Econ 240A: Problem Set 6 Solutions to Selected Problems from Chapter 6

Chuan Goh

28 February 2001

1.

a.

The likelihood is just the joint density of the observations, i.e.,

$$
f(x ; \mu)=(2 \pi)^{-\frac{n}{2}} \exp \left\{-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\}
$$

b.

We have $p(\mu \mid x) \propto f(x ; \mu) p(\mu)$, where $p(\mu)=\left(2 \pi \frac{1}{k}\right)^{-\frac{1}{2}} \exp \left\{-\frac{k \mu^{2}}{2}\right\}$. So

$$
\begin{aligned}
p(\mu \mid x) & \propto \exp \left\{-\frac{n}{2}(\mu-\bar{x})^{2}-\frac{k}{2} \mu^{2}\right\} \\
& =\exp \left\{-\frac{1}{2}\left[(n+k) \mu^{2}-2 n \bar{x} \mu+\frac{n^{2} \bar{x}^{2}}{n+k}-\frac{n^{2} \bar{x}^{2}}{n+k}+n \bar{x}^{2}\right]\right\} \\
& \propto \exp \left\{-\frac{1}{2}\left(\sqrt{n+k} \mu-\frac{\bar{x} n}{\sqrt{n+k}}\right)^{2}\right\} \\
& =\exp \left\{-\frac{n+k}{2}\left(\mu-\frac{n \bar{x}}{n+k}\right)^{2}\right\}
\end{aligned}
$$

which shows that $\mu \left\lvert\, x \sim N\left(\frac{n \bar{x}}{n+k}, \frac{1}{n+k}\right)\right.$.
c.

The Bayes risk $R(T, \mu)$ of an estimate T is its expected posterior loss, i.e., $R(T, \mu)=E_{\mu \mid x} L(T, \mu)$. Here $L(T, \mu)=(T-\mu)^{2}$, so

$$
R(T, \mu)=T^{2}(x)-2 T(x) \frac{n \bar{x}}{n+k}+\left[\frac{1}{n+k}+\left(\frac{n \bar{x}}{n+k}\right)^{2}\right]
$$

d.

From part c. it should be fairly clear that the procedure T that minimizes Bayes risk is just the posterior mean of μ, i.e., $T^{*}(x)=\frac{n \bar{x}}{n+k}$.
2.
a.

$$
f(x ; \mu)=\lambda^{n} \exp \left(-\lambda \sum_{i=1}^{n} x_{i}\right)
$$

b.

Differentiating $\log f(x ; \lambda)$ with respect to λ and setting the derivative to zero we find that the maximum likelihood estimator to be $\hat{\lambda}_{M L}=\frac{n}{\sum_{i=1}^{n} x_{i}}=\bar{x}^{-1}$.

c.

We have an exponential prior density $\pi(\lambda)=\alpha \exp (-\alpha \lambda)$. Let $t=\sum_{i=1}^{n} x_{i}$ and $u=\lambda(t+\alpha)$. Note that

$$
\begin{aligned}
\int_{0}^{\infty} \pi(\lambda) f(x ; \lambda) d \lambda & =\int_{0}^{\infty} \alpha \lambda^{n} \exp \{-\lambda(t+\alpha)\} d \lambda \\
& =\alpha \int_{0}^{\infty}\left(\frac{u}{t+\alpha}\right)^{n} \cdot \frac{1}{t+\alpha} e^{-u} d u \\
& =\frac{\alpha}{(t+\alpha)^{n+1}} \Gamma(n+1) \\
& =\frac{\alpha n!}{(t+\alpha)^{n+1}}
\end{aligned}
$$

Therefore the posterior density of λ is given by $\pi(\lambda \mid x)=\frac{1}{n!} \lambda^{n}(t+\alpha)^{n+1} e^{-\lambda(t+\alpha)}$. The Bayes estimate of λ, that is, the estimate that minimizes posterior loss is the posterior mean of λ if we have a quadratic loss function as in Exercise 1 above:

$$
\begin{aligned}
E[\lambda \mid x] & =\frac{1}{n!}(t+\alpha)^{n+1} \int_{0}^{\infty} \lambda^{n+1} e^{-\lambda(t+\alpha)} d \lambda \\
& =\frac{(t+\alpha)^{n+1}}{n!} \cdot \frac{1}{(t+\alpha)^{n+2}} \int_{0}^{\infty} u^{n+1} e^{-u} d u \\
& =\frac{\Gamma(n+2)}{n!(t+\alpha)} \\
& =\frac{n+1}{t+\alpha}
\end{aligned}
$$

d.

We have $W=2 n \lambda \bar{x}=2 \lambda \sum_{i=1}^{n} x_{i}$, so the characteristic function of W is given by

$$
\begin{aligned}
c_{W}(s) & =E\left[e^{i W t}\right] \\
& =\prod_{i=1}^{n} c_{X_{i}}(2 \lambda s) \\
& =\prod_{i=1}^{n} \int_{0}^{\infty} \lambda \exp \left\{i 2 \lambda x_{i} s-\lambda x_{i}\right\} d x_{i} \\
& =\prod_{i=1}^{n}(1-2 i s)^{-1} \\
& =(1-2 i s)^{n} \\
& =(1-2 i s)^{\frac{2 n}{2}},
\end{aligned}
$$

which is the characteristic function of a $\chi_{2 n}^{2}$ random variable.
We have $\hat{\lambda}_{M L}=\frac{2 n \lambda}{W}$, which is distributed as $2 n \lambda \chi_{\nu}^{-2}$, where χ_{ν}^{-2} refers to an inverse chi-square distribution with ν degrees of freedom. ${ }^{1}$ The pdf of the MLE of λ is therefore given by

$$
p\left(\hat{\lambda}_{M L}\right)=\frac{(2 n \lambda)^{n}}{2^{n} \Gamma(n)} \hat{\lambda}_{M L}^{n-1} \exp \left\{-\frac{1}{2} \cdot \frac{2 n \lambda}{\hat{\lambda}_{M L}}\right\} .
$$

The derivation of $p\left(\hat{\lambda}_{M L}\right)$ is left as an exercise.

4.

We have k_{1}, \ldots, k_{n} iid $\operatorname{Bernoulli}(p)$, so the likelihood function is given by

$$
f\left(k_{1}, \ldots, k_{n}\right)=p^{\sum_{i=1}^{n} k_{i}}(1-p)^{n-\sum_{i=1}^{n} k_{i}} .
$$

Let $K=\sum_{i=1}^{n} k_{i}$. K is clearly sufficient for p by the factorization criterion. It is also minimal sufficient. ${ }^{2}$ Note that if there exists a function h and a statistic U such that $K=h(U)$ then K cannot contain more information about p than U, which (after a moment's thought) indicates that U is also sufficient for p. (Alternatively, sufficiency can be shown by substituting $h(U)$ for K in the likelihood function for the sample.)
a.

We have $U=\left(k_{1}, \ldots, k_{n}\right)$. Then $K=\sum_{i=1}^{n} U_{i}$, so U is sufficient.

[^0]b.

We have $U=\left(k_{1}^{2},\left(k_{2}+\cdots+k_{n}\right)^{2}\right)$. Then $K=\sqrt{U_{1}}+\sqrt{U_{2}}$ so U is sufficient.
c.

We have $U=\frac{K}{n}$. Then $K=n U$ so U is sufficient.
d.

We have $U=\left(\frac{K}{n}, k_{2}^{2}+\cdots+k_{n}^{2}\right)$. Then $K=n U_{1}$ so U is sufficient.
e.

We have $U=k_{1}^{2}+\cdots+k_{n}^{2}$. Here $K=U$ so U is sufficient.

6.

We have an estimator $T(X)$ that has finite variance V_{T} and is unbiased for θ, so its mean squared error is V_{T}. Denote a Stein shrinkage estimator by $S_{\lambda}(X)=(1-\lambda) T(X)+\lambda 17$. Note that in general $S_{\lambda}(X)$ will be biased for θ. Denote the mean squared error of $S_{\lambda}(X)$ by $M(\lambda)$:

$$
M(\lambda)=(1-\lambda)^{2} V_{T}+\lambda^{2}(17-\theta)^{2} .
$$

Its derivative is given by

$$
M^{\prime}(\lambda)=-2(1-\lambda) V_{T}+2 \lambda(17-\theta)^{2} .
$$

For any value of $\theta M^{\prime}(\lambda)<0$ whenever $\lambda<\frac{V_{T}}{(17-\theta)^{2}+V_{T}} \leq 1$. Since $S_{0}(X)=$ $T(X)$, this shows that for λ strictly between zero and a small number less than or equal to 1 the MSE of $S_{\lambda}(X)$ will be uniformly smaller than that of $T(X)$. Whether $S_{\lambda}(X)$ or $T(X)$ is the better estimator naturally depends on the utility function of the investigator for the particular application at hand.

[^0]: ${ }^{1}$ Suppose $X \sim \chi_{\nu}^{2}$. Then $X^{-1} \sim \chi_{\nu}^{-2}$.
 ${ }^{2}$ See handout on sufficiency. The Bernoulli class of distributions can be shown to be a member of the exponential family of distributions.

