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Chapter 2. ANALYSIS AND LINEAR ALGEBRA IN A NUTSHELL

1. Some Elements of Mathematical Analysis

Real numbers are denoted by lower case Greek or Roman numbers; the space of

real numbers is the real line, denoted by R. The absolute value of a real number a

is denoted by a. Complex numbers are rarely required in econometrics before the

study of time series and dynamic systems. For future reference, a complex number is
q=====6

written a + bι, where a and b are real numbers and ι = e-1, with a termed the real

part and ιb termed the imaginary part. The complex number can also be written as
q====================6
2 2 2 -1r(cos θ + ι sin θ), where r = ea +b is the modulus of the number and θ = cos (a/r).

The properties of complex numbers we will need in basic econometrics are the rules

for sums, (a+ιb) + (c+ιd) = (a+c)+ι(b+d), and products, (a+ιb)⋅(c+ιd) =

(ab-cd)+ι(ad+bc).

For sets of objects A and B, the union A∪B is the set of objects in either;

the intersection A∩B is the set of objects in both; and A\B is the set of objects in

A that are not in B. The empty set is denoted ∅. Set inclusion is denoted A ⊆ B; we

say A is contained in B. The complement of a set A (relative to a set B that

ccontains it) is denoted A . A family of sets is disjoint if the intersection of each

pair is empty. The symbol a ∈ A means that a is a member of A; and a ∉ A means that

a is not a member of A. The symbol ∃ means "there exists", the symbol ∀ means "for

all", and the symbol ∋ means "such that".

The terms function, mapping, and transformation are used synonymously, and the

notation f:A ----------L B will mean that each object a in the domain A is mapped into an

object b = f(a) in the range B. The symbol f(C), termed the image of C, is used for

-1the set of all objects f(a) for a ∈ C. For D ⊆ B, the symbol f (D) denotes the
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inverse image of D: the set of all a ∈ A such that f(a) ∈ D. The function f is onto

if B = f(A); it is one-to-one if it is onto and if a,c ∈ A and a ≠ c implies f(a) ≠
-1f(c). When f is one-to-one, the mapping f is a function from B onto A. If C ⊆ A,

define the function 1 :A ----------L R by 1 (a) = 1 for a ∈ C, and 1 (a) = 0 otherwise; this
C C C

is called the indicator function for the set C. A function is termed real-valued if

its range is R.

If A is a set of real numbers, then the infimum of A, denoted inf A, is the

greatest real number that is less than or equal to every number in A. The supremum

of A, denoted sup A, is the least real number that is greater than or equal to every

number in A. A typical application has a function f:C ----------L R and A = f(C); then

sup f(c) is used to denote sup A. If the supremum is achieved by an object d ∈ C, so
c∈C

f(d) = sup f(c), then we write f(d) = max f(c) and d = ar gmax f(c). This notation is
c∈C c ∈C c∈ C

ambigious when there is a non-unique maximizing argument; we will assume that

ar gmax f(c) is a selection of any one of the maximizing arguments. Analogous
c∈ C

definitons hold for inf and min.

If a is a sequence of real numbers indexed by i = 1,2,..., then the sequencei

is said to have a limit (equal to a ) if for each ε > 0, there exists n such thato

a - a  < ε for all i ≥ n; the notation for a limit is l im a = a or a ----------L a .i o i o i oiL∞
The Cauchy criterion says that a sequence a has a limit if and only if, for eachi

ε > 0, there exists n such that a - a  < ε for i,j ≥ n. The notation limsup ai j ii-----L∞
means the limit of the supremum of the sets {a ,a ,...}; because it isi i+1

nonincreasing, it always exists (but may equal +∞ or -∞). An analogous definition

holds for liminf.

A real-valued function ρ(a,b) defined for pairs of objects in a set A is a

distance function if it is non-negative, gives a positive distance between all
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distinct points of A, has ρ(a,b) = ρ(b,a), and satisfies the triangle inequality

ρ(a,b) ≤ ρ(a,c) + ρ(c,b). A set A with a distance function ρ is termed a metric

space. A typical example is the real line R, with the absolute value of the

difference of two numbers taken as the distance between them. A (ε-)neighborhood of

a point a in a metric space A (for ε > 0) is a set of the form {b∈A ρ(a,b) < ε}. A

set C ⊆ A is open if for each point in C, some neighborhood of this point is also

contained in C. A set C ⊆ A is closed if its complement is open. The closure of a

set C is the intersection of all closed sets that contain C. The interior of C is

the union of all open sets contained in C. A covering of a set C is a family of open

sets whose union contains C. The set C is said to be compact if every covering

contains a finite sub-family which is also a covering. A family of sets is said to

have the finite-intersection property if every finite sub-family has a non-empty

intersection. Another characterization of a compact set is that every family of

closed subsets with the finite intersection property has a non-empty intersection. A

metric space A is separable if there exists a countable subset B such that every

neighborhood contains a member of B. All of the metric spaces encountered in

econometrics will be separable. A sequence a in a separable metric space A isi

convergent (to a point a ) if the sequence is eventually contained in eacho

neighborhood of a; we write a ----------L a or l im a = a to denote a convergent sequence.i o i oiL∞
A set C ⊆ A is compact if and only if every sequence in C has a convergent

subsequence (which converges to a cluster point of the original sequence).

Consider separable metric spaces A and B, and a function f:A ----------L B. The

function f is continuous on A if the inverse image of every open set is open.

Another characterization of continuity is that for any sequence satisfying a ----------L a ,i o

one has f(a ) ----------L f(a ); the function is said to be continuous on C if this propertyi o
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holds for each a ∈ C. Stated another way, f is continuous on C if for each ε > 0o

and a ∈ C, there exists δ > 0 such that for each b in a δ-neighborhood of a, f(b) is

in a ε-neighborhood of f(a). Continuity of real-valued functions f and g is

preserved by the operations of absolute value f(a), multiplication f(a)⋅g(a),

addition f(a)+g(a), and maxima or minima max{f(a),g(a)} and min{f(a),g(a)}. The

function f is uniformly continuous on C if for each ε > 0, there exists δ > 0 such

that for all a ∈ C and b ∈ A with b in a δ-neighborhood of a, one has f(b) in a

ε-neighborhood of f(a). The distinction between continuity and uniform continuity is

that for the latter a single δ > 0 works for all a ∈ C. A function that is

continuous on a compact set is uniformly continuous.

Consider a real-valued function f on R. The derivative of f at a , denotedo

f′(a ), ∇f(a ), or df(a )/da, has the property if it exists thato o o

f(b) - f(a ) - f′(a )(b-a ) ≤ ε(b-a )⋅(b-a ), where l im ε(c) = 0. The function iso o o o o cL0
continuously differentiable at a if f′ is a continuous function at a . If ao o

function is k-times continuously differentiable in a neighborhood of a point a , theno

it has a Taylor’s expansion

k i k( )(b-a ) (b-a )
s (i) o 2 (k) (k) 2 of(b) = f (a )⋅----------------------------- + {f (λb+(1-λ)a ) - f (a )}⋅--------------------------------,
t o i! 2 o o 2 k!

9 0i=0
(i)where f denotes the i-th derivative, λ is a scalar between zero and one, and b is

in the neighborhood.

aThe exponential function e , also written exp(a), and natural logarithm log(a)

appear frequently in econometrics. The exponential function is defined for both real

a+b a b 0and complex arguments, and has the properties that e = e e , e = 1, and the

∞ ia s aTaylor’s expansion e = -------- that is valid for all a. The trigonometric functions
t i!

i=0
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cos(a) and sin(a) are also defined for both real and complex arguments, and have

∞ ∞i 2i i 2i+1
s (-1) a s (-1) aTaylor’s expansions cos(a) = --------------------------------, and sin(a) = -------------------------------------------. These
t (2i)! t (2i+1)!

i=0 i=0
a+ιb aexpansions combine to show that e = e (cos(b) + ιsin(b)). The logarithm is

defined for positive arguments, and has the properties that log(1) = 0, log(a⋅b) =

∞
a s ilog(a) + log(b), and log(e ) = a. It has a Taylor’s expansion log(1+a) = a ,

t
i=1

valid for a < 1. A useful bound on logarithms is that for a < 1/3 and b < 1/3,

2Log(1+a+b) - a < 4b + 3a .

2. Vectors and Linear Spaces

2.1. A finite-dimensional linear space is a set with the properties (a) that

linear combinations of points in the set are defined and are again in the set, and

(b) there is a finite number of points in the set (a basis) such that every point in

the set is a linear combination of this finite number of points. The dimension of

the space is the minimum number of points needed to form a basis. A point x in a

linear space of dimension n has a ordinate representation x = (x ,x ,...,x ), given a1 2 n

basis for the space {b ,...,b }, where x ,...,x are real numbers such that x = x b1 n 1 n 1 1

+ ... + x b . The point x is called a vector, and x ,...,x are called itsn n 1 n

components. The notation (x) will sometimes also be used for component i of ai

vector x. In econometrics, we work mostly with finite-dimensional real space. When

nthis space is of dimension n, it is denoted R . Points in this space are vectors of

real numbers (x ,...,x ); this corresponds to the previous terminology with the basis1 n
nfor R being the unit vectors (1,0,..,0), (0,1,0,..,0),..., (0,..,0,1). Usually, we

assume this representation without being explicit about the basis for the space.
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However, it is worth noting that the coordinate representation of a vector depends on

the particular basis chosen for a space. Sometimes this fact can be used to choose

bases in which vectors and transformations have particularly simple coordinate

representations.
q=====================================6
2 2 22The Euclidean norm of a vector x is NxN = x +...+x . This norm can be used to

2 e 1 n

define the distance between vectors, or neighborhoods of a vector. Other possible

norms are NxN = x +...+x , NxN = max {x ,...,x }, or for 1 ≤ p < +∞,
1 1 n ∞ 1 n

1
q e-----

p2 p p2
NxN = 2x  +...+x  2 Each norm defines a topology on the linear space, based on

p 2 1 n 2
z c

neighborhoods of a vector that are less than each positive distance away. The space

n
R with the norm NxN and associated topology is called Euclidean n-space.

2

nThe vector product of x and y in R is defined as

x⋅y = x y +...+x y .1 1 n n

Other notations for vector products are <x,y> or (when x and y are interpreted as row

vectors) xy′ or (when x and y are interpreted as column vectors) x′y.

n2.2. A linear subspace of a linear space such as R is a subset that has the

property that all linear combinations of its members remain in the subset. Examples

of linear subspaces are the plane {(a,b,c)b = 0} and the line {(a,b,c)a = b = 2⋅c}

3in R . The linear subspace spanned by a set of vectors {x ,...,x } is the set of all1 J
Jlinear combinations of these vectors, L = {x α +...+x α (α ,...,α ) ∈ R }. The1 1 J J 1 J

vectors {x ,...,x } are linearly independent if and only if one cannot be written as1 J

a linear combination of the remainder. The linear subspace that is spanned by a set

of J linearly independent vectors is said to be of dimension J. Conversely, each

linear space of dimension J can be represented as the set of linear combinations of J
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linearly independent vectors, which are in fact a basis for the subspace. A linear

subspace of dimension one is a line (through the origin), and a linear subspace of

⊥dimension (n-1) is a hyperplane (through the origin). If L is a subspace, then L =

n{x∈R  x⋅y = 0 for all y∈L} is termed the complementary subspace. Subspaces L and M

with the property that x⋅y = 0 for all y ∈ L and x ∈ M are termed orthogonal, and

denoted L⊥M. The angle θ between subspaces L and M is defined by

cos θ = Min {x⋅y y ∈ L, NyN = 1, x ∈ M, NxN = 1}.
2 2

Then, the angle between orthogonal subspaces is π/2, and the angle between subspaces

that have a nonzero point in common is zero. A subspace that is translated by adding

a nonzero vector c to all points in the subspace is termed an affine subspace.

2.3. The concept of a finite-dimensional space can be generalized. For example,

n nconsider, for 1 ≤ p < +∞, the family L (R ) of real-valued functions f on R such
p

i pthat the integral NfN = 2 f(x) dx is well-defined and finite. This is a linear
p j

n
R

space with norm NfN since linear combinations of functions that satisfy this
p

property also satisfy (using convexity of the norm function) this property. One can

nthink of the function f as a vector in L (R ), and f(x) for a particular value of x
p

as a component of this vector. Many, but not all, of the properties of finite-

dimensional space extend to infinite dimensions. In basic econometrics, we will not

need the infinite-dimensional generalization. It appears in more advanced

econometrics, in stochastic processes in time series, and in nonlinear and

nonparametric problems.
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3. Linear Transformations and Matrices

3.1. A mapping A from one linear space (its domain) into another (its range) is

a linear transformation if it satisfies A(x+z) = A(x) + A(z) for any x and z in the

domain. When the domain and range are finite-dimensional linear spaces, a linear

transformation can be represented as a matrix. Specifically, a linear transformation

n mA from R into R can be represented by a m×n array A with elements a for 1 ≤ i ≤ mij
n
sand 1 ≤ i ≤ n, with y = A(x) having components y = a x for 1 ≤ i ≤ m. Ini t ij j

j=1

matrix notation, this is written y = Ax. A matrix A is real if all its elements are

real numbers, complex if some of its elements are complex numbers. Throughout these

notes, matrices are assumed to be real unless explicitly assumed otherwise. The set

n ⊥
N = {x∈R Ax = 0} is termed the null space of the transformation A. The set N of

all linear combinations of the column vectors of A is termed the column space of A;

it is the complementary subspace to N.

If A denotes a m×n matrix, then A′ denotes its n×m transpose (rows become

columns and vice versa). The identity matrix of dimension n is n×n with one’s down

the diagonal, zero’s elsewhere, and is denoted I , or I if the dimension is clearn

from the context. A permutation matrix is obtained by permuting the columns of an

identity matrix. If A is a m×n matrix and B is a n×p matrix, then the matrix product

n
sC = AB is of dimension m×p with elements c ≡ a b for 1 ≤ i ≤ m and 1 ≤ k ≤ p.ik t ij jk

j=1

For the matrix product to be defined, the number of columns in A must equal the

number of rows in B (i.e., the matrices must be commensurate). A matrix A is square

if it has the same number of rows and columns. A square matrix A is symmetric if

A = A′, diagonal if all off-diagonal elements are zero, upper (lower) triangular if
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all its elements below (above) the diagonal are zero, and idempotent if it is

2symmetric and A = A. A matrix A is column orthonormal if A′A = I; simply

orthonormal if it is both square and column orthonormal.

mEach column of a m×n matrix A is a vector in R . The rank of A, denoted ρ(A),

is the largest number of columns that are linearly independent. From the definition,

A is of rank n if and only if x = 0 is the only solution to Ax = 0. A n×n matrix A

-1 -1of rank n is termed nonsingular; this matrix has an inverse matrix A such that AA

-1= A A = I if and only if A is nonsingular.m

3.2. The following tables define useful matrix and vector operations.

Table 1. Basic Operations
q p p p===================================================================================================================================================================================================================================================================================================================================================e
2 1 Name 1 Notation 1 Definition 2
2 1 1 1 2[---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 1 1 2
2 1 1 1 n 2
2 1 1 1 2
2 1 1 1 s 2
21.1Matrix Product 1 C = AB 1For m×n A and n×p B, c = a b 2
2 1 1 1 ik t ij jk2
2 1 1 1 2
2 1 1 1 j=1 2
2 1 1 1 2
2 1 1 1 2
22.1Scalar Multiplication1 C = bA 1For a scalar b, c = ba 2
2 1 1 1 ij ij 2
2 1 1 1 2
3. Matrix Sum C = A+B For A and B m×n, c = a + b2 1 1 1 2ij ij ij2 1 1 1 2

2 1 1 1 2
2 1 1 -1 1 -1 2
24.1Matrix Inverse 1 C = A 1For A n×n nonsingular, AA = I 2
2 1 1 1 m 2
2 1 1 1 2
2 1 1 1 n 2
2 1 1 1 2
2 1 1 1 s 2
25.1Trace 1 c = tr(A) 1For n×n A, c = a 2
2 1 1 1 t ii 2
2 1 1 1 2
2 1 1 1 i=1 2
z $ $ $===================================================================================================================================================================================================================================================================================================================================================c
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Table 2. Operations on Elements
q p p p====================================================================================================================================================================================================================================================================================================================================================================e
2 1 Name 1 Notation 1 Definition 2
2 1 1 1 2[-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 1 1 2
21.1Element Product 1 C = A.*B 1For A, B m×n, c = a ⋅b 2
2 1 1 1 ij ij ij 2
2 1 1 1 2
2 1 1 1 2
22.1Element Division 1 C = A.÷B 1For A, B m×n, c = a /b 2
2 1 1 1 ij ij ij 2
2 1 1 1 2
2 1 1 1 2
23.1Logical Condition1 C = A.≤B 1For A, B m×n, c = 1(a ≤b ) [Note 1]2
2 1 1 1 ij ij ij 2
2 1 1 1 24. Row Minimum C = vmin(A) For m×n A, c = min a [Note 2]2 1 1 1 2i1 ijj2 1 1 1 2
2 1 1 1 2
2 1 1 1 25. Column Minimum C = min(A) For m×n A, c = min a [Note 3]2 1 1 1 2ij kj2 1 1 1 k 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 i 2
2 1 1 1 2
2 1 1 1 s 2
26.1Cumulative Sum 1 C = cumsum(A)1For m×n A, c = a 2
2 1 1 1 ij t kj 2
2 1 1 1 2
2 1 1 1 k=1 2
z $ $ $====================================================================================================================================================================================================================================================================================================================================================================c

Table 3. Shaping Operations
q p p p===========================================================================================================================================================================================================================================================================================================================================================e
2 1Name 1Notation 1Definition 2
2 1 1 1 2[-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 1 1 2
21.1Kronecker Product1 C = A⊗B 1Note 4 2
2 1 1 1 2
22.1Direct Sum 1 C = A⊕B 1Note 5 2
2 1 1 1 2
23.1diag 1 C = diag(x) 1C a diagonal matrix with vector x 2
2 1 1 1 2
2 1 1 1 down the diagonal 2
2 1 1 1 2
24.1vec 1 c = vec(A) 1vector c contains rows of A, by row 2
2 1 1 1 25. vech c = vech(A) vector c contains upper triangle2 1 1 1 2
2 1 1 1 of A, row by row, stacked 2
2 1 1 1 2
26.1vecd 1 c = vecd(A) 1vector c contains diagonal of A 2
2 1 1 1 2
27.1horizontal 1 C = {A,B} 1Partitioned matrix C = [ A B ] 2
2 1 1 1 2
2 1 contatination 1 1 2
2 1 1 1 2
28.1vertical 1 C = {A;B} 1Partitioned matrix C = [ A′ B′]′ 2
2 1 1 1 2
2 1 concatination 1 1 2
2 1 1 1 2
29.1reshape 1 C = rsh(A,k) 1Note 6 2
z $ $ $===========================================================================================================================================================================================================================================================================================================================================================c

NOTES TO TABLES 2 AND 3:
1. 1(P) is one of P is true, zero otherwise. The condition is also defined for
the logical operations "<", ">", "≥", "=", and "≠".
2. C is a m×1 matrix. The operation is also defined for "max".
3. C is a m×n matrix, with all rows the same. The operation is also defined for
"max".
4. Also termed the direct product, the Kronecker product is defined for a m×n
matrix A and a p×q matrix B as the (mp)×(nq) array



McFadden Chapter 2. Analysis and Linear Algebra in a Nutshell 28
_______________________________________________________________________

q e
2 a B a B ... a B 2
2 11 12 1n 2
2 2
2 2a B a B ... a B2 221 22 2nA⊗B = 2 2.
2 | | | 2
2 2
2 2
2 2a B a B a B2 22 m1 m2 mn 2
z c

5. The direct sum is defined for a m×n matrix A and a p×q matrix B by the
q e
2 A 0 2(m+p)×(n+q) partitioned array A⊕B = 2 2.
2 0 B 2
z c

6. If A is m×n, then k must be a divisor of m⋅n. The operation takes the
elements of A row by row, and rewrites the successive elements as rows of a
matrix C that has k rows and m⋅n/k columns.

____________________________________________________________________________

In addition to the operations in the tables above, there are statistical

operations that can be performed on a matrix when its columns are vectors of

observations on various variables. Discussion of these operations is postponed until

later. Most of the operations in Tables 1-3 are available as part of the matrix

programminglanguagesineconometricscomputerpackagessuchasSST,TSP,GAUSS,or

MATLAB. The notation in these tables is close to the notation for the corresponding

matrix commands in SST and GAUSS.

3.3. The determinant of a n×n matrix A is denoted A or det(A), and has the

geometric interpretation as the volume of the parallelpiped formed by the column

vectors of A. The matrix A is nonsingular if and only if det(A) ≠ 0. A minor of a

matrix A (of order r) is the determinant of a submatrix formed by striking out n-r

rows and columns. A principal minor is formed by striking out symmetric rows and

columns of A. A leading principal minor (of order r) is formed by striking out the

last n-r rows and columns. The minor of an element a of A is the determinant ofij
ijthe submatrix A formed by striking out row i and column j of A. Determinants

satisfy the recursion relation
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n n
s i+j ij s i+j ijdet(A) = (-1) a det(A ) = (-1) a det(A ),
t ij t ij

i=1 j=1

with the first equality holding for any j and the second holding for any i. This

formula can be used as a recursive definition of determinants, starting from the

result that the determinant of a scalar is the scalar. A useful related formula is

n
s i+j ij(-1) a det(A )/det(A) = δ ,
t ik kj

i=1

where δ is one if k = j and zero otherwise.kj

3.4. We list without proof a number of useful elementary properties of matrices:

(1) (A′)′ = A.

-1 -1 -1(2) If A exists, then (A ) = A.

-1 -1 -1(3) If A exists, then (A′) = (A )′.

(4) (AB)′ = B′A′.
-1 -1 -1(5) If A,B are square, nonsingular, and commensurate, then (AB) = B A .

(6) If A is m×n, then Min {m,n} ≥ ρ(A) = ρ(A′) = ρ(A′A) = ρ(AA′).

(7) If A and B are commensurate, then ρ(AB) ≤ min(ρ(A),ρ(B)).

(8) ρ(A+B) ≤ ρ(A) + ρ(B).

(9) If A is n×n, then det(A) ≠ 0 if and only if ρ(A) = n.

(10) If B and C are nonsingular and commensurate with A, then ρ(BAC) = ρ(A).

(11) If A, B are n×n, then ρ(AB) ≥ ρ(A) + ρ(B) - n.

(12) det(AB) = det(A)⋅det(B).

n(13) If c is a scalar and A is n×n, then det(cA) = c det(A)

(14) The determinant of a matrix is unchanged if a scalar times one column

(row) is added to another column (row).
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(15) The determinant of a diagonal or upper triangular matrix is the product

of the diagonal elements.

-1(16) det(A ) = 1/det(A).

-1 i+j ij(17) If A is n×n and B = A , then b = (-1) det(A )/det(A).ij

(18) The determinant of an orthonormal matrix is +1 or -1.

(19) If A is m×n and B is n×m, then tr(AB) = tr(BA).

(20) tr(I ) = n.n

(21) tr(A+B) = tr(A) + tr(B).

-1(22) A permutation matrix P is orthonormal; hence, P′ = P .

(23) The inverse of a (upper) triangular matrix is (upper) triangular, and

the inverse of a diagonal matrix D is diagonal, with the reciprocals of the

-1diagonal elements of D down the diagonal of D .

(24) The product of orthonormal matrices is orthonormal, and the product of

permutation matrices is a permutation matrix.

4. Eigenvalues and Eigenvectors

An eigenvalue of a n×n matrix A is a scalar λ such that Ax = λx for some vector

x ≠ 0. The vector x is called a (right) eigenvector. The condition (A-λI)x = 0

associated with an eigenvalue implies A-λI simgular, and hence det(A-λI) = 0. The

determinental equation defines a polynomial in λ of order n; the n roots of this

polynomial are the eigenvalues. For each eigenvalue λ, the condition that A-λI is

less than rank n implies the existence of one or more linearly independent

eigenvectors; the number equals the multiplicity of the root λ. The following basic

properties of eigenvalues and eigenvectors are stated without proof:
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(1) If A is real and nonsymmetric, then its eigenvalues and eigenvectors in

general are complex. If A is real and symmetric, then its eigenvalues and

eigenvectors are real.

(2) The number of nonzero eigenvalues of A equals its rank ρ(A).

k k(3) If λ is an eigenvalue of A, then λ is an eigenvalue of A , and 1/λ is an

-1eigenvalue of A (if the inverse exists).

(4) If A is real and symmetric, and Λ is a diagonal matrix with the roots of the

polynomial det(A-λI) along the diagonal, then there exists an orthonormal matrix

C (whose columns are eigenvectors of A) such that C′C = I and AC = CΛ, and hence

C′AC = Λ and CΛC′ = A. The transformation C is said to diagonalize A.

(5) If A is real and nonsymmetric, there exists a nonsingular complex matrix Q

and a upper triangular complex matrix T with the eigenvalues of A on its

-1diagonal such that Q AQ = T.

(6) A real and symmetric implies tr(A) equals the sum of the eigenvalues of A.

[Since A = CΛC′, tr(A) = tr(CΛC′) = tr(C′CΛ) = tr(Λ) by 2.3.19.]

(7) If A ,...,A are real and symmetric, then there exists C orthonormal such1 p

that C′A C, C′A C,...,C′A C are all diagonal if and only if A A = A A for all1 2 p i j j i

i and j.

Results (4) and (5) combined with the result 2.3.12 that the determinant of a matrix

product is the product of the determinants of the matrices, implies that the

determinant of a matrix is the product of its eigenvalues. The transformations in

(4) and (5) are called similarity transformations, and can be interpreted as

representations of the transformation A when the basis of the domain is transformed

-1 -1by C (or Q) and the basis of the range is transformed by C (or Q ). These

transformations are used extensively in econometric theory.
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5. Partitioned Matrices

It is sometimes useful to partition a matrix into submatrices,
q e
2 A A 211 12A = 2 2 ,

A A2 22 21 22 2
z c

where A is m×n, A is m ×n , A is m ×n , A is m ×n , A is m ×n , and m +m = m11 1 1 12 1 2 21 2 1 22 2 2 1 2

and n +n = n. Matrix products can be written for partitioned matrices, applying the1 2

usual algorithm to the partition blocks, provided the blocks are commensurate. For
q e
2 B 21example, if B is n×p and is partitioned B = 2 2 where B is n ×p and B is n ×p,B 1 1 2 2
2 2 2
z c

one has

q eq e q e
2 A A 22 B 2 2 A B +A B 211 12 1 11 1 12 2AB = 2 22 2 = 2 2.

A A B A B +A B2 22 2 2 22 21 22 22 2 2 2 21 1 22 2 2
z cz c z c

Partitioned matrices have the following elementary properties:

(1) A square and A square and nonsingular implies11
- 1det(A) = det(A )⋅det(A -A A A ).11 22 21 11 12

(2) A and A square and nonsingular implies11
q e
2 - 1 - 1 -1 - 1 - 1 -1 2
2 A +A A C A A -A A C 2
2 11 11 12 21 11 11 12 2-1A = 2 2
2 -1 - 1 -1 2
2 -C A A C 2
2 21 11 2
z c

- 1with C = A -A A A .22 21 11 12
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6. Quadratic Forms

The scalar function Q(x,A) = x′Ax, where A is a n×n matrix and x is a n×1

vector, is termed a quadratic form; we call x the wings and A the center of the

quadratic form. The value of a quadratic form is unchanged if A is replaced by its

symmetrized version (A+A′)/2. Therefore, A will be assumed symmetric for the

discussion of quadratic forms.

A quadratic form Q(x,A) may fall into one of the classes in the table below:

q p=============================================================================================================================================================================================e
2Class 1Defining Condition2
2 1 2[--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 2
2Positive Definite 1x≠0 ⇒ Q(x,A) > 02
2 1 2Positive Semidefinite x≠0 ⇒ Q(x,A) ≥ 0
2 1 2
2Negative Definite 1x≠0 ⇒ Q(x,A) < 02
2 1 2
2Negative Semidefinite1x≠0 ⇒ Q(x,A) ≤ 02
z $=============================================================================================================================================================================================c

The basic properties of quadratic forms are listed below:

(1) If B is m×n and is of rank ρ(B) = r, then B′B and BB′ are both positive

semidefinite; and if r = m ≤ n, then B′B is positive definite.

(2) If A is symmetric and positive semidefinite (positive definite), then the

eigenvalues of A are nonnegative (positive). Similarly, if A is symmetric and

negative semidefinite (negative definite), then the eigenvalues of A are

nonpositive (negative).

(3) Every symmetric positive semidefinite matrix A has a symmetric positive

1/2semidefinite square root A [By 2.4.4, C′AC = D for some C orthonormal and D

a diagonal matrix with the nonnegative eigenvalues down the diagonal. Then,

1/2 1/2 1/2A = CDC′ and A = CD C′ with D a diagonal matrix of the positive square

roots of the diagonal of D.]

-1(4) If A is positive definite, then A is positive definite.
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-1 -1(5) B positive definite and A - B positive semidefinite imply B - A

positive semidefinite.

(6) The following conditions are equivalent:

(i) A is positive definite
(ii) The principal minors of A are positive
(iii) The leading principal minors of A are positive.

7. The LDU and Cholesky Factorizations of a Matrix

A n×n matrix A has a LDU factorization if it can be written A = LDU, where D is

a diagonal matrix, L is a lower triangular matrix, and U is a upper triangular

matrix. This factorization is useful for computation of inverses, as triangular

matrices are easily inverted by recursion.

Theorem. For each n×n matrix A, A = PLDUQ′, where P and Q are permutation

matrices, L is a lower triangular matrix and U is a upper triangular matrix,

each with ones on the diagonal, and D is a diagonal matrix. If the leading

principal minors of A are all non-zero, then P and Q can be taken to be identity

matrices.

Proof: First assume that the leading principal minors of A are all nonzero. We

give a recursive construction of the required L and U. Suppose the result has been

established for matrices up to order n-1. Then, write the required decomposition

A = LDU for a n×n matrix in partitioned form

q e q e q e q e
2 A A 2 2 L 0 2 2 D 0 2 2 U U 211 12 11 11 11 12
2 2 = 2 2⋅2 2⋅2 2,

A A L 1 0 D 0 12 2 2 2 2 2 2 22 21 22 2 2 21 2 2 22 2 2 2
z c z c z c z c

where A , L , D , and U , are (n-1)×(n-1), L is 1×(n-1), U is (n-1)×1, and A11 11 11 11 21 12 22

and D are 1×1. Assume that L , D , and U have been defined so that A =22 11 11 11 11
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- 1 - 1 -1L D U , and that L and U also exist and have been computed. Let S = L and T11 11 11 11 11
-1= U , and partition S and T commensurately with L and U. Then, the remaining

elements satisfy the equations

- 1 - 1 - 1A = L D U ⇒ L = A U D ≡ A T D21 21 11 11 21 21 11 11 21 11 11
- 1 - 1 - 1A = L D U ⇒ U = D L A ≡ D S A12 11 11 12 12 11 11 12 11 11 12

- 1 - 1A = L D U + D ⇒ D = A - A T D S A = A - A A A22 21 11 12 22 22 22 21 11 11 11 12 22 21 11 12

S = -L S21 21 11

T = - T U12 11 12
- 1where det(A) = det(A )⋅det(A - A A A ) ≠ 0 implies D ≠ 0. Since the11 22 21 11 12 22

decomposition is trivial for n = 1, this recursion establishes the result, and

furthermore gives the triangular matrices S and T from the same recursion that can be

-1 -1multiplied to give A = TD S.

Now assume that A is of rank r < n, and that the first r columns of A are

linearly independent, with non-zero leading principal minors up to order r.

Partition
q e q e q e q e
2 A A 2 2 L 0 2 2 D 0 2 2 U U 211 12 11 11 11 12
2 2 = 2 2⋅2 2 2 2,

A A L I 0 0 0 I2 2 2 2 2 2 2 22 21 22 2 2 21 2 2 2 2 2
z c z c z c z c

- 1where A is r×r and the remaining blocks are commensurate. Then, U = D S A11 12 11 11 12
- 1 - 1and L = A T D , and one must satisfy A = L D U = A T D S A =21 21 11 11 22 21 11 12 21 11 11 11 12

- 1A A A . But the rank condition requires that the last21 11 12
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q e
2 A 212n-r columns can be written as linear combinations of the first r columns, or 2 2

A2 22 22 2
z c

q e
2 A 211 - 1= 2 2C for some r×(n-r) matrix C. But A = A C implies C = A A and hence12 11 11 12A2 22 21 2
z c

- 1A = A C = A A A as required.22 21 21 11 12

Finally, consider any real matrix A of rank r. By column permutations, the

first r columns can be made linearly independent. Then, by row permutations, the

first r rows of these r columns can be made linearly independent. Repeat this

process recursively on the remaining northwest principal submatrices to obtain

products of permutation matrices that give nonzero leading principal minors up to

order r. This defines P and Q, and completes the proof of the theorem. p

Corollary 1. If A is symmetric, then L = U′.

Corollary 2. (LU Factorization) If A has nonzero leading principal minors, then

~ ~A can be written A = LU, where U = DU is upper triangular with a diagonal coinciding

with that of D.

Corollary 3. (Cholesky Factorization) If A is symmetric and positive definite,

~ ~ ~then A can be written A = U′U, where U is upper triangular with a positive diagonal.

~ ~ ~Corollary 4. A symmetric positive semidefinite implies A = PU′UP′, with U upper

triangular with a nonnegative diagonal, P a permutation matrix.

Corollary 5. If A is m×n with m ≥ n, then there exists a factorization

A = PLDUQ′, with D n×n diagonal, P a m×m permutation matrix, Q a n×n permutation

matrix, U a n×n upper triangular matrix with ones on the diagonal, and L a m×n lower
q e
2L 211triangular matrix with ones on the diagonal (i.e., L has the form L = 2 2 with LL 11
2 212
z c
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n×n and lower triangular with ones on the diagonal, and L (m-n)×n. Further, if21
-1 -1 -1 -1ρ(A) = n, then (A′A) A′ = QU D (L′L) L′P′.

To show Corollary 3, note that a positive definite matrix has positive leading

principal minors, and note from the proof of the theorem that this implies that the

~ 1/2 1/2diagonal of D is positive. Take U = D U, where D is the positive square root.

The same construction applied to the LDU factorization of A after permutation gives

Corollary 4.

To show Corollary 5, note first that the rows of A can be permuted so that the
q e
2A 211first n rows are of maximum rank ρ(A). Suppose A = 2 2 is of this form, and applyA
2 212
z c

the theorem to obtain A = P L DUQ′. The rank condition implies that A = FA11 11 11 21 11

for some (m-n)×n array F. Then, A = L DUQ′, with L = FP L , so that21 21 21 11 11
q eq e
2P 0 22L 211 11A = 2 22 2DUQ′.0 I L
2 m-n22 212
z cz c

To complete the proof, apply a left permutation if necessary to undo the initial row

permutation of A. An implication of the last result in Corollary 5 is that if the

system of equations Ax = y with A m×n of rank n has a solution, then then solution is

-1 -1 -1 -1given by x = (A′A) A′y = QU D (L′L) L′P′y.

The recursion in the proof of the theorem is called Crout’s algorithm, and is

the method for matrix inversion used in many computer programs. It is unnecessary to

do the permutations in advance of the factorizations; they can also be carried out

recursively, bringing in rows (in what is termed a pivot) to make the successive

elements of D as large in magnitude as possible. This pivot step is important for

numerical accuracy.
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8. The Singular Value Decomposition of a Matrix

A factorization that is useful as a tool for finding the eigenvalues and

eigenvectors of a symmetric matrix, and for calculation of inverses of moment

matrices of data with high multicollinearity, is the singular value decomposition

(SVD): Every real m×n matrix A of rank r can be decomposed into a product A = UDV′,

where D is a r×r diagonal matrix with positive nonincreasing elements down the

diagonal, U is m×r, V is n×r, and U and V are column-orthonormal; i.e., U′U = I =r

V′V.

To prove that the SVD is possible, note first that the m×m matrix AA′ is

symmetric and positive semidefinite. Then, there exists a m×m orthonormal matrix W,

partitioned W = [W W ] with W of dimension m×r, such that W ′ (AA′)W = Λ is diagonal1 2 1 1 1

with positive, non-increasing diagonal elements, and W ′ (AA′)W = 0, implying A′W =2 2 2

0. Define D from Λ by replacing the diagonal elements of Λ by their positive square

-1roots. Note that W′W = I = WW′ ≡ W W ′ + W W ′ . Define U = W and V′ = D U′A. Then,1 1 2 2 1
-1 -1 -1 -1U′U = I and V′V = D U′AA′UD = D ΛD = I . Further, A = (I -W W ′ )A = UU′A =r r m 2 2

UDV′. This establishes the decomposition.

If A is symmetric, then U is the array of eigenvectors of A corresponding to the

non-zero roots, so that A′U = UD , with D the r×r diagonal matrix with the non-zero1 1
-1eigenvalues in decending magnitude down the diagonal. In this case, V = A′UD =

-1UD D . Since the elements of D and D are identical except possibly for sign, the1 1

columns of U and V are either equal (for positive roots) or reversed in sign (for

negative roots). Then, the SVD of a square symmetric nonsingular matrix provides the

pieces necessary to write down its eigenvalues and eigenvectors. For a positive

definite matrix, the connection is direct.
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When the m×n matrix A is of rank n, so that A′A is symmetric and positive

-1definite, the SVD provides a method of calculating (A′A) that is particularly

-1 -2numerically accurate: Substituting the form A = UDV′, one obtains (A′A) = VD V′.
1/2One also obtains convenient forms for a square root of A′A and its inverse, (A′A)

-1/2 -1= VDV′ and (A′A) = VD V′.

The numerical accuracy of the SVD is most advantageous when m is large and some

of the rows of A are nearly linearly dependent. Then, roundoff errors in the matrix

product A′A can lead to quite inaccurate results when a matrix inverse of A′A is

computed directly. The SVD extracts the required information from A before the

roundoff errors in A′A are introduced.

Computer programs for the Singular Value Decomposition can be found in Press et

al, Numerical Recipes, Cambridge University Press, 1986.

9. Projections and Idempotent Matrices

nLet x be a vector in R , expressed as a n×1 array, and let L be a subspace of

n ~
R . The projection of x on the subspace L is the point y = ar gmin Nz-xN that

2z∈ L

minimizes the Euclidean distance between x and L. Suppose L is of dimension k and

{b ,...,b } is a basis for L, and let B be the n×k matrix whose columns are these1 k
kbasis vectors. Then L = {Bw w ∈ R }. The projection of x on L can then be

calculated by solving min (x-Bw)′(x-Bw). One can show by writing this out and usingw
~ -1calculus that the minimum occurs at w = (B′B) B′x and that the point in L closest to

~ ~ -1 ~ ~x is y = Bw ≡ B(B′B) B′x. To verify that y achives the minimum, note that (x-y)′B =

-1 ~ ~x′[I-B(B′B) B′]B = 0; i.e., x-y is orthogonal to L. Let c = w - w, and rewrite the

criterion

~ ~(x-Bw)′(x-Bw) = (x-Bw-Bc)′(x-Bw-Bc)
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~ ~ ~= (x-Bw)′(x-Bw) + c′B′Bc - 2(x-Bw)′Bc

~ ~ ~ ~= (x-Bw)′(x-Bw) + c′B′Bc ≥ (x-Bw)′(x-Bw).

-1The linear transformation A = B(B′B) B′ is termed a projection matrix, and is

sometimes written P or P to emphasize that it is a transformation that projectsB L
nvectors in R onto the subspace L or L (i.e., the subspace spanned by B). It hasB

2the properties that it is symmetric with A = A, so that it is idempotent.

Geometrically, this says that once a vector is projected onto a subspace, than

repeated applications of the same projection leave it unchanged. Conversely, every

idempotent matrix A can be interpreted as a projection matrix onto some subspace. An

important and useful property of projections is that they depend only on the

subspace, and not on the particular choice of basis for this subspace. Thus, if B

and C are matrices that span the common k-dimensional subspace L, then P = P = P .B C L

Further, it is irrelevant whether the columns of B or C are all linearly independent,

as one can simply discard linearly dependent columns before forming the projection

-1matrix A = B(B′B) B′.

Some of the properties of an n×n idempotent matrix A are listed below:

(1) The eigenvalues of A are either zero or one.

(2) The rank of A is the dimension of the linear space into which the projection

is made, and ρ(A) = tr(A).

(3) The matrices I, 0, and I-A are idempotent.

(4) If B is an orthonormal matrix, then B′AB is idempotent.

(5) If ρ(A) = r, then there exists a n×r matrix B of rank r such that

-1A = B(B′B) B′, and thus A = P .B

(6) A, B idempotent implies AB = 0 if and only if A+B idempotent.

(7) A, B idempotent and AB = BA implies AB idempotent.
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(8) A, B idempotent implies A-B idempotent if and only if BA = B.

Suppose X is n×r of rank r and Z is n×s of rank s, and consider the subspaces LX
-1 -1and L and the projections A = P = X(X′X) X′ and B = P = Z(Z′Z) Z′. If X and ZZ X Z

are column-orthogonal (i.e., X′Z = 0), then AB = 0 and (6) implies that A+B is the

projection onto L . If X contains all the columns of Z, so that L ⊆ L , then a[X Z] Z X

projection in one stage onto L is equivalent to a projection onto L followed in aZ X

second stage by a further projection onto L , so that B = AB, and a projection ontoZ

L is left invariant by a further projection onto L , so that B = BA. From (8), thisZ X

implies that A - B is idempotent; this is the projection onto the subspace of L thatX
x nis orthogonal to L ; i.e., the subspace L ∩L . Every vector w ∈ R has a uniqueZ X Z

xdecomposition w = x + z + y, where x = Bw ∈ L , z = (A-B)w = A(I-B)w ∈ L ∩L , and y ∈X X Z
x(I-A)w ∈ L . The projections B and I-A are orthogonal, implying that I-A+B is also aX

xprojection, onto L ∪L . A direct matrix manipulation gives an alternativeX Z

demonstration of (8). Suppose X = [Z W] is a partitioned matrix where Z is n×s, W is

-1 -1n×t, and X is of rank r = n+t < n. Define A = X(X′X) X′ and B = Z(Z′Z) Z′. Then

q e q e q e-1
2Z′Z Z′W 2 2Z′ 2 -1 2 I2 -1 -1AB = [Z W]2 2 2 2Z(Z′Z) Z′ = [Z W]2 2(Z′Z) Z′ = Z(Z′Z) Z′ = B ,
2W′Z W′W2 2W′2 202
z c z c z c

so that (8) implies A-B is idempotent, thus also I-A+B.

10. Generalized Inverses

-A k×m matrix A is a Moore-Penrose generalized inverse of a m×k matrix A if it

has three properties:

- - - - - -(i) AA A = A, (ii) A AA = A , (iii) AA and A A are symmetric.
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There are other generalized inverse definitions that have some, but not all, of

these properties. Results on generalized inverses, particularly for partitioned or

bordered matrices, can be found in R.M. Pringle and A. Rayner Generalized Inverse

Matrices, Griffin, 1971.

Let r denote the rank of A. Recall that A has a singular value decomposition A

= UDV′, where D is a r×r diagonal matrix with a positive nonincreasing numbers down

the diagonal, U is k×r and column-orthonormal, and V is m×r and column-orthonormal.
-1-The Moore-Penrose generalized inverse of A is then the matrix A = VD U′. It is

easy to check that this definition satisfies properties (i)-(iii) above, as well as

the following properties:

- -1(1) A = A if A is square and non-singular.

- -(2) AA and A A are idempotent, and are projection matrices, respectively, onto

m kthe subspace of R spanned by the columns of A and onto the subspace of R

spanned by the rows of A.

(3) The system of equations Ax = y, with A m×k, has a solution if and only if y

-= AA y (i.e., y is in the linear subspace spanned by the columns of A). If it

has a solution, then the affine linear subspace of all solutions is

k - - k{x∈R x = A y + [I - A A]z for all z ∈ R }.

-A solution is unique if and only if A A = I (i.e., A is of rank k.)

(4) If A is square, symmetric, and positive semidefinite, then there exists Q

- -1 -1positive definite, R idempotent, such that A = QRQ and A = Q RQ .

-(5) If A is idempotent, then A = A .

- -1 - -1(6) If A = BCB′ with B nonsingular, then A = (B′) C B .
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(7) If A is k×k and positive semidefinite with rank r, then there exists a k×r

column-orthonormal matrix U such that U′U = I , UAU′ = D is a diagonal matrixr
- -1with a positive diagonal, A = UDU′, and A = UD U′.

(8) If A is square, symmetric, and positive semidefinite, then it has a

1/2 - - -symmetric square root B = A , and A = B B .

- - - -(9) (A ) = A = AA′(A )′ = (A )′A′A.

- -(10) (A′) = (A )′
- - -(11) (A′A) = A (A )′
s - s -(12) If A = A with A′A = 0 and A A′ = 0 for i ≠ j, then A = A .
t i i j i j t i

Most of these results are easy consequences of the singular value decomposition, or

can be checked by verifying that conditions (i)-(iii) hold. To prove (4), let W =

[U V] be an orthonormal matrix diagonalizing A. Then, U′AU = D, a diagonal matrix of
q e q e
2 1/2 2 2I 0 2D 0 rpositive eigenvalues, and AV = 0. Define Q = W2 2W′ and R = W2 2W′.
2 0 0 2 20 0 2
z c z c

11. Kronecker Products

If A is a m×n matrix and B is a p×q matrix, then the Kronecker (direct) product

of A and B is the (mp)×(nq) partitioned array
q e
2 a B a B ... a B 2
2 11 12 1n 2
2 2
2 2a B a B ... a B2 221 22 2nA⊗B = 2 2.
2 | | | 2
2 2
2 2
2 2a B a B a B2 22 m1 m2 mn 2
z c

In general, A⊗B ≠ B⊗A. The Kronecker product has the following properties:

(1) For a scalar c, (cA)⊗B = A⊗(cB) = c(A⊗B).

(2) (A⊗B)⊗C = A⊗(B⊗C).
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(3) (A⊗B)′ = (A′)⊗(B′).

(4) tr(A⊗B) = (tr(A))⋅(tr(B)).

(5) If the matrix products AC and BF are defined, then

(A⊗B)(C⊗F) = (AC)⊗(BF).

-1 -1 -1(6) If A and B are square and nonsingular, then (A⊗B) = A ⊗B .

(7) If A and B are orthonormal, then A⊗B is orthonormal.

(8) If A and B are positive semidefinite, then A⊗B is positive

semidefinite.

n k(9) If A is k×k and B is n×n, then det(A⊗B) = det(A) ⋅det(B) .

(10) ρ(A⊗B) = ρ(A)⋅ρ(B).

(11) (A+B)⊗C = A⊗C + B⊗C.

12. Shaping Operations

The most common operations used to reshape vectors and matrices are

(1) C = diag(x) which creates a diagonal matrix with the elements of the vector x

down the diagonal; (2) c = vec(A) which creates a vector by stacking the columns of

A; (3) c = vech(A) which creates a vector by stacking the proportions of the columns

of A that are in the upper triangle of the matrix; and (4) c = vecd(A) which creates

a vector containing the diagonal of A. There are a few rules that can be used to

manipulate these operations:

(1) If x and y are commensurate vectors, diag(x+y) = diag(x) + diag(y).

(2) vec(A+B) = vec(A) + vec(B).

(3) If A is m×k and B is k×n, then vec(AB) = (I ⊗A)vec(B) = (B′⊗I )vec(A).n m

(4) If A is m×k, B is k×n, C is n×p, then vec(ABC) = (I ⊗(AB))vec(C) =p

(C′⊗A)vec(B) = ((C′B′)⊗I )vec(A).m
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(5) If A is n×n, then vech(A) is of length n(n+1)/2.

(6) vecd(diag(x)) = x and diag(vecd(A)) = A.

13. Vector and Matrix Derivatives

The derivatives of functions with respect to the elements of vectors or matrices

can sometimes be expressed in a convenient matrix form. First, a scalar function of

a n×1 vector of variables, f(x), has partial derivatives that are usually written as

the arrays
q e

q e 2 2 2 2 2 2
2 df /dx df /dx dx ... df /dx dx 22df/dx 2 2 1 1 2 1 n 22 12 2 22 2 2 2 2 2 2 22df/dx 2 2 df /dx dx df /dx ... df /dx dx2df/dx = 2 2, df /dxdx′ = 2 2 1 2 2 n 2 .

2 | 2 2 | | | 22 2 2 22df/dx 2 2 2 2 2 2 22 n2 2 df /dx dx df /dx dx ... df /dx 2
z c 2 n 1 n 2 n 2

z c

Other common notation is f (x) or ∇ f(x) for the vector of first derivatives, and
x x

2f (x) or ∇ f(x) for the matrix of second derivatives. Sometimes, the vector of
xx x

first derivatives will be interpreted as a row vector rather than a column vector.

Some examples of scalar functions of a vector are the linear function f(x) = a′x,

which has ∇ f = a, and the quadratic function f(x) = x′Ax, which has ∇ f = 2Ax.
x x

1 2 kWhen f is a column vector of scalar functions, f(x) = [f (x) f (x) ... f (x)]′,

then the array of first partial derivatives is called the Jacobean matrix and is

written
q e
2 1 1 1 2
2df /dx df /dx ... df /dx 2
2 1 2 n2
2 2
2 2 2 2 2
df /dx df /dx ... df /dxJ(x) = 2 1 2 n2.

2 2
2 2
2 k k k 2
2df /dx df /dx ... df /dx 2
2 1 2 n2
z c
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i n nWhen calculating multivariate integrals of the form 2g(y)dy, where y ∈ R , A ⊆ R ,
j
A

and g is a scalar or vector function of y, one may want to make a nonlinear one-to-

one transformation of variables y = f(x). In terms of the transformed variables, the

integral becomes

i i
2g(y)dy = 2 g(f(x))⋅det(J(x))dx ,
j j
A -1f (A)

-1where f (A) is the set of x vectors that map onto A, and the Jacobean matrix is

square and nonsingular for well-behaved one-to-one transformations. The intuition

for the presence of the determinant of the Jacobean in the transformed integral is

that "dy" is the volumn of a small rectangle in y-space, and because determinants

give the volumn of the parallelpiped formed by the columns of a linear

transformation, det(J(x))dx gives the volumn (with a plus or minus sign) of the image

in x-space of the "dy" rectangle in y-space.

It is useful to define the derivative of a scalar function with respect to a

matrix as an array of commensurate dimensions. Consider the bilinear form f(A) =

x′Ay, where x is n×1, y is m×1, and A is n×m. By collecting the individual terms

df/dA = x y , one obtains the result df/dA = xy′. Another example for a n×n matrixij i j

A is f(A) = tr(A), which has df/dA = I . There are a few other derivatives that aren

particularly useful for statistical applications. In these formulas, A is a square

nonsingular matrix. We do not require that A be symmetric, and the derivatives do

not impose symmetry. One will still get valid calculations involving derivatives

when these expressions are evaluated at matrices that hapen to be symmetric. There
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are alternative, and somewhat more complicated, derivative formulas that hold when

symmetry is imposed. For analysis, it is unnecessary to introduce this complication.

-1(1) If det(A) > 0, then dlog(det(A))/dA = A .

-1 -1 -1(2) If A is nonsingular, then d(x′A y)/dA = - A xy′A .

(3) If A = TT′, with T square and nonsingular, then

-1 -1 -1
d(x′A y)/dT = - 2A xy′A T.

s i+k ik ikWe prove the formulas in order. Recall that det(A) = (-1) a det(A ), where A
t ik
k

i+j ijis the minor of a . Then, ddet(A)/dA = (-1) det(A ). From 2.3.17, the ijik ij
-1 i+j ijelement of A is (-1) det(A )/det(A). This establishes (1). To show (2), first

-1 -1 -1apply the chain rule to the identity AA ≡ I to get ∆ A + A⋅dA /dA ≡ 0, whereij ij

∆ denotes a matrix with a one in row i and column j, zeros elsewhere. Then,ij
-1 -1 -1 -1 -1

dx′A y/dA = - x′A ∆ A y = (A x) (A y) . This establishes (2). To show (3),ij ij i j

first note that

dA /dT = δ T +δ T . Combine this with (2) to getij rs ir js jr is

-1 s s -1 -1
dx′A y/dT = (A x) (A y) (δ T +δ T )rs t t i j ir js jr is

i j

s -1 -1 s -1 -1= (A x) (A y) T + (A x) (A y) T
t r j js t i r is
j i

-1 -1= 2(A xy′A T) .rs

14. Updating and Backdating Matrix Operations

Often in statistical applications, one needs to modify the calculation of a

matrix inverse or other matrix operation to accomodate the addition of data, or
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deletion of data in bootstrap methods. It is convenient to have quick methods for

these calculations. Some of the useful formulas are given below:

-1(1) If A is n×n and nonsingular, and A has been calculated, and if B and C are

arrays that are n×k of rank k, then

-1 -1 -1 -1 -1 -1(A+BC′) = A - A B(I +C′A B) C′A ,k
-1provided I +C′A B is nonsingular. If k = 1, then no matrix inversion isk

required in the updating.

(2) If A is m×n with m ≥ n and ρ(A) = n, so that it has a LDU factori-zation

A = PLDUQ′ with D n×n diagonal, P and Q permutation matrices, L lower
q e
2A2triangular, U upper triangular, then the array 2 2, with B k×n, has the LDU
2B2
z c

q eq e q e
2P 022A2 2L2 -1 -1factorization 2 2 = 2 22 2DUQ′, where C = BQU D .0 I2B2 2C22 k2

z c z cz c
q e

-1 ~ 2A2(3) Suppose A is m×n of rank n, and B = (A′A) A′y. Suppose A = 2 2 with C k×n,
2C2
z c

q e
~ 2y2 ~ ~ ~ -1~ ~y = 2 2 with w k×1, and B = (A′A) A′y. Then,

2w2
z c

~ -1 -1 -1B-B = (A′A) C′[I +C(A′A) C′] (w-CB)k
~ ~ -1 ~ ~ -1 -1 ~= (A′A) C′[I -C(A′A) C′] (w-CB).k

One can verify (1) by multiplication. To show (2), use Corollary 5 of Theorem

~ ~ ~ ~5.1. To show (3), apply (1) to A′A = A′A + C′C, or to A′A = A′A - C′C, and use

~ ~A′y = Ay + Cw.
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NOTES AND COMMENTS

The basic results of linear algebra, including the results stated without proof

in this summary, can be found in standard linear algebra texts, such as G. Hadley

(1961) Linear Algebra, Addison-Wesley or F. Graybill (1983) Matrices with

Applications in Statistics, Wadsworth. The organization of this summary is based on

the admirable synopsis of matrix theory in the first chapter of F. Graybill (1961) An

Introduction to Linear Statistical Models, McGraw-Hill. For computations involving

matrices, W. Press et al (1986) Numerical Recipes, Cambridge Univ. Press, provides a

good discussion of algorithms and accompanying computer code. For numerical issues

in statistical computation, see R.Thisted (1988) Elements of Statistical Computing,

Chapman and Hall.


