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CHAPTER 3. PROBABILITY THEORY IN A NUTSHELL

1. Sample Space

The starting point for probability theory is the concept of a state of Nature,

which is a description of everything that has happened and will happen in the

universe. In particular, this description includes the outcomes of all probability

and sampling experiments. The set of all possible states of Nature is called the

sample space. Let s denote a state of Nature, and S the sample space. These are

abstract objects that play a conceptual rather than a practical role in the

development of probability theory. Consequently, there can be considerable

flexibility in thinking about what goes into the description of a state of Nature and

into the specification of the sample space; the only critical restriction is that

there be enough states of Nature so that distinct observations are always associated

with distinct states of Nature. In elementary probability theory, it is often

convenient to think of the states of Nature as corresponding to the outcomes of a

particular experiment, such as flipping coins or tossing dice, and to suppress the

description of everything else in the universe.

2. Event Fields and Information

2.1. An event is a set of states of Nature with the property that one can in

principle determine whether the event occurs or not. If states of Nature describe

all happenings, including the outcome of a particular coin toss, then one event might

be the set of states of Nature in which this coin toss comes up heads. The family of

potentially observable events is denoted by F. This family is assumed to have the
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following properties:

(i) The "anything can happen" event S is in F.

c(ii) If event A is in F, then "not A" (denoted A ) is in F.

(iii) If A and B are events in F, then the event "both A and B" (denoted A∩B) is

in F.

(iv) If A ,A ,... is a finite or countable sequence of events in F, then the1 2
∞
vevent "one or more of A or A or ..." (denoted A ) is in F.1 2 u i

i=1

A family F with these properties is called a σ-field (or Boolean σ-algebra) of

subsets of S. The pair (S,F) consisting of an abstract set S and a σ-field of

subsets of S is called a measurable space, and the sets in F are called the

measurable subsets of S. Two useful implications of the definition of a σ-field are

∞
n(1) If A ,A ,... is a finite or countable sequence of events in F, then A is1 2 o i

i=1

also in F.

(2) If A ,A ,... is a countable sequence of events in F that is monotone (i.e.,1 2

A ⊆ A ⊆ ..., then A = lim A is also in F.1 2 0 i

We will use a few concrete examples of sample spaces and σ-fields:

Example 1. [Two coin tosses] A coin is tossed twice, and for each toss a head or

tail appears. Let HT denote the state of Nature in which the first toss yields a

head and the second toss yields a tail. Then S = {HH,HT,TH,TT}. Let F be the class

4of all possible subsets of S; F has 2 members.
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Example 2. [Coin toss until a tail] A coin is tossed until a tail appears. The

sample space is S = {T, HT, HHT, HHHT,...}. In this example, the sample space is

infinite, but countable. Let F be the σ-field generated by the finite subsets of S.

This σ-field contains events such as "Ten or more tosses without a tail", and "an

even number of heads before a tail". A set that is not in F will have the property

that both the set and its complement are infinite. It is difficult to describe such

a set, primarily because the language that we normally use to construct sets tends to

correspond to elements in the σ-field. However, mathematical analysis shows that

such sets exist.

Example 3. [Daily change in S&P stock index] The stock index change is a number

in the real line R, so S ≡ R. Take the σ-field of events to be the Borel σ-field B,

which is defined as the smallest family of subsets of the real line that contains all

the open intervals and satisfies the properties (i)-(iv) of a σ-field. The subset of

R that are not in B are said to be nonmeasurable.

Example 4. [Changes in S&P stock index on successive days] The set of states of

Nature is the Cartesian product of the set of changes on day one and the set of

2changes on day 2, S = R×R (also denoted R ). Take the σ-field of events to be the

product of the one-dimensional σ-fields, F = B ⊗B , where "⊗" denotes an operation
1 2

that forms the smallest σ-field containing all sets of the form A×C with A ∈ B and
1

C ∈ B . In this example, B and B are identical copies of the Borel σ-field on the
2 1 2

real line. Examples of events in F are "an increase on day one", "increases on both

days", and "a larger change the second day than the first day". (The operation "⊗"

is different than the cartesian product "×", where B ×B is the family of all1 2
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rectangles A×C formed from A ∈ B and C ∈ B . This family is not itself a σ-field,1 2

and the σ-field that it generates is B ⊗B .)1 2

In the first example, the σ-field consisted of all possible subsets of the sample

space. This was not the case in the last two examples, because the Borel σ-field

does not contain all subsets of the real line. There are two reasons to introduce

the complication of dealing with σ-fields that do not contain all the subsets of the

sample space, one substantive and one technical. The substantive reason is that the

σ-field can be interpreted as the potential information that is available by

observation. If an observer is incapable of making observations that distinguish two

states of Nature, then the σ-field cannot contain sets that include one of these

states and excludes the other. Then, the specification of the σ-field will depend on

what is observable in an application. The technical reason is that when the sample

space contains an infinite number of states, it may be mathematically impossible to

define probabilities on all subsets of the sample space that have the properties one

would like probabilities to have. Restricting the definition of probabilities to

appropriately chosen σ-fields solves this problem.

2.2. It is possible that more than one σ-field of subsets is defined for a

particular sample space S. If A is an arbitrary collection of subsets of S, then the

smallest σ-field that contains A is said to be the σ-field generated by A. If F and

G are both σ-fields, and G ⊆ F, then G is said to be a sub-field of F, and F is said

to contain more information or refine G. It is possible that neither F ⊆ G nor

G ⊆ F. However, there is always a smallest σ-field that refines both F and G, which

is simply the σ-field generated by the sets in the union of F and G.
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Example 1. (continued) Let F denote the σ-field of all subsets of S. Another
( )

σ-field is G = {2∅,S,{HT,HH},{TT,TH}}2, containing all the events in which information
9 0

is available only on the outcome of the first coin toss. Obviously, F contains more

information than G.

Example 3. (continued) Let F denote the Borel σ-field. Let P denote the positive
( ) ( )

c creal line, and N the negative real line. Then G = { } and D = { } are2∅,S,P,P 2 2∅,S,N,N 2
9 0 9 0

both σ-fields, the first corresponding to the ability to observe whether price

increases or not, the second corresponding to the ability to tell whether price

decreases or not. Neither contains the other, both are contained in F, and the two
( )

c chave a smallest mutual refinement which is C = { }; this corresponds2∅,S,P,N,P ,N ,{0}2
9 0

to the ability to tell whether price is increasing, decreasing, or unchanged.

3. Probability

3.1. Given a sample space S and σ-field of subsets F, a probability (or

probability measure) is defined as a function P from F into the real line with the

following properties:

(i) P(A) ≥ 0 for all A ∈ F.

(ii) P(S) = 1.

(iii) [Countable Additivity] If A , A ,... is a finite or countable sequence of1 2

events in F that are mutually exclusive (i.e., A ∩A = ∅ for all i ≠ j), theni j
∞ ∞
v sP( A ) = P(A ).
u i t i

i=1 i=1

With conditions (i)-(iii), P has the following additional intuitive properties of
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a probability when A and B are events in F:

c(1) P(A) + P(A ) = 1.

(2) P(A∪B) = P(A) + P(B) - P(A∩B).

(3) P(A) ≥ P(B) when B ⊆ A.

n
n(4) If a sequence A in F approaches ∅ (in the sense that A L ∅), theni o i

i=1

P(A )L 0.i
∞ ∞
v s(5) If A ∈ F, not necessarily disjoint, then P( A ) ≤ P(A ).i u i t i

i=1 i=1

The triplet (S,F,P) consisting of a measurable space (S,F) and a probability measure

P is called a probability space.

3.2. If A ∈ F has P(A) = 1, then A is said to occur almost surely (a.s.), or with

probability one (w.p.1). If A ∈ F has P(A) = 0, then A is said to occur with

probability zero (w.p.0). Finite or countable intersections of events that occur

almost surely again occur almost surely, and finite or countable unions of events

that occur with probability zero again occur with probability zero.

Example 1. (continued) If the coin is fair so that heads and tails are equally

likely, then each possible outcome HH,HT,TH,TT occurs with probability 1/4. The

probability that the first coin is heads is the probability of the event {HH,HT},

which by countable additivity is P({HH,HT}) = P({HH}) + P({HT}) = 1/2.

Example 2. (continued) If the coin is fair, then the probability of k-1 heads

k 10followed by a tail is 1/2 . Then, the probability of "Ten or more heads" is 1/2 ,
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and the probability of "an even number of heads" is 2/3.

Example 3. (continued) Consider the function P defined on open sets (s,∞) by

sP((s,∞)) = 1/(1+e ). This function maps into the unit interval, and is nondecreasing

as the length of the interval increases. It is then easy to show that P satisfies

properties (i)-(iii) of a probability on the restricted family of open intervals, and

a little work to show that when a probability is determined on this family of open

intervals, then it is uniquely determined on the σ-field generated by these

intervals. Each single point, such as {0}, is in F. Taking intervals that shrink to

this point, each single point occurs with probability zero. Then, a countable set of

points occurs w.p.0.

3.3. Often a measurable space (S,F) will have an associated measure ν that is a

∞
vcountably additive function from F into the nonnegative real line; i.e., ν( A ) =
u i

i=1
∞
s ν(A ) for any sequence of disjoint A ∈ F. The measure is positive if ν(A) ≥ 0
t i i

i=1
+ -for all A ∈ F; otherwise, it is signed and can be written ν(A) = ν (A) - ν (A), where

+ -ν and ν are both positive. The measure ν is finite if ν(A) ≤ M for some constant

M and all A ∈ F, and σ-finite if there exists a countable sequence A ∈ F withi
∞

+ - vν (A ) + ν (A ) < +∞ and A = S. The measure ν may be a probability, but morei i u i
i=1

commonly it is a measure of "length" or "volumn". For example, it is common when the

sample space S is the countable set of positive integers to define ν to be counting

measure with ν(A) equal to the number of points in A. When the sample space S is the
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real line, it is common to define ν to be Lebesgue measure, with ν((a,b)) = b - a for

any open interval (a,b). Both of these examples are positive σ-finite measures.

A finite measure P on (S,F) is absolutely continuous with respect to a measure ν

if A ∈ F with ν(A) = 0 implies P(A) = 0. A fundamental result from analysis is the

Radon-Nikodym theorem:

If a finite measure P is absolutely continuous with respect to a positive

σ-finite measure ν, then there exists a unique real-valued function p on S that

iis integrable, with 2p(s)ν(ds) = P(A) for each A ∈ F.
j
A

iIn the statement of this theorem, the symbol 2p(s)ν(ds) denotes integration of p
j
A

with respect to the measure ν over the set A, and is defined to be the common limit

2n
s k+ras n L ∞ of sums of the form ---------------⋅ν(C ), where 0 ≤ r ≤ 1 and C is the set of
t n kn kn

2k=-n
2 2states of Nature in A that yield p(s) in the interval (k/n ,(k+1)/n ). The

requirement that p be integrable means is first that p is measurable, so that the

sets C are in F, and second that the common limit above exists, with limkn
2n
s k+r---------------⋅ν(C ) < +∞. In general, the measure ν can have point masses, or
t n kn

2k=-n

continuous measure, or both, so that the notation for integration with respect to ν

iincludes sums and mixed cases. The integral 2p(s)ν(ds) will sometimes be denoted
j
A

i i
2p(s)dν, and in the case of Lebesgue measure, 2p(s)ds.
j j
A A
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When P is a probability, the function p given by the theorem is nonnegative, and

is called the density. The Radon-Nikodym result is often very useful in theoretical

derivations, for example in the theory of choice under uncertainty. In basic

econometrics, we will constantly characterize probabilities both in terms of the

probability measure (or distribution) and the density. We will not need to refer

explicitly to the Radon-Nikodym theorem. However, it may be helpful to remember that

there is this fundamental mathematical result that makes the connection between

probabilities and densities.

3.4. A probability that appears frequently in statistics is the normal, which is

defined on (R,B), where R is the real line and B the Borel σ-field, by the density

2 2 2 21 -(s-µ) /2σ i 1 -(s-µ) /2σn(s-µ,σ) ≡ --------------------------⋅e , so that P(A) = 2 --------------------------⋅e ds. In thisq=================6 q=================6j2 22 2
e2πσ A e2πσ

probability, µ and σ are parameters that are interpreted as determining the location

and scale of the probability, respectively. When µ = 0 and σ = 1, this probability

is called the standard normal.

sExample 3. (continued) Given P((s,∞)) = 1/(1+e ), one can use the

differentiability of the function in s to argue that it is absolutely continuous with

respect to Lebesgue measure on the line. Then, one can verify by integration that

s s 2the density implied by the Radon-Nikodym theorem is p(s) = e /(1+e ) .

3.5. Consider a probability space (S,F,P), and a σ-field G ⊆ F. If the event

B ∈ G has P(B) > 0, then the conditional probability of A given B is defined as

P(AB) = P(A∩B)/P(B). Stated another way, P(AB) is a real-valued function on F×G
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with the property that P(A∩B) = P(AB)P(B) for all A ∈ F and B ∈ G. The concept of

conditional probability can be extended to cases where P(B) = 0 by defining P(AB)

as the limit of P(AB ) for sequences B ∈ G that satisfy P(B ) > 0 and B -----L B,i i i i

provided the limit exists.

The idea behind conditional probabilities is that one has partial information of

what the state of Nature may be, and one wants to calculate the probability of events

using this partial information. One way to represent partial information is in terms

of a subfield; e.g., F is the field of events which distinguish outcomes in both the

past and the future, and a subfield G contains events which distinguish only past

outcomes.

A conditional probability P(AB) defined for B ⊆ C can be interpreted as a

function from C into [0,1]. To emphasize this, conditional probabilities are

sometimes written P(AC), and C is termed the information set, or a family of events

with the property that you know whether or not they happened at the time you are

forming the conditional probability.

( )
Example 1. (continued) If G = {2∅,{HH,HT},{TH,TT},S}2, so that events in G

9 0
P(HH)describe the outcome of the first coin toss, Then P(HH{HH,HT}) = --------------------------------------------------- = 1/2 isP({HH,HT})

the probability of heads on the second toss, given heads on the first toss. In this

example, the conditional probability of a head on the second toss equals the

unconditional probability of this event. In this case, the outcome of the first coin

toss provides no information on the probabilities of heads from the second coin, and

the two tosses are said to be statistically independent. For a second case, take
( )

c cC = { }, so that events in C describe the number of2∅,{HT,TH},{HH},{TT},{HH} ,{TT} ,S2
9 0

heads that occur in two tosses. Then, the conditional probability of heads on the



McFadden Chapter 3. Probability Theory in a Nutshell 60
_________________________________________________________________________

c P(HT)+P(HH)first toss, given at least one head, is P({HT,HH}{TT} ) = --------------------------------------------------------------------------------------------- = 2/3.P(HT)+P(HH)+P(TH)

Then, the conditional probability of heads on the first toss given at least one head

is not equal to the unconditional probability of heads on the first toss.

( )
cExample 2. (continued) If G = { } is the σ-field corresponding to the2∅,P,P .S2

9 0 e-1event that the price change is positive or not, then P([-1,1]) = -----------------,e+1
e-1 e-1P((0,1]) = ------------------------------, P(P) = 1/2, and P([-1,1])P) = -----------------. Here, the conditional and2(e+1) e+1

unconditional probability coincide, so that knowledge of the sign of the price change

provides no information on the probability that the magnitude of the change does not

exceed one.

4. Statistical Independence and Repeated Trials

4.1. Consider a probability space (S,F,P). Events A and C in F are statistically

independent if P(A∩C) = P(A)⋅P(C). From the definition of conditional probability,

if A and C are statistically independent and P(A) > 0, then P(C2A) = P(A∩C)/P(A) =

P(C). Thus, when A and C are statistically independent, knowing that A occurs is

unhelpful in calculating the probability that C occurs. The idea of statistical

independence of events has an exact analogue in a concept of statistical independence

c cof subfields. Let A = {∅,A,A ,S} and C = {∅,C,C ,S}. Verify as an exercise that if

A and C are statistically independent, then so are any pair of events A′ ∈ A and

C′ ∈ C. Then, one can say that the subfields A and C are statistically independent.

One can extend this idea and talk about statistical independence between pairs of

subfields. The idea of statistical independence can also be extended to that of

mutual statistical independence (MSI) among a family of events (or a family of
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subfields). Let N denote an index set, which may be finite, countable, or non-

countable. Let N denote the set N, excluding element i. Let F denote a σ-subfieldi i

of F (F ⊆ F) for each i ∈ N. Then, MSI has the following definition:i

{F 1i ∈ N} are MSI if and only if, for all finite K ⊆ N and A ∈ F for j ∈ N,i j j

n pone has P( A ) = P(A ).
o j q j

j∈K j∈K

As in the case of statistical independence between two events (subfields), the

concept of MSI can be stated in terms of conditional probabilities:

{F 1i ∈ N} are mutually statistically independent (MSI) if, for all i ∈ N, finitei

nK ⊆ N and A ∈ F for j = i or j ∈ K, one has P(A 1 A ) = P(A ).i j j i o j i
j∈K

Example 1. (continued) Let A denote the event of a head for the first coin, C

denote the event of a head for the second coin, D the event of a match, G the event

of two heads. Verify that A and C are statistically independent and that A and D are

statistically independent. Verify that A, C, and D are not MSI. Verify that A and G

are not statistically independent.

2Example 4. (continued) Recall that S = R with F = B⊗B, the product Borel

σ-field. Define the subfields F = {A×R 1A∈B}, F = {R×A1A∈B} containing information1 2

on price changes on the first and second day, respectively. Define
( )

c cC = { }, the subfield of B containing information on whether a price2∅,S,P,N,P ,N ,{0}2
9 0

change is positive, negative, or zero. Define F to be the σ-subfield of B⊗B3

generated by sets of the form A ×A with A ∈ C and A ∈ B. Suppose P is uniform on1 2 1 2

[-1,1]×[-1,1]. Then {F ,F } are MSI. However, {F , F } are not independent.1 2 1 3
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Example 5. Consider S = {0, 1, 2, 3, 4, 5, 6, 7}, with F equal to all subsets

of S. Define the subfield F = {∅,0123,4567,S}, where 0123 denotes {0,1,2,3}, etc.1

Also define the subfields F = {∅,2345,0167,S}, F = {∅,0246,1357,S},2 3

F = {∅,01,23,4567,0123,234567,014567,S},4

F = {∅,01,23,45,67,0123,0145,0167,2345,2367,4567,012345,012367,014567,234567,S},5

and

F = {∅,06,17,24,35,0167,0246,0356,1247,1357,2345,123457,023456,013567,012467,S}.6

The field F is a refinement of the field F (i.e., F ⊆ F ), and can be said to4 1 1 4

contain more information than F . The field F is a mutual refinement of F and F1 5 1 2

(i.e., F ∪F ⊆ F ), and is in fact the smallest mutual refinement. It contains all1 2 5

the information available in either F or F . Similarly, F is a mutual refinement1 2 6

of F and F . The intersection of F and F is the field F ; it is the common2 3 5 6 2

information available in F and F . If, for example, F characterized the5 6 5

information available to one economic agent, and F characterized the information6

available to a second agent, then F would characterize the common information upon2

which they could make contingent contracts. Suppose P(i) = 1/8. Then {F , F , F }1 2 3

are MSI. E.g., P(012322345) = P(012320246) = P(012322345∩0246) = P(0123) = 1/2.

However, {F , F } are not independent; e.g., 1 = P(0123201) ≠ P(0123) = 1/2.1 4

For M ⊆ N, let F denote the smallest field containing F for all i ∈ M. ThenM i

MSI satisfies the following theorem:

If {F 1i ∈ N} are MSI, and i ∉ M ⊆ N, then {F ,F } are MSI. Further, {F 1i∈N}i i M i

are MSI if and only if, for all i∈N, {F , F } are MSI.i Ni
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Example 5. (continued) If M = {2,3}, then F ≡ F , and P(01231A) = 1/2 for eachM 6

A ∈ F .23

4.2. The idea of repeated trials is that an experiment, such as a coin toss, is

replicated over and over. It is convenient to have common probability space in which

to describe the outcomes of larger and larger experiments with more and more

replications. The notation for repeated trials will be similar to that introduced in

the definition of mutual statistical independence. Let N denote a finite or

countable index set of trials, S a sample space for trial i, and F a σ-field ofi i

subsets of S . Note that S may be the same for all i. Assume that (S , F ) is thei i i i

real line with the Borel field, or a countable set with the field of all subsets, or

a pair with comparable mathematical properties (i.e., S is a complete separablei

metric space and F is its Borel field). Let t = (s ,s ,...) = (s : i∈N) denote ani 1 2 i
xordered sequence of outcomes of trials, and S = S denote the sample space ofN y i
i

pthese sequences. Let F = F denote the σ-field of subsets of S generated byN q i N
i∈N

finite rectangles, where by a finite rectangle we mean a set of the form

x x( A ) × ( S ), where K is a finite subset of N and A ∈ F for i ∈ K.
y i y i i i

ci∈K i∈K

Example 6. N = {1,2,3}, S = {0,1}, F = {∅,0,1,01}, where {0} = 0, {0, 1} = 01,i i

etc. Then S = {s s s 1s ∈ S } = {000, 001, 010, 011, 100, 101, 110, 111} and F isN 1 2 3 i i N

the family of all subsets of S .N
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x pFor any subset K of N, define S = S and F = F . Define T to be theK y i K q i K
i∈K i∈K

family of subsets of S of the form AxS for A ∈ F and M the set of indices in N butN M K

not in K. Then T is a subfield of F . Suppose P is a probability on (S , F ).K N N N N

The restriction of P to (S , F ) is a probability P defined for for A ∈ F by P (A)N K K K K K

= P (A×S ), where K and M partition N. The following result establishes a linkN M

between different restrictions:

If M ⊆ K and P , P are restrictions of P , then (letting M and L partition K) PM K N M

and P satisfy the compatability condition thatK

P (A) = P (A x S ) for all A ∈ F .M K L M

There is then a fundamental result that establishes that when probabilities are

defined on all finite sequences of trials and are compatible, then there exists a

probability defined on the infinite sequence of trials that yields each of the finite

sequence probabilites as a restriction.

If P on (S ,F ) for all finite K satisfy the compatibility condition, then thereK K K

exists a unique P on (S ,F ) such that each P is a restriction of P .N N N K N

This result guarantees that it makes sense to make probability statements about

events such as "the probability of an infinite number of heads in repeated coin

tosses is one" or "the frequency of heads approaches 1/2 with probability one as the

number of repetitions increases to infinity".

One can apply the concept of mutual statistical independence in the case of a

countable sequence of trials. Suppose the trials are independent (i.e., the σ-fields

T are mutually statistically independent). Consider K finite and B = A x S ∈ Ti i i N ii
n xfor A ∈ F , for i ∈ K. Then B = ( A )×S , where K and L partition N. Byi i o i y i L

i∈K i∈K
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mutual statistical independence,

nP ( B ) = Π P (B )N o i N ii∈Ki∈K

or

xP ( A ) = Π P (A ).K y i i ii∈Ki∈K

Then, the compatability condition is satisfied trivially, and the fundamental result

establishes that the existence of a unique P on F whose restrictions give theN N

probabilities for the individual trials.

4.3. The assumption of statistically independent repeated trials is a natural one

for many statistical and econometric applications where the data comes from random

samples from the population, such as surveys of consumers or firms. This assumption

has many powerful implications, and will be used to get most of the results of basic

econometrics. However, it is also common in econometrics to work with aggregate time

series data. In these data, each period of observation can be interpreted as a new

trial. The assumption of statistical independence across these trials is unlikely in

many cases, because in most cases real random effects do not conveniently limit

themselves to single time periods. The question becomes whether there are weaker

assumptions that time series data are likely to satisfy that are still strong enough

to get some of the basic statistical theorems. It turns out that there are quite

general conditions, called mixing conditions, that are enough to yield many of the

key results. The idea behind these conditions is that usually events that are far

apart in time are nearly independent, because intervening shocks overwhelm the older

history in determining the later event. Mixing will be defined to formalize the

tconcept of "nearly independent". Suppose t indexes time periods. Define K to be
1
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∞the set of time indexes up through time t, and K to be the set of time indexes
t +n

tfrom time t+n on. Let T be the product σ-field of events that use only information
1

∞from time 1 to time t. Let T denote the product σ-field of events that use only
t +n

information from time t+n on. The idea of mixing is that when events are far enough

removed in time, there is little information contained in the occurence of one that

helps determine the probability of the second. The trials are strong mixing if there

exists a scalar α(n) satisfying l im α(n) = 0 such that P(A∩B) - P(A)P(B) ≤ α(n) for
nL∞

t ∞all A ∈ T and B ∈ T . They are uniform mixing if P(BA) - P(B) ≤ φ(n) for all
1 t +n

t ∞
A ∈ T and B ∈ T , and l im φ(n) = 0; note that the inequality is equivalent to

1 t +n nL∞
P(A∩B) - P(A)P(B) ≤ φ(n)P(B). They are strict mixing if P(A∩B) - P(A)P(B) ≤

t ∞ψ(n)P(A)P(B) for all A ∈ T and B ∈ T , and l im ψ(n) = 0. Note that the right-
1 t +n nL∞

hand-side of each of these inequalities is zero for independent trials, so that the

mixing assumptions correspond to near independence for remote events. Many economic

time series model utilize assumptions that imply strong mixing, at least after

suitable data transformation.

5. Random Variables, Distribution Functions, and Expectations

5.1. A random variable X is a measurable real-valued function on a probability

space (S,F,P). The value of the function x = X(s) for an s that occurs is termed a

realization of the random variable. One can have many random variables defined on

the same probability space; another measurable function y = Y(s) defines a second

random variable. It is very helpful in working with random variables to keep in mind

that the random variable itself is a function of states of Nature, and that

observations are of realizations of the random variable. Thus, when one talks about
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convergence of a sequence of random variables, one is actually talking about

convergence of a sequence of functions, and notions of distance and closeness need to

be formulated as distance and closeness of functions.

5.2. The term measurable in the definition of a random variable means that for

each set A in the Borel σ-field B of subsets of the real line, the inverse image

-1X (A) ≡ {s∈SX(s)∈A} is in the σ-field F of subsets of the sample space S. The

assumption of measurability is a mathematical technicality that ensures that

probability statements about the random variable are meaningful. We shall not make

any explicit reference to measurability in basic econometrics, and shall always

assume implicitly that the random variables we are dealing with are measurable.

5.3. The probability that a random variable X has a realization in a set A ∈ B is

given by

-1F(A) ≡ P(X (A)) ≡ P({s∈SX(s)∈A}).

The function F is a probability on B; it is defined in particular for half-open

intervals of the form A = (-∞,x], in which case F((-∞,x)) is abbreviated to F(x) and

is called the distribution function (or, cumulative distribution function, CDF) of X.

From the properties of a probability, the distribution function has the properties

(i) F(-∞) = 0 and F(+∞) = 1.

(ii) F(x) is non-decreasing in x, and continuous from the right.

(iii) F(x) has at most a countable number of jumps, and is continuous except at

these jumps. (Points without jumps are called continuity points.)

Conversely, any function F that satisfies (i) and (ii) determines uniquely a

probability F on B. The support of the distribution F is the smallest closed set A ∈
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B such that F(A) = 1.

5.4. If F is absolutely continuous with respect to a σ-finite measure ν on R;

i.e., F gives probability zero to any set that has ν-measure zero, then (by the

Radon-Nikodym theorem) there exists a real-valued function f on R, called the density

(or probability density function, pdf) of X, such that

iF(A) = 2f(x)ν(dx)
j
A

for every A ∈ B. With the possible exception of a set of ν-measure zero, F is

differentiable and the derivative of the distribution gives the density, f(x) =

F′(x). When the measure ν is Lebesgue measure, so that the measure of an interval is

its length, it is customary to simplify the notation and write

iF(A) = 2f(x)dx.
j
A

If F is absolutely continuous with respect to counting measure on a countable subset

C of R, then it is called a discrete distribution, and there is a real-valued

sfunction f on C such that F(A) = f(x).
t

x∈A

5.5. If (R,B,F) is the probability space associated with a random variable X, and

g:R L R is a measurable function, then Y = g(X) is another random variable. The

random variable Y is integrable with respect to the probability F if

i
2g(x)F(dx) < +∞;
j
R

if it is integrable, then the integral



McFadden Chapter 3. Probability Theory in a Nutshell 69
_________________________________________________________________________

i i
2g(x)F(dx) ≡ 2g⋅dF
j j
R R

exists, is denoted E g(X), and is called the expectation of g(X). When necessary,

this expectation will also be denoted E g(X) to identify the distribution used toX

form the expectation. When F is absolutely continuous with respect to Lebesgue

measure, so that F has a density f, the notation for the expectation simplifies to

iE g(X) = 2g(x)f(x)dx.
j
R

The expectation of X, if it exists, is called the mean of X. The expectation of

2(X - EX) , if it exists, is called the variance of X. Define 1(X≤a) to be an

indicator function that is one if X(s) ≤ a, and zero otherwise. Then, E 1(X≤a) =

F(a), and the distribution function can be recovered from the expectations of the

indicator functions.

Example 1. (continued) Define a random variable X by
(
2 0 if s = TT

X(s) = { 1 if s = TH or HT
2 2 if s = HH
9

Then, X is the number of heads in two coin tosses. For a fair coin, E X = 1.

Example 2. (continued) Let X be a random variable defined to equal the number of

heads that appear before a tail occurs. Then, possible values of X are the integers

C = {0,1,2,...}. For x real, define [x] to be the largest integer k satisfying

k ≤ x. A distribution function for X is the geometric,
(
2 -[x+1]1 - 2 for 0 ≤ xF(x) = { ; the associated density defined on C is
2 0 for 0 > x
9
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∞
-k-1 s -k-1f(k) = 2 . The expectation of X is E X = k⋅2 = 1. (A geometric series

t
k=0

∞
s k 1r = ------------- for -1 < r < 1. Differentiating with respect to r and then multiplying
t 1-r

k=0
∞ 22 s k+1 rby r yields kr = -------------------------. Evaluate this at r = 1/2 to get the result.)
t 2(1-r)k=0

Example 3. (continued) Define a random variable X by X(s) = s. Then, X is the

magnitude of the daily change in the price index. The inverse image of an interval

(a,b) with a < 0 is (-b,b) ∈ F, and the inverse image of an interval (a,b) with a ≥ 0

is (-b,-a)∪(a,b) ∈ F. Then X is measurable. Another measurable random variable is Y

3defined by Y(s) = Max {0,s}, a third is Z defined by Z(s) = s .

k5.6. Consider a random variable Y on (R,B). The expectation E Y is the k-thY
k(non-centered) moment of k, and E (Y-E Y) is the k-th central moment. SometimesY Y

moments fail to exist. However, if g(Y) is continuous and bounded, then E g(Y)Y

always exists. The expectation

tYm (t) = E eY Y

is termed the moment generating function (mgf) of Y; it sometimes fails to exist.

Call a mgf proper if it is finite for t in an interval around 0. When a proper mgf

exists, the random variable has finite moments of all orders.

The expectation

ιtYψ (t) = E e ,Y Y
q=====6

where ι = e-1, is termed the characteristic function (cf) of Y. The characteristic

function always exists.
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n n5.7. A measurable function X from the probability space (S,F,P) into (R ,B ) is

ntermed a random vector. (The notation B means B⊗B⊗...⊗B n times, where B is the

Borel σ-field on the real line. This is also called the product σ-field, and is

n
n psometimes written B = B , where the B are identical copies of B.) The random

q i i
i=1

q e
2X 2
2 12
2 2
2X 22vector can also be written X = 2 2, with each component X a random variable. Thei2 | 2
2 2
2X 2
2 n2
z c

distribution function (CDF) of X is

F (x ,...,x ) = P({sεS2X (s) ≤ x for i = 1,...,n}).X 1 n i i

nIf A ∈ B , define F (A) = P({sεS2X(s)∈A}). If F (A) = 0 for every set A ofX X

Lebesque measure zero, then there exists a probability density function (pdf)

f (x ,...,x ) such thatX 1 n

x x x1 2 n
i i i(1) F (x ,...,x ) = 2 2 ... 2 f (y ,...,y ) dy ...dy .X 1 n j j j X 1 n 1 n

-∞ -∞ -∞

F and f are termed the joint or multivariate CDF and pdf, respectively, of X. TheX X

random variable X has a distribution that satisfies1

F (x ) ≡ P({s∈SX (s) ≤ x }) = F (x ,+∞,...,+∞).X 1 1 1 X 11

This random variable is measurable with respect to the σ-subfield G containing the1

events whose occurance is determined by X alone; i.e., G is the family of sets of1 1

the form A×R×...×R with A ∈ B. If F is absolutely continuous with respect toX
nLebesque measure on B , then there is an associated density f and implied densityX



McFadden Chapter 3. Probability Theory in a Nutshell 72
_________________________________________________________________________

f satisfyingX1
x1
i(2) F (x ) = 2 f (y ) dyX 1 j X 1 11 1

-∞

+∞ +∞
i i(3) f (x ) = 2 2 f (x ,y ,...,y )⋅dy ...dy .X 1 j j X 1 2 n 2 n1

y =-∞ y =-∞2 n

F and f are termed the marginal CDF and pdf, respectively, of X .X X 11 1

5.8. Corresponding to the concept of a conditional probability, we can define a

conditional distribution: Suppose C is an event in G with P(C) > 0. Then, define1
nF (x ,...,x C) = F({y∈R y ∈C,y ≤x ,...,y ≤x })/F (C) to be the conditionalX ,...,X 2 n 1 2 2 n n X2 n 1

distribution of (X ,...,X ) given X ∈ C. When F is absolutely continuous with2 n 1 X
nrespect to Lebesgue measure on R , the conditional distribution can be written in

terms of the joint density,

x x2 n

i i i
2 2 2 f (y ,y ,...,y )⋅dy dy ...dy1j j j X 1 2 n 2 n

y ∈C y =-∞ y =-∞1 2 nF (x ,...,x C) = ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- .X ,...,X 2 n2 n +∞ +∞
i i i
2 2 2 f (y ,y ,...,y )⋅dy dy ...dy1j j j X 1 2 n 2 n

y ∈C y =-∞ y =-∞1 2 n

Taking the limit as C shrinks to a point X = x where f (x ) > 0, one obtains the1 1 X 11

conditional distribution of (X ,...,X ) given X = x ,2 n 1 1

x x2 n

i i
2 2 f (x ,y ,...,y )⋅dy dy ...dy1j j X 1 2 n 2 n

y =-∞ y =-∞2 nF (x ,...,x X =x ) = -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- .X ,...,X 2 n 1 1 f (x )2 n X 11
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Finally, associated with this conditional distribution is the conditional density

f (x ,x ,...,x )X 1 2 nf (x ,...,x X =x ) = ----------------------------------------------------------------- .X ,...,X 2 n 1 1 f (x )2 n X 11

More generally, one could consider the marginal distributions of any subset, say

X ,...X , of the vector X, with X ,...X integrated out; and the conditional1 k k+1 n

distributions of one or more of the variables X ,...X given one or more of thek+1 n

conditions X = x ,...,X = x .1 1 k k

5.9. Just as expectations are defined for a single random variable, it is

possible to define expectations for a vector of random variables. For example,

t′XE(X - EX )(X -EX ) is called the covariance of X and X , and Ee , where1 1 2 2 1 2

t′ = (t ,...,t ) is a vector of constants, is a (multivariate) moment generating1 n

function for the random vector X.

Some useful properties of expectations are

(a) If g(X) is a function of a random vector, then Eg(X) is the integral of g

with respect to the distribution of X. When g depends on a subvector of X, then

Eg(X) is the integral of g(y) with respect to the marginal distribution of this

subvector.

(b) If X and Z are random vectors of length n, and a and b are scalars, then

E(aX + bZ) = aEX + bEZ.

(c) [Cauchy-Schwartz inequality] If X and Z are random vectors of length n, then

2(EX′Z) ≤ (EX′X)(EZ′Z).

When expectations exist, they can be used to bound the probability that a random

variable takes on extreme values. We give three such bounds:

a. [Markov bound] If X is a random variable with EX < +∞ and ε is a positive
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scalar, then Pr(X > ε) < EX/ε.

b. [Chebyshev bound] If X is a random vector with EX′X < +∞ and ε is a positive

2scalar, then Pr(NXN > ε) < EX′X/ε .
2

c. [Chernoff bound] If X is a random vector with a proper moment generating

t′Xfunction (i.e., m(t) ≡ Ee exists for all vectors t in some neighborhood of

zero), and ε is a positive scalar, then for some positive scalars α and M,

-αεPr(NXN > ε) < Me .
2

All these inequalities are established by the same technique: If r(y) is a positive

increasing function of y > 0, and Er(NXN) < +∞, then

i iPr(NXN > ε) = 2 F(dx) ≤ 2 [r(NxN )/r(ε)]F(dx) ≤ Er(NXN )/r(ε).
2 j j 2 2

NxN >ε NxN >ε
2 2

2Taking r(y) = y, y gives the results directly for the first two ineqalities. In the

third case, first get a component-by-component inequality

n
q6====== q6======sPr(NXN > ε) ≤ [Pr(X > ε/en) + Pr(X < -ε/en)]

2 t i i
i=1

by showing that if the event on the left occurs, one of the events on the right must
q6======

yαenoccur. Then apply the inequality Pr(X  > ε) ≤ Er(X )/r(ε) with r(y) = e toi i

each term in the right-hand-side sum. The inequality for vectors is built up from a

corresponding inequality for each component.

5.10. When the expectation of a random variable is taken with respect to a

conditional distribution, it is called a conditional expectation. If F(xC) is the

conditional distribution of a random vector X given the event C, then the conditional

expectation of a function g(X) given C is defined as
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iE g(X) = 2g(y)F(dyC).XC j

Another notation for this expectation is E (g(X)C). The conditional expectationX

is actually a function on the σ-field C of conditioning events, and is sometimes

written E g(X) or E(g(X)C).XC
The concept of conditional expectations is very important in econometrics and in

economic theory, so we will work out its properties in some detail for the case of

two variables, using as an example random variables with a bivariate normal

distribution.

Suppose random variables (U,X) have a joint density f(u,x). The marginal density

of X is defined by

ig(x) = 2f(u,x)du,
j

and the conditional density of U given X = x is defined by f(ux) = f(u,x)/g(x),

provided g(x) > 0. The conditional expectation of a function h(U,X) satisfies

E(h(U,X)X=x) = ih(u,x)f(ux)du, and is a function of x. The unconditional

expectation of h(U,X) satisfies
( )
2 2
2 2

i i iEh(U,X) = 2h(u,x)f(u,x)dudx = 222 h(u,x)f(ux)du2g(x)dx
j j j

2 2x2u 2
9 0

= E E h(U,X);X UX

this is called the law of iterated expectations. The conditional mean of U given X=x

is M (x) ≡ E U; by the law of iterated expectations, the conditional andUX UX=x

unconditional mean are related by E U = E E U ≡ E M (X).U X UX X UX

2The conditional variance of U is V(Ux) = E (U - M (x)) . It is related toUX UX
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the unconditional variance by the formula

2 2E (U - E U) = E E (U - M (X) + M (X) - E U)U U X UX UX UX U
2 2= E E (U - M (X)) + E E (M (X) - E U)X UX UX X UX UX U

+ 2E E (U - M (X))(M (X) - E U)X UX UX UX U
2= E V(UX) + E (M (X) - E U)X X UX U

+ 2E (M (X) - E U)E (U - M (X))X UX U UX UX
2= E V(UX) + E (M (X) - E U) .X X UX U

Then, the unconditional variance equals the expectation of the conditional variance

plus the variance of the conditional expectation.

2 2Example: Suppose (U,X) are bivariate normal with EU = µ , EX = µ , E(U-µ ) = σ ,u x u u
2 2E(X-µ ) = σ , and E(U-µ )(X-µ ) = σ ≡ ρσ σ . The bivariate normal density isx x u x ux u x

q==============6 -12& 2*f(u,x) = 2πσ σ e1-ρ exp(-Q/2), with
7 u x 8

( ) ( )( )( )2 2 22 2 22 22 2 x-µ u-µ x-µu-µ 2 2 2 22 22 2 x u xuQ = 2---------------------2 + 2--------------------2 - 2ρ2---------------------22--------------------2 .σ2 2 σ σ σu 2 2 2 22 22 2 x u x2 2 2 22 2
9 0 9 0 9 09 0

2The marginal density of X is normal with mean µ and variance σ :x x

2 2-(x-µ ) /2σq=======6 -1 x xn(x-µ ,σ ) = (e2π σ ) e .x x x

This can be derived from the bivariate density by completing the square for u in Q

and integrating over u. The conditional density then satisfies

q================6 ( )-1q=======6 2& 2* 2 2 2 22f(ux) = e2π⋅σ e1-ρ exp 2-Q/2(1-ρ ) + (x-µ ) /2σ 2.
7 u 8 2 x x2

9 0

But
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( ) ( ) ( )( ) ( )2 2 22 2 2 2 2 22 2 2 2x-µ u-µ u-µ x-µ x-µ2 2 2 2 2 22 2 2 2x u u x x2 2Q - (1-ρ) 2--------------------2 = 2---------------------2 - 2ρ2---------------------22--------------------2 + ρ 2--------------------2
σ σ σ σ σ2 2 2 2 2 22 2 2 2x u u x x2 2 2 2 2 22 2 2 2

9 0 9 0 9 09 0 9 0

q e
( ) ( ) 22 2

22 2 2 22u-µ x-µ22 2 2 22u x
= 22---------------------2 - ρ2--------------------22 ,

σ σ22 2 2 22u x22 2 2 22
2 29 0 9 0
z c

so that

q================6 -1 & ρσ *q=======6 2& 2* ( u )2 2 2f(u2x) = e2π σ e1-ρ exp 2- u-µ - ------------------ (x-µ ) /2σ (1-ρ )2.
7 u 8 9 u σ x 0 u

7 x 8

Hence the conditional distribution of U given X = x is normal with conditional mean

ρσ σu uxE(U2X=x) = µ + ρ ------------------ (x ----- µ ) ≡ µ + ----------------- (x-µ )u σ x u 2 xx σx
( ) 2 2 2 2 22and conditional variance V(UX=x) ≡ E2 2 = σ (1-ρ ) ≡ σ - σ /σ .2(U-E(U2X=x)) 2X=x2 u u ux x
9 0

When U and X are joint normal random vectors with EU = µ , EX = µ , E(U-µ )(U-µ )′ =u x u u

Ω , E(X-µ )(X-µ )′= Ω , and E(U-µ )(X-µ )′ = Ω , then (U2X=x) is normal withuu′ x x xx u x ux
-1 -1E(U2X=x) = µ + Ω Ω (x - µ ) and V(U2X=x) = Ω - Ω Ω Ω .u ux xx x uu ux xx xu

5.11. Conditional densities satisfy f(u,x) = f(u2x)g(x) = f(x2u)h(u), where h(u)

is the marginal density of U, and hence f(u2x) = f(x2u) h(u)/g(x). This is called

Bayes Law. When U and X are independent, f(u,x) = h(u)⋅g(x), or f(u2x) = h(u) and

f(x2u) = g(x). For U and X independent, and r(⋅) and s(⋅) any functions, one has

E(r(U)2X=x) = ir(u)f(u2x)du ≡ ir(u)h(u)du = Er(U),

and
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E(r(U)s(X)) = ir(u)s(x)f(u,x)dudx = is(x)g(x)ir(u)f(u2x)du dx

= is(x)g(x)Er(U2x)dx = [Es(X)][Er(U)],
( )

or cov2r(U),s(X)2 = 0, provided Er(U) and Es(X) exist. In particular, if r(u) = u -
9 0

EU, then E(r(U)2X=x) = 0 and cov(U,X) = E(U-EU)X = 0.

Conversely, suppose U and X are jointly distributed. If cov(r(U),s(X)) = 0 for

all functions r (⋅), s(⋅) such that Er(U) and Es(X) exist, then X and U are

*independent. To see this, choose r(u) = 1 for u ≤ u , r(u) = 0 otherwise; choose

* * *s(x) = 1 for x ≤ x , s(x) = 0 otherwise. Then Er(U) = H(u ) and Es(X) = G(x ), where
( )

H and G are the marginal cumulative distribution functions, and 0 = cov2r(U), s(X) 2
9 0

* * * *= F(u ,x ) - H(u )⋅G(x ), where F is the joint cumulative distribution function.

Hence, F(u,x) = H(u)⋅G(x), and X, U are independent.

Note that cov (U,X) = 0 is not sufficient to imply U,X independent. For example,

2g(x) = 1/2 for -1 ≤ x ≤ l and f(u2x) = 1/2 for -1 ≤ u-x ≤ 1 is nonindependent with

2 3E(U2X=x) = x , but cov(U,X) = EX = 0. Furthermore, E(UX=x) ≡ 0 is not sufficient

to imply U,X independent. For example, g(x) = 1/2 for -1 ≤ x ≤ 1 and f(ux)= 1/2(1 +

2 2 2 2 2 2 2x ) for -(1+ x ) ≤ u ≤ (1 + x ) is nonindependent with E (U 2x) = (1 + x ) ≠ E U =

28/15, but E(U2X=x) ≡ 0.

5.12. The discussion of expectations will be concluded with a list of detailed

properties of characteristic functions and moment generating functions that will be

useful later:

ιtYa. ψ(t) = E e ≡ E cos(tY) + ιE sin(tY),Y Y Y
ιtab. Z = a + bY has the cf e ψ(bt),

k (k) k kc. If E Y exists, then ψ (t) ≡ d ψ(t)/dt exists and is uniformly continuous,Y
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k k (k) (k) kand E Y = (-ι) ψ (0). If ψ (t) exists, then E Y exists.Y Y

d. If Y has finite moments through order k, then ψ(t) has a Taylor’s expansion

k
s j j j (k) (k) kψ(t) = ι (E Y )t /j! + [ψ (λt) - ψ (0)]t /k!
t Y

j=0

where λ is a scalar with 0 < λ < 1; the Taylor’s expansion satisfies the bounds

k-1
s j j j k kψ(t) - ι (E Y )t /j! ≤ t E Y /k!
t Y Y

j=0

and

k
s j j j k kψ(t) - ι (E Y )t /j! ≤ 2t E Y /k!
t Y Y

j=0

kIf E Y exists, then the expression ζ(t) = Ln ψ(t), called the secondY

characteristic function or cumulant generating function, has a Taylor’s expansion

k
s j j (k) (k)ζ(t) = κ ι t /j! + [ζ (λt) - ζ (t)],
t j

j=0

(k) k kwhere ζ ≡ d ζ/dt , and λ is a scalar with 0 < λ < 1. The expressions κ arej

called the cumulants of the distribution, and satisfy κ = E Y and κ = Var(Y). The1 Y 2
3/2 2expression κ /κ is called the skewness, and the expression κ /κ - 3 is called the3 2 4 2

kurtosis (i.e., thickness of tails relative to center), of the distribution.

2e. If Y is normally distributed with mean µ and variance σ , then its

2 2ιµt-σ t /2 2characteristic function is e . The normal has cumulants κ = µ, κ = σ ,1 2

κ = κ = 0.3 4
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f. Random variables X and Y are distinct if and only if their characteristic

functions are distinct.

dg. If Y ---------L Y (see Chap. 4), then the associated characteristic functionsn

satisfy ψ (t) L ψ(t) for each t. Conversely, if Y has characteristic function ψ (t)n n n

converging pointwise to a function ψ(t) that is continuous at t = 0, then there

dexists Y such that ψ(t) is the characteristic function of Y and Y ---------L Y.n

h. The characteristic function of a sum of independent random variables equals

the product of the characteristic functions of these random variables, and the second

characteristic function of a sum of independent random variables is the sum of the

second characteristic functions of these variables; the characteristic function of a

mean of n independently identically distributed random variables, with characteristic

nfunction ψ(t), is ψ(t/n) .

Similar properties hold for proper moment generating functions, with obvious

modifications: Suppose a random variable Y has a proper mgf m (t), finite for t <Y

τ, where τ is a positive constant. Then, the following properties hold:

tYa. m (t) = E e for t < τ.Y Y
tab. Z = a + bY has the mgf e m (bt).Y

k (k) k kc. E Y exists for all k > 0, and m ≡ d m (t)/dt exists and is uniformlyY Y Y
k (k)continuous for t < τ, with E Y = m (0).Y Y

d. m (t) has a Taylor’s expansion (for any k)Y
k
s j j (k) (k) km (t) = (EY )t /j! + [m (λt) - m (0)]t /k!,Y t Y Y

j=0

where λ is a scalar with 0 < λ < 1.
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2e. If Y is normally distributed with mean µ and variance σ , then it has mgf

2 2µt+σ t /2e .

f. Random variables X and Y with proper mgf are distinct if and only if their mgf

are distinct.

dg. If Y ---------L Y and the associated mgf satisfy m (t), m (t) finite for t < τ,n Y Yn

then m (t) -----L m (t). Conversely, if Y has proper mgf m (t) convergingY Y n Yn n

pointwise to a function m (t) finite for t < τ, then there exists Y such thatY
dm (t) is the mgf of Y and Y L Y.Y n

h. The mgf of a sum of independent random variables equals the product of the mgf

of these random variables; the mgf of the mean of n independently identically

ndistributed random variables, each with proper mgf m (t), is m (t/n) .Y Y

The properties of characteristic functions and moment generating functions are

discussed and established in C. R. Rao Linear Statistical Inference, 2b.4, and W.

Feller An Introduction to Probability Theory, II, Chap. 13 and 15.

6. Transformations of Random Variables

6.1. Suppose X is a measurable random variable on (R,B) with a distribution F (x)X

that is absolutely continuous with respect to Lebesgue measure, so that X has a

density f (x). Consider an increasing transformation Y = H(X); then Y is anotherX

random variable. Let h denote the inverse function of H; i.e., y = H(x) implies

x = h(y). The distribution function of Y is given by

F (y) = Pr(Y ≤ y) = Pr(H(X) ≤ y) = Pr(X ≤ h(y)) = F (h(y)).Y X

When h(y) is differentiable, with a derivative h′(y) = dh(y)/dy, the density of Y is

obtained by differentiating, and satisfies
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f (y) = f (h(y))h′(y).Y X

Since y ≡ H(h(y)), one obtains by differentiation the formula 1 ≡ H′(h(y))h′(y), or

h′(y) = 1/H′(h(y)). Substituting this formula gives

f (y) = f (h(y))/H′(h(y)).Y X
-xFor example, suppose X has the distribution function F (x) = 1-e for x > 0,X

with F (x) = 0 for x ≤ 0; then X is said to have an exponential distribution.X
Y ySuppose Y = H(X) ≡ log X, so that X = h(Y) ≡ e . Then, F (y) = 1-exp(-e ) and f (y)Y Y

y y y= exp(-e )e = exp(y-e ). This is called an extreme value distribution. A second

example is X with some distribution function F and density f , and Y = F (X), soX X X

that for any value of X, the corresponding value of Y is the proportion of all X that

are below this value. Let x denote the solution to F (x) = p. The distributionp X

function of Y is F (y) = F (x ) = y. Hence, Y has the uniform density on the unitY X y

interval.

The rule for an increasing transformation of a random variable X can be extended

in several ways. If the transformation Y = H(X) is decreasing rather than

increasing, then

F (y) = Pr(Y ≤ y) = Pr(H(X) ≤ y) = Pr(X ≥ h(y)) = 1-F (h(y)),Y X

where h is the inverse function of H. Differentiating,

f (y) = f (h(y))(-h′(y)).Y X

Then, combining cases, one has the result that for any one-to-one transformation Y =

H(X) with inverse X = h(Y), the density of Y is

f (y) = f (h(y))h′(y) ≡ f (h(y))/H′(h(y).Y X X
-xAn example of a decreasing transformation is X with the exponential density e

-1/y -1/y 2for x > 0, and Y = 1/X. Show as an exercise that F (y) = e and f (y) = e /y .Y Y

Consider a transformation Y = H(X) that is not one-to-one. The interval (-∞,y)
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is the image of a set A of x values that may have a complicated structure. One cany

write

F (y) = Pr(Y ≤ y) = Pr(H(X) ≤ y) = Pr(X ∈ A ) = F (A ).Y y X y

If this expression is differentiable, then its derivative gives the density. For

example, if X has a distribution F and density f , and Y = X, then A = [-y,y],X X y

implying F (y) = F (y) - F (-y) and f (y) = f (y) + f (-y). Another example isY X X Y X X
q6===== q6===== q6===== q6=====2Y = X , implying A = [-ey,ey], F (y) = F (ey) - F (-ey), and differentiating fory Y X X

q6===== q6===== q6=====
y ≠ 0, f (y) = (f (ey) + f (-ey))/2ey.Y X X

6.2. Next consider transformations of random vectors. These transformations will

permit us to analyze sums or other functions of random variables. Suppose X is a n×1

random vector. Consider first the transformation Y = AX, where A is a nonsingular

n×n matrix. The following result from multivariate calculus relates the densities of

X and Y:

If X has density f (x), and Y = AX, with A nonsingular, then the density of Y isX

-1f (y) = f (A y)/det(A) .Y X

The following three examples prove this result in two dimensions:

q e q eq e
2Y 2 2a 0 22X 21 11 1Example 1. 2 2 = 2 22 2 with a > 0 and a > 0 has F (y ,y ) ≡Y 0 a X 11 22 Y 1 2
2 22 2 2222 22
z c z cz c

F (y /a ,y /a ). Differentiating with respect to y and y , f (y ,y ) ≡X 1 11 2 22 1 2 Y 1 2

f (y /a ,y /a )/a a .X 1 11 2 22 11 22

q e q eq e
2Y 2 2a 0 22X 21 11 1Example 2. 2 2 = 2 22 2 with a > 0 and a > 0 hasY a a X 11 22
2 22 2 21 2222 22
z c z cz c
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y / a (y -a x )/a
i 1 11 i 2 21 1 22

F (y ,y ) ≡ 2 2 f (x ,x )dx dx . Differentiating with respectY 1 2 X 1 2 2 1
j jx =-∞ x =-∞1 2

to y and y yields1 2

y / a
i 1 11

-1
dF (y ,y )/dy = 2 a f (x ,(y -a x )/a )dx .Y 1 2 2 22 X 1 2 21 1 22 1

jx =-∞1
2 -1

d F (y ,y )/dy dy ≡ f (y ,y ) = (a a ) f (y /a ,(y -y a /a )/a ).Y 1 2 1 2 Y 1 2 11 22 X 1 11 2 1 21 11 22

q e q eq e
2Y 2 2a a 22X 21 11 12 1Example 3. 2 2 = 2 22 2 with a > 0 and a a -a a > 0 can beY a a X 11 11 22 12 21
2 22 2 21 2222 22
z c z cz c

rewritten by making an intermediate transformation to Z as

q e q eq e q e q eq e
2Y 2 2a 0 22Z 2 2Z 2 2X 221 a /a 21 11 1 1 112 112 2 = 2 22 2 and 2 2 = 2 22 2,Y a a -a a /a Z Z X20 1 22 22 2 21 22 12 21 2222 22 2 22 2 22

z cz c z cz c z c z c

since
q e q eq e
2a a 2 2a 0 221 a /a 211 12 11 12 11
2 2 = 2 22 2.a a a a -a a /a 0 1
2 21 222 2 21 22 12 21 2222 2
z c z cz c

Then, using Example 2, f (z ,z ) = f (z -z a /a ,z ) and f (y ,y ) =Z 1 2 X 1 2 12 11 2 Y 1 2

f (y /a ,(y -y a /a )/(a -a a /a )). Substituting for f in the lastZ 1 11 2 1 21 11 22 12 21 11 Z

expression and simplifying (an exercise) gives

f (y ,y ) = f ((a y -a y )/∆,(a y -a y )/∆)/∆,Y 1 2 X 22 1 12 2 11 2 21 1

where ∆ = a a -a a is the determinant of the transformation.11 22 12 21

As an exercise, verify the formula for the density of Y = AX in the general case

with A n×n and nonsingular. First, recall that A can be factored so that A = PLDUQ′,



McFadden Chapter 3. Probability Theory in a Nutshell 85
_________________________________________________________________________

where P and Q are permutation matrices, L and U are triangular with ones down the

diagonal, and D is a nonsingular diagonal matrix. Write Y = PLDUQ′X. Then consider

the series of intermediate transformations obtained by applying each matrix in turn,

constructing the densities as was done in Example 3.

6.3. The extension from linear transformations to one-to-one nonlinear

transformations of vectors is straightforward. Consider Y = H(X), with an inverse

o o otransformation X = h(Y). At a point y and x = h(y ), a first-order Taylor’s

expansion gives

o o oy - y = A(x - x ) + o(x - x ),

where A is the Jacobean matrix
q e
2 1 o 1 o 2
2dH (x )/dx ... dH (x )/dx 2
2 1 n2

A = 2 | | 2
2 n o n o 2
2dH (x )/dx ... dH (x )/dx 2
2 1 n2
z c

and the notation o(z) means some expression that is small relative to z. Then, the

o oprobability of Y in the little rectangle [y ,y +∆y] is approximately equal to the

o o -1probability of X in the little rectangle [x ,x +A ∆y]. This is the same situation

as in the linear case, except there the equality was exact. Then, the formulas for

the linear case carry over directly, with the Jacobean matrix of the transformation

replacing the linear transformation matrix A.

In principle, it is possible to analyze n-dimensional nonlinear transformations

that are not one-to-one in the same manner as the one-dimensional case, by working

with the one-to-many inverse transformation. There are no general formulas, and each

case needs to be treated separately.
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Often in applications, one is interested in a transformation from a n×1 vector

of random variables X to a lower dimension. For example, one may be interested in

the scalar random variable S = X + ... + X . If one "fills out" the transformation1 n

in a one-to-one way, so that the random variables of interest are components of the

complete transformation, then the previous formulas can be applied. In the case of

S, the transformation Y ≡ S filled out by Y = X for i = 2,...,n is one-to-one,1 i i

with

q e q eq e
2Y 2 21 1 1 ... 122X 2
2 12 2 22 12
2 2 2 22 2
2Y 2 20 1 0 ... 022X 2
2 22 2 22 22
2Y 2 = 20 0 1 ... 022X 2.3 3
2 2 2 22 2
2 | 2 2 | | | |22 | 2
2 2 2 22 2
2Y 2 20 0 0 ... 122X 2
2 n2 2 22 n2
z c z cz c

7. Special Distributions

A number of special probability distributions appear frequently in statistics and

econometrics, because they are convenient for applications or illustrations, because

they are useful for approximations, or because they crop up in limiting arguments.

The following tables list many of these distributions.

The first table lists discrete distributions. The binomial and geometric

distributions are particularly simple, and are associated with statistical

experiments such as coin tosses. The Poisson distribution is often used to model the

occurence of rare events. The hypergeometric distribution is associated with various

experiments of drawing red and white balls from urns, and is also used to approximate

many other distributions.

The second table list a number of continuous distributions, including some basic
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distributions such as the gamma and beta from which other distributions are

constructed. The last table lists the normal distribution, and a number of other

distributions that are related to it in statistical analysis. A series of notes

follows the three tables, and provides more detail on some features.

SPECIAL DISCRETE DISTRIBUTIONS
q p p p============================================================================================================================================================================================================================================================================================================================================e
2NAME & DOMAIN 1DENSITY 1MOMENTS 1CHAR. FN. 2
2 1 1 1 2[-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 1 1 2( )2 1 1 1 2
2 12n2 k n-k 1 1 ιt n 2
21. Binomial 12 2p (1-p) 1µ = np 1(1-p+pe ) 2
2 12k2 1 1 2
2 1 1 1 29 02 1 1 1 2
2 1 1 2 1 2
2k = 0,1,...,n 10 < p < 1 1σ = np(1-p) 1Note 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2( )( ) ( )2 1 1 1 2
2 12r22 w 2 2r+w2 1 1 2
22. Hypergeometric 12 22 2÷2 2 1µ = nr/(r+w) 1Note 2 2
2 12k22n-k2 2 n 2 1 1 2
2 1 1 1 29 09 0 9 02 1 1 1 2
2 1 1 1 22 nrw r+w-n2 1 1 1 2k an integer r+w > n σ = ---------------------------⋅--------------------------2 1 1 1 22 r+w-12 1 1 (r+w) 1 2
2 1 1 1 2
2 1 1 1 2max{0,n-w} ≤ k r,w,n positive2 1 1 1 2
2 1 1 1 2& k ≤ min{r,n} integers2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2k2 1 1 1 23. Geometric p(1-p) µ = (1-p)/p Note 32 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 22 22 1 1 1 2k = 0,1,2,... 0 < p < 1 σ = (1-p)/p2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2-λ k ιt2 1 1 1 24. Poisson e λ /k! µ = λ exp[λ(e -1)]2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 22 22 1 1 1 2k = 0,1,2,... λ > 0 σ = λ Note 42 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1( ) 1 1 2
2 1 1 1 22r+k-12 r k2 1 1 1 25. Negative Binomial 2 2p (1-p) µ = r(1-p)/p2 1 1 1 22 k 22 1 1 1 2
2 19 0 1 1 2
2 1 1 1 2r integer2 1 1 1 2
2 1 1 1 22 22 1 1 1 22k = 0,1,2,... 1r > 0 & 0 < p < 11σ = r(1-p)/p 1Note 5 2
z $ $ $============================================================================================================================================================================================================================================================================================================================================c
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SPECIAL CONTINUOUS DISTRIBUTIONS
q p p p================================================================================================================================================================================================================================================================================================================================================e
2NAME & DOMAIN1DENSITY 1MOMENTS 1CHAR. FN.2
2 1 1 1 2[------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 1 1 2
2 1 1 1 2ιbt ιat2 1 1 1 2e -e2 1 1 1 21. Uniform 1/(b-a) µ = (a+b)/2 --------------------------------------2 1 1 1 2ιt(b-a)2 1 1 1 2
2 1 1 1 2
2 1 1 2 2 1 2
2a ≤ x ≤ b 1 1σ = (b-a) /12 1Note 6 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 -x/λ 1 1 22. Exponential e /λ µ = λ 1/(1-ιλt)2 1 1 1 2
2 1 1 2 2 1 2
2x ≥ 0 1 1σ = λ 1Note 7 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 b -b-1 1 1 2
23. Pareto 1ba x 1µ = ab/(b-1) if b > 1 1Note 8 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 222 1 1 1 22 a b2 1 1 1 2x ≥ a σ = ------------------------------------------- if b > 22 1 1 1 2(b-1)(b-2)2 1 1 1 2
z $ $ $================================================================================================================================================================================================================================================================================================================================================c
q p p p====================================================================================================================================================================================================================================================================================================================================================e
2NAME & DOMAIN1DENSITY 1MOMENTS 1CHAR. FN.2
2 1 1 1 2[----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 1 1 2
2 1 1 1 2a-1 x/b2 1 1 1 2x e -a2 1 1 1 24. Gamma --------------------------------------- µ = ab (1-ιbt)2 1 1 1 2a2 1 1 1 2Γ(a)b2 1 1 1 2
2 1 1 1 2
2 1 1 2 2 1 2
2x > 0 1 1σ = ab 1Note 9 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2Γ(a+b) a-1 b-12 1 1 1 25. Beta -------------------------------------x (1-x) µ = a/(a+b) Note 102 1 1 1 2Γ(a)Γ(b)2 1 1 1 2
2 1 1 1 2
2 1 1 1 22 ab2 1 1 1 20 < x < 1 σ = -----------------------------------------------------------------2 1 1 1 222 1 1 1 2(a+b) (a+b+1)
2 1 1 1 2
2 1 1 1 2
2 1 ( )1 1 2
2 1 1 1 22 22 11 x-a -(x-a)/b 1 1 2
26. Extreme Value 1------exp2--------------- - e 21µ = a + 0.57721⋅b 1Note 11 2
2 1b b 1 1 22 22 1 1 1 2
2 1 9 01 1 2
2 1 1 1 22 22 1 1 1 2-∞ < x < +∞ σ = (πb) /122 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 11 exp((a-x)/b) 1 1 2
27. Logistic 1------⋅---------------------------------------------------------------------------- 1µ = a 1Note 12 2
2 1b 2 1 1 2
2 1 (1+exp((a-x)/b)) 1 1 2
2 1 1 1 2
2 1 1 1 22 22 1 1 1 2-∞ < x < +∞ σ = (πb) /62 1 1 1 2
2 1 1 1 2
2 1 1 1 22 1 1 1 2
z $ $ $====================================================================================================================================================================================================================================================================================================================================================c
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q p p p==================================================================================================================================================================================================================================================================================================================================================================================e
2NORMAL & RELATIVES1DENSITY 1MOMENTS 1CHAR. FN. 2
2 1 1 1 2[----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 1 1 2
2 1 1 1 2 2 2
21. Normal 1n(x-µ,σ) = 1µ = mean 1exp(ιtµ-σ t /2)2
2 1 1 1 2
2 1 2 2 1 1 2
2 1 1 -(x-µ) /2σ 1 2 1 2
2 1-------------------------- e 1σ = variance 1 2q=================62 1 1 1 222 1 2 1 1 2
2 1e2πσ 1 1 2
2 1 1 1 2
2 1 1 1 2Note 132 1 1 1 2
2 1 1 1 2-∞ < x < +∞ σ > 02 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 22 22 1 1 1 21 -x /2 -t /22 1 1 1 22. Standard Normal φ(x) = ---------------- e µ = 0 e2 1 q=======6 1 1 2
2 1 1 1 2e2π2 1 1 1 2
2 1 1 1 2
2 1 1 2 1 2
2-∞ < x < +∞ 1 1σ = 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2(k/2)-1 x/22 1 1 1 22 x ⋅e -k/22 1 1 1 23. Chi-Square χ (x;k) = -------------------------------------------------------- µ = k (1-ιt/2)2 1 1 1 2k/22 1 1 1 2Γ(k/2)22 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 2 1 2
20 < x < +∞ 1k = 1,2,... 1σ = 2k 1Note 14 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2n2 1 1 1 24. F-distribution F(x;k,n) µ = --------------- if n > 2 Note 152 1 1 1 2n-22 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 222 1 1 1 22 2n (k+n-2)2 1 1 1 20 < x < +∞ k,n positive integers σ = -----------------------------------------------------2 1 1 1 222 1 1 1 2k(n-2) (n-4)2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 if n > 4 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 k+1 2 -(k+1)/21 1 2
2 1Γ(-----------------)(1+x /k) 1 1 2
2 1 2 1 1 2
2 1 1 1 25. t-distribution ----------------------------------------------------------------------------------------------------- µ = 0 if k > 1 Note 162 1 1 1 2q6=====2 1 1 1+2k 1 1 2
2 1 ekΓ(------)Γ(----------------------) 1 1 2
2 1 2 2 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 22 k2 1 1 1 2-∞ < x < +∞ σ = --------------2 1 1 1 2k-22 1 1 1 2
2 1 1 1 2
2 1 1 if k > 2 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
z $ $ $==================================================================================================================================================================================================================================================================================================================================================================================c
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NON-CENTRAL DISTRIBUTIONS ASSOCIATED WITH THE NORMAL
q p p p=================================================================================================================================================================================================================================================================================================================================================================================e
2NAME & DOMAIN1DENSITY 1MOMENTS 1CHAR. FN.2
2 1 1 1 2[--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------]2 1 1 1 2
2 1 2 1 1 2
21. Noncentral 1χ (x;k,δ) 1µ = k+δ 1Note 17 2
2 1 1 1 2
2 1 1 2 1 2
2 Chi-Squared 1k pos. integer 1σ = 2(k+2δ) 1 2
2 1 1 1 2
2 1δ ≥ 0 1 1 2
2 1 1 1 2
2x > 0 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2n(k+δ)2 1 1 1 22. Noncentral F(x;k,n,δ) µ = ---------------------------- if n > 2 Note 182 1 1 1 2k(n-2)2 1 1 1 2
2 1 1 1 2
2 1 1 2 2 1 22 2(n/k) (k+δ) +(k+2δ)(n-2)2 1 1 1 2F-distribution k,n pos. integers σ = -------------------------------------------------------------------------------------------------------------------2 1 1 1 222 1 1 1 2(n-2) (n-4)2 1 1 1 2
2 1 1 1 2
2x > 0 1δ ≥ 0 1 if n > 4 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 1 2
2 1 1 q=========6 1 2Γ((k-1)/2)λ2 1 1 1 23. Noncentral t(x;k,λ) µ = ek/2 ------------------------------------------------ if k > 1 Note 192 1 1 1 2Γ(k/2)2 1 1 1 2
2 1 1 1 2
2 1 1 2 2 2 1 2
2 t-distribution 1 1σ = (1+λ )k/(k-2) - µ 1 2
2 1 1 1 2
2 1k pos. integer 1 if k > 2 1 2
2 1 1 1 2
2 1 1 1 2
z $ $ $=================================================================================================================================================================================================================================================================================================================================================================================c

NOTES TO THE TABLES

2 21. µ ≡ E X (the mean), and σ = E (X-µ) (the variance). The density is oftenX X
t ndenoted b(k;n,p). The moment generating function is (1-p+pe ) .

2. The characteristic and moment generating functions are complicated.
( )

ιt3. The characteristic function is p/2 2 and the moment generating
21-(1-p)e 2
9 0( )

tfunction is p/2 2, defined for t < -ln(1-p).21-(1-p)e 2
9 0 tλ(e -1)4. The moment generating function is e , defined for all t.

( )r rιt5. The characteristic function is p /2 2 , and the moment generating21-(1-p)e 2
9 0( )r rtfunction is p /2 2 , defined for t < -ln(1-p).21-(1-p)e 2

9 0 bt at6. The moment generating function is (e - e )/(b-a)t, defined for all t.
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7. The moment generating function is 1/(1 - λt), defined for t < 1/λ.

8. The characteristic and moment generating functions are complicated.

∞ a-1 -x9. For a > 0, Γ(a) = i x e dx is the gamma function. If a is ano

integer, Γ(a) = (a-1)!.

10. The moment generating function does not exist.

at11. The moment generating function is e Γ(1 - tb) for t < 1/b .

at12. The moment generating function is e πbt/sin(πbt) for t< 1/2b.

213. The density is often denoted n(x-µ,σ ), and the cumulative distribution

2 2referred to as N(x-µ,σ ), or simply N(µ,σ ). The moment generating function is

2 2at+b t /2e , defined for all t. The standard normal density is often denoted φ(x),

and the standard normal CDF is denoted Φ(x). The general normal and standard normal

2 2formulas are related by n(x-µ,σ ) = φ((x-µ)/σ)/σ and N(x-µ,σ ) = Φ((x-µ)/σ).

-a14. The moment generating function is (1-tb) for t < 1/b. The Chi-Square

distribution with parameter k (≡ degrees of freedom) is the distribution of the sum

of squares of k independent standard normal random variables. The Chi-Square density

is the same as the gamma density with b = 2 and a = k/2.

15. The F-distribution is the distribution of the expression nU/kV, where U is a

random variable with a Chi-square distribution with parameter k, and V is an

independent random variable with a Chi-square distribution with parameter n. The

k+nΓ(-----------------) k/2 n/2 k/2-12 k n xdensity is -------------------------------------⋅------------------------------------------------------------------. For n ≤ 2, the mean does not exist, and for(k+n)/2k n (n+kx)Γ(------)Γ(------)2 2

n ≤ 4, the variance does not exist. The characteristic and moment generating

functions are complicated.
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16. If Y is standard normal and Z is independently Chi-squared distributed with
q==========6

parameter k, then Y/eZ/k has a T-Distribution with parameter k (≡ degrees of

freedom). The characteristic function is complicated; the moment generating function

does not exist.

17. The Noncentral Chi-square is the distribution of the sum of squares of k

independent normal random variables, each with variance one, and with means whose

squares sum to δ. The Noncentral Chi-Square density is a Poisson mixture of

∞
s -δ/2 j 2(central) Chi-square densities, [e (δ/2) /j!]χ (x;k+2j).
t

j=0

18. The Non-central F-distribution has a density that is a Poisson mixture of

∞
s -δ/2 j k kxrescaled (central) F-distributed densities, [e (δ/2) /j!]-------------------F(-------------------;k+2j,n).
t k+2j k+2j

j=0

It is the distribution of the expression nU′/kV, where U′ is a Noncentral Chi-Squared

random variable with parameters k and δ, and V is an independent central Chi-Squared

distribution with parameter n.

19. If Y is standard normal and Z is independently Chi-squared distributed with
q================6

parameter k, then (Y+λ)/e(Z/k) has a Noncentral T-Distribution with parameters k and

λ. The density is a Poisson mixture of scaled Beta distributed densities,

∞
2

s -λ /2 2 j xk k k 1+2j[e (λ /2) /j!]------------------------------B(--------------------,------,--------------------). The square of a Noncentral T-Distributed
t 2 2 2 2 2(k+x ) k+xj=0

2random variable has a Noncentral F-Distribution with parameters 1, k, and δ = λ .


