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This handout expands on the text by presenting a brief and hopefully useful
discussion of the concepts of suÆciency, minimal suÆciency, and completeness,
along with their relationship to the exponential family of distributions. Con-
sider a random variable X � P�, where P� refers to the class of probability
distributions indexed by the parameter �.

De�nition 1 (SuÆciency). A statistic T (X) is suÆcient for � i� the condi-
tional distribution of X given T = t does not depend on �.

Deterimining the suÆciency of a statistic T via the de�nition can be cum-
bersome. Thankfully, there is a much simpler criterion.

Theorem 1 (Factorization Criterion). T is suÆcient for the parameter �

of the family of distributions generating X i� the densities of X satisfy

p�(x) = g�[T (x)]h(x):

Proof. See Lehmann (1986), Section 2.6, Theorem 8 and Corollary 1.

Suppose we have an iid sequence of random variables X1; : : : ; Xn � P�. Let
X = (X1; : : : ; Xn) be the data for the experiment at hand. What information
does a suÆcient statistic T (X) contain regarding the unknown parameter �

given a realization of the dataset X = x?
Suppose we record the realization of the statistic T (X) = t but somehow

misplace the original observations X = x. All is not lost as we can use a pseudo-
random number generator to generate a dataset X 0 distributed according to the
conditional distribution of X given t which by de�nition does not depend on
�.1 It follows that the unconditional distribution of X 0 is the same as that of
the original data X , ie., for any set A, P�(X 2 A) = P�(X

0 2 A). Therefore we
can say that knowledge of T alone gives us the ability to replicate the random
process that generated the data for the original experiment and so reconstruct
misplaced data from the experiment. Alternatively, we can say that a suÆcient

�This handout consists mainly of portions of Sections 1.5 and 1.6 of Lehmann and Casella
(1998).

1Obviously, it would not be possible to do this if we needed to know the actual value of �.
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statistic allows one to compress the data without losing relevant information
about the unknown parameter: if T is suÆcient and there exist a function h

and a statistic U such that T = h(U), U cannot contain less information about
� than T and so U must also be suÆcient. Moreover T provides a greater
degree of data compression than U unless h is 1-to-1, in which case T and U

are equivalent.

Example 1 (Normal data). Suppose X1; : : : ; Xn are iid N(�; �2). Their joint
density is

P�;�2 (x) = (2��2)�
n

2 exp

"
�
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#
:

By the factorization criterion T = (
P

X2
i ;
P

Xi) is suÆcient for � = (�; �2).
Clearly T is equivalent to T 0 = ( �X;S2), where �X = n�1

P
Xi and S2 = (n �

1)�1
P
(Xi � �X)2.

Example 2 (Di�erent suÆcient statistics). Let X1; : : : ; Xn be iid N(0; �2).
Then the statistics

T1(X) = (X1; : : : ; Xn)

T2(X) = (X2
1 ; : : : ; X

2
n)

T3(X) = (X2
1 + � � �+X2

m; X
2
m+1 + � � �+X2

n)

T4(X) = X2
1 + � � �+X2

n

are all suÆcient for �2. Ti provides an increasing degree of data compression
as i increases.

It is natural to ask if there is a statistic T that gives the maximal degree of
data compression vis-�a-vis �. This leads to the notion of minimal suÆciency.

De�nition 2 (Minimal SuÆciency). A suÆcient statistic T is minimal
suÆcient if for any suÆcient statistic U there exists a function h such that
T = h(U).

Construction of a minimal suÆcient statistic is fairly straightforward. Con-
sider the following lemma and theorem:

Lemma 1. For any �xed � and �0 a statistic U is suÆcient i� p�(x)
p�0 (x)

is a

function only of U(x).

Proof. Exercise. (This isn't too diÆcult.)

Theorem 2. Consider a family of s + 1 densities pi; i = 0; 1; 2; : : : ; s with a

common support. Then T (X) =
�
p1(X)
p0(X) ; � � � ;

ps(X)
p0(X)

�
is minimal suÆcient.

2



Proof. By the previous lemma we note that a statistic U is suÆcient i� T is a
function of U . But this is just the de�nition of minimal suÆciency applied to
T .

Although a minimal suÆcient statistic provides in some sense an optimal
degree of data compression it is still possible for it to contain much \extra" or
ancillary material that does not provide by itself any information about �.

De�nition 3 (Ancillarity). A statistic V is ancillary if its distribution does
not depend on �. V is �rst-order ancillary if the expectation E�[V (X)] does not
depend on � (i.e., E�[V (X)] is constant).

A bit of thought will lead us to the idea that a suÆcient statistic T that
provides the most eÆcient degree of data compression will have the property
that no nonconstant transformation of the statistic h(T ) is ancillary or �rst-
order ancillary.2 This notion is referred to as completeness.

De�nition 4 (Completeness). A statistic T is complete for � if for any �

E�[h(T )] = c implies h(T ) = c with probability one. By subtracting c this
condition is equivalent to

E�[h(T )] = 0 8 � ) h(T ) = 0 wp:1

Completeness has the following consequence which is very useful when de-
riving hypothesis tests for exponential family distributions.

Theorem 3 (Basu's Theorem). If T is a complete suÆcient statistic for the
family of distributions P� then any ancillary statistic V is independent of T .

Proof. By ancillarity, pC = P (V 2 C) does not depend on � for any C. Let
qC(t) = P (V 2 CjT = t). Then E�[qC(T )] = pC , and so by completeness,
qC(T ) = pC wp. 1. This proves the independence of V and T .

The notions of suÆciency, minimal suÆciency, and completeness tend to
feature prominently in any discussion of the exponential family of distributions.

De�nition 5 (s-parameter exponential families). A class of distributions
P� = fP�g is an s-parameter exponential family if the densities of the members
of the class have the form

p�(x) = exp

"
nX
i=1

�iTi(x) �A(�)

#
h(x);

where � = (�1; : : : ; �s)
0 2 Es. If the �i are linearly independent and the Ti are

also linearly independent then the family is full-rank exponential.

2Observe that the transformation h(T ) cannot contain more \material" than is already
contained in T . The key idea is the possibility of using h to extract any ancillary material
from T .
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It is a useful exercise to check if a commonly-occurring class of distributions
is an exponential family.3

Here are two useful facts.

Theorem 4. If p�(x) is the density of a full-rank s-parameter exponential fam-
ily, then T (x) = (T1(x); : : : ; Ts(x))

0 is minimal suÆcient.

Proof. T is obviously suÆcient by the factorization criterion. Consider s + 1

distributions with densities p(xj�(j)), �(j) = (�
(j)
1 ; : : : ; �

(j)
s )0; j = 0; 1; : : : ; s. By

Theorem 2 the minimal suÆcient statistic is equivalent to 
sX

i=1

(�
(1)
i � �

(0)
i )Ti(X); : : : ;

sX
i=1

(�
(s)
i � �

(0)
i )Ti(X)

!
0

;

which is equivalent to T (X) = (T1(X); : : : ; Ts(X))0, given that no nontrivial

linear combination of the �
(j)
i � �

(0)
i is zero for each j = 0; 1; : : : ; s.

In an exponential family, it turns out that not only is the statistic T minimal
suÆcient, it is complete.

Theorem 5. If X is distributed according to a full-rank exponential family with
minimal suÆcient statistic T (X) = (T1(X); : : : ; Ts(X))0, then T is complete.

Proof. See Lehmann (1986), Section 4.3, Theorem 1.

Corollary 5.1. Let the density of X be given by

p�;�(x) = C(�; �) exp

"
�U(x) +

sX
i=1

�iTi(x)

#
:

For � equal to some �xed value, consider a statistic V that is ancillary for �.
Then V is independent of T for all �.
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3Chances are that it will be. Note that the gamma, chi-squared, beta, Bernoulli, binomial,
Poisson, and normal classes are all exponential families.
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