begin{aligned}
\operatorname{Var}[2 X-Y] & =\operatorname{Var}(E[2 X-Y \mid Y])+E(\operatorname{Var}[2 X-Y \mid Y]) \\
& =\operatorname{Var}\left(2+\frac{10}{9} Y-6-Y\right)+E\left(4 \cdot \frac{11}{9}-Y\right) \\
& =2 ;
\end{aligned}
$$

(c)

$$
\begin{aligned}
E[2 X-Y \mid X=5] & =10-E[Y \mid X=5] \\
& =10-3-\frac{25}{4} \cdot 4 \\
& =-18
\end{aligned}
$$

(d)

$$
\begin{aligned}
\operatorname{Var}[2 X-Y \mid X=5] & =\operatorname{Var}[Y \mid X=5] \\
& =\frac{11}{4}
\end{aligned}
$$

[^0]: ${ }^{1}$ It is clear that $\operatorname{med}(X)$ contains a maximal and a minimal element (it's easy to construct a proof by contradiction). It remains to show that $\operatorname{med}(X)$ doesn't contain any "holes" or gaps. Let $c_{0} \leq c_{1}$ be medians. Then $P\left(X \leq c_{0}\right) \geq \frac{1}{2}, P\left(X \geq c_{1}\right) \geq \frac{1}{2}$. It follows that for any c such that $c_{0} \leq c \leq c_{1}, P(X \leq c) \geq \frac{1}{2}, P(X \geq c) \geq \frac{1}{2}$. Therefore c is also a median, which shows that med (\bar{X}) is a closed interval (if X is scalar-valued) or a closed rectangle if X is multidimensional.

[^1]: ${ }^{2}$ Recall that if $a>0$ and $b^{2}-4 a c \geq 0, x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$ will solve $a x^{2}+b x+c=0$; otherwise $a x^{2}+b x+c>0 \Leftrightarrow\left(\sqrt{a} x+\frac{b}{2 \sqrt{a}}\right)^{2}+\frac{4 a c-b^{2}}{4 a}>0 \Rightarrow 4 a c-b^{2}>0$.

[^2]: ${ }^{3}$ This is standard notation for the pdf of a $N(0,1)$ random variable.

