Chapter 4. Limit Theorems in Statistics

1. Sequences of Random Variables

1.1 Consider a sequence of random variables $\mathrm{Y}_{1}, \mathrm{Y}_{2} \ldots, \mathrm{Y}_{\mathrm{n}}, \ldots$. These random variables are all functions of the same state of Nature s, but may depend on different parts of s . The joint distribution (CDF) of a finite subsequence ($\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{\mathrm{n}}$), denoted by $\mathrm{F}_{\mathrm{Y}_{1}, \cdots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right)$, is defined as the probability of a state of nature such that all of the inequalities $Y_{1} \leq y_{1}, \ldots, Y_{n} \leq y_{n}$ hold. The random variables in the sequence are independent if for every finite sub-sequence $Y_{1} \ldots, Y_{n}$, the joint CDF factors:

$$
F_{Y_{1}, \ldots Y_{n}}\left(y_{1}, \ldots, y_{n}\right) \equiv F_{Y_{1}}\left(y_{1}\right) \ldots . F_{Y_{n}}\left(y_{n}\right) .
$$

1.2 There are several possible concepts for the limit of a sequence of random variables, $\lim _{n \rightarrow \infty} Y_{n}=Y_{0}$. Since the Y_{n} are functions of states of nature, these limit concepts will correspond to different ways of defining limits of functions. Panel (a) of Figure 1 graphs Y_{n} and Y_{0} as functions of the state of nature; W_{n} is the set of states of Nature for which $Y_{0}(s)$ and $Y_{n}(s)$ differ by more than $\varepsilon>0$. Panel (b) graphs the CDF's of Y_{0} and Y_{n}. Note that these CDF's are rotated so the probability is on the horizontal axis. The limit definitions below will be discussed using this figure.

FIGURE 1. Convergence Concepts
(a)

States of Nature s
(b)

Cumulative Probability
$1.3 \mathrm{Y}_{\mathrm{n}}$ converges in probability to Y_{o}, denoted $Y_{\mathrm{n}} \xrightarrow{\mathrm{p}} \mathrm{Y}_{0}$, if for each $\varepsilon>0$, $\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\left|Y_{n}-Y_{0}\right|>\varepsilon\right)=0$. In Figure $1, W_{n}$ is the set of states of nature for which $\left|Y_{n}(w)-Y_{0}(w)\right|>\varepsilon ; Y_{n} \xrightarrow{p} Y_{0}$ means $\operatorname{Prob}\left(W_{n}\right) \rightarrow 0$.
$1.4 \mathrm{Y}_{\mathrm{n}}$ converges almost surely to Y_{0}, denoted $\mathrm{Y}_{\mathrm{n}} \xrightarrow{\text { as }} \mathrm{Y}_{0}$, if for each $\varepsilon>0$, $\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\sup _{n^{\prime} \geq n}\left|Y_{n^{\prime}} Y_{0}\right|>\varepsilon\right)=0$. For W_{n} defined in Figure 1, the set of states of nature for which $\left|Y_{n^{\prime}}(w)-Y_{0}(w)\right|>\varepsilon$ for some $n^{\prime} \geq n$ is $\bigcup_{n^{\prime} \geq n} W_{n^{\prime}}$. Then $Y_{n} \xrightarrow{\text { as }} Y_{0}$ means $\operatorname{Prob}\left(\| W_{n}{ }^{\prime}\right) \rightarrow 0$. An implication of almost sure convergence is $\lim Y_{n}(s)=Y_{0}(s)$ for $n^{\prime} \geq n$
almost all w (i.e., except for a set of states of nature of probability zero); this is
not an implication of $Y_{n} \xrightarrow{p} Y_{0}$.
$1.5 Y_{n}$ converges in order- ρ mean (also called convergence in $\|\cdot\|_{\rho}$ norm, or convergence in L_{ρ} space) to Y_{0} if $\lim _{n \rightarrow \infty} E\left|Y_{n}-Y_{0}\right|^{\rho}=0$. For $\rho=2$, this is called convergence in quadratic mean. In Figure 1(a), the ρ-order mean corresponds to raising $\left|Y_{n}(s)-Y_{0}(s)\right|$ to power ρ, weighting by the probability measure $P(d w)$, and integrating; the resulting sequence of scalars has limit zero as $n \rightarrow \infty$ when this type of convergence holds.
$1.6 Y_{n}$ converges in distribution to Y_{0}, denoted $Y_{n} \xrightarrow{d} Y_{0}$, if the CDF of Y_{n} converges to the CDF of Y_{0} at each continuity point of Y_{0}; i.e., if $F_{Y_{0}}$ is continuous at y, then $\lim _{n \rightarrow \infty} F_{Y_{n}}(y)=F_{Y_{0}}(y)$. In Figure 1(b), this means that $F_{Y_{n}}$ converges to the function $F_{Y_{0}}$ point by point, except at jumps in $F_{Y_{0}}$. If A is an open set, then $Y_{n} \xrightarrow{d} Y_{0}$ implies $\lim _{n \rightarrow \infty} \inf _{n^{\prime} \geq n} F_{Y_{n}}(A) \geq F_{Y_{0}}(A)$; see Billingsley, Convergence of Probability Measures, Theorem 2.1. Convergence in distribution is also called weak convergence in the space of distribution functions.
1.7 The relationships between different types of convergence are summarized in Figure 2. Explanations and examples follow. On first reading, skim Sections 1.81.18 , and skip the proofs.

$1.8 Y_{n} \xrightarrow{\text { as }} Y_{0}$ implies $\operatorname{Prob}\left(W_{n}\right) \leq \operatorname{Prob}\left(U W_{n^{\prime}}\right) \rightarrow 0$, and hence $Y_{n} \xrightarrow{p} Y_{0}$. $\mathrm{n}^{\prime} \geq n$ However, one can construct examples where $\operatorname{Prob}\left(\mathrm{W}_{\mathrm{n}}\right) \rightarrow 0$ but $\bigcup \mathrm{W}_{\mathrm{n}}$, is the set of states $n^{\prime} \geq n$
of Nature which has probability one. Hence $Y_{n} \xrightarrow{p} Y_{0}$ does not imply $Y_{n} \xrightarrow{\text { as }} Y_{0}$. To illustrate, take the universe of states of nature to be the points on the unit circle with uniform probability, take the W_{n} to be successive arcs of length π / n, and take Y_{n} to be 1 on $W_{n}, 0$ otherwise. Then $Y_{n} \xrightarrow{p} 0$ since $\operatorname{Pr}\left(Y_{n} \neq 0\right)=1 / n$, but Y_{n} fails to converge almost surely to zero since the successive arcs wrap around the circle an infinite number of times, and every s in the circle is in an infinite number of W_{n}.
1.9 Suppose $Y_{n} \xrightarrow{p} Y_{0}$. It is a good exercise in manipulation of probabilities of events to show that $Y_{n} \xrightarrow{d} Y_{0}$. Given $\varepsilon>0$, define W_{n} as before to be the set of states of Nature where $\left|Y_{n}(s)-Y_{0}(s)\right|>\varepsilon$. Given y, define A_{n}, B_{0}, and C_{o} to be, respectively, the states of Nature with $Y_{n} \leq y, Y_{0} \leq y-\varepsilon$, and $Y_{0} \leq y+\varepsilon$. Then $B_{o} \subseteq A_{n} \cup W_{n}$ (i.e., $Y_{0}(s) \leq y-\varepsilon$ implies either $Y_{n}(s) \leq y$ or $\left|Y_{0}(s)-Y_{n}(s)\right|>\varepsilon$) and $A_{n} \subseteq C_{0} \cup W_{n}$ (i.e., $Y_{n}(s) \leq y$ implies $Y_{0}(s) \leq y+\varepsilon$ or $\left.\left|Y_{0}(s)-Y_{n}(s)\right|>\varepsilon\right)$. Hence, for n large enough so $\operatorname{Prob}\left(\mathrm{W}_{\mathrm{n}}\right)<\varepsilon$,

$$
\mathrm{F}_{\mathrm{Y}_{0}}(\mathrm{y}-\varepsilon) \equiv \operatorname{Prob}\left(\mathrm{B}_{0}\right) \leq \operatorname{Prob}\left(\mathrm{A}_{\mathrm{n}}\right)+\operatorname{Prob}\left(\mathrm{W}_{\mathrm{n}}\right)<\mathrm{F}_{Y_{\mathrm{n}}}(\mathrm{y})+\varepsilon
$$

and

$$
\mathrm{F}_{\mathrm{Y}_{\mathrm{n}}}(\mathrm{y}) \equiv \operatorname{Prob}\left(\mathrm{A}_{\mathrm{n}}\right) \leq \operatorname{Prob}\left(\mathrm{C}_{0}\right)+\operatorname{Prob}\left(\mathrm{W}_{\mathrm{n}}\right)<\mathrm{F}_{\mathrm{Y}_{0}}(\mathrm{Y}+\varepsilon)+\varepsilon,
$$

implying $F_{Y_{0}}(y-\varepsilon)-\varepsilon \leq \lim _{n \rightarrow \infty} F_{Y_{n}}(y) \leq F_{Y_{0}}(y+\varepsilon)+\varepsilon$. If y is a continuity point of Y_{0}, then $F_{Y_{0}}(y-\varepsilon)$ and $F_{Y_{0}}(y+\varepsilon)$ approach $F_{Y_{0}}(y)$ as $\varepsilon \rightarrow 0$, implying $\lim _{n \rightarrow \infty} F_{Y_{n}}(y)=F_{Y_{0}}(y)$. This establishes that $Y_{n} \xrightarrow{d} Y_{0}$.

Convergence in distribution of Y_{n} to Y_{0} does not alone imply that Y_{n} and Y_{0} are
close to each other as $n \rightarrow \infty$. For example, if Y_{n} and Y_{0} are independently identically distributed (i.i.d.) standard normal, then $Y_{n} \xrightarrow{d} Y_{0}$ trivially, but clearly not $Y_{n} \xrightarrow{p} Y_{0}$ since $Y_{n}-Y_{0}$ is normal with variance 2, and $\left|Y_{n}-Y_{0}\right|>\varepsilon$ with a positive, constant probability.
1.10 Convergence in distribution and convergence in probability to a constant are equivalent. If $Y_{n} \xrightarrow{p} c$ constant, then $Y_{n} \xrightarrow{d} c$ as a special case of (1.9) above. Conversely, $Y_{n} \xrightarrow{d} c$ constant means $F_{Y_{n}}(y) \rightarrow F_{c}(y)$ at continuity points, where $F_{c}(y)=$ 0 for $\mathrm{y}<\mathrm{c}$ and $\mathrm{F}_{\mathrm{c}}(\mathrm{y})=1$ for $\mathrm{y} \geq \mathrm{c}$. Then given $\varepsilon>0$, $\operatorname{Prob}\left(\left|Y_{\mathrm{n}}-\mathrm{c}\right|>\varepsilon\right)=\mathrm{F}_{\mathrm{Y}_{\mathrm{n}}}(\mathrm{c}-\varepsilon)$ $+1-\mathrm{F}_{Y_{n}}(\mathrm{c}+\varepsilon) \rightarrow 0$, so $\mathrm{Y}_{\mathrm{n}} \xrightarrow{\mathrm{p}} \mathrm{c}$. This result implies particularly that the statements $Y_{n}-Y_{0} \xrightarrow{p} 0$ and $Y_{n}-Y_{0} \xrightarrow{d} 0$ are equivalent, and $Y_{n}-Y_{0} \xrightarrow{d} 0$ is not equivalent to $Y_{n} \xrightarrow{d} Y_{0}$.
1.11 The condition that convergence in distribution is equivalent to convergence of expectations of all bounded continuous functions is a fundamental mathematical result called the Helly-Bray-Alexandroff theorem.
1.12 A Chebyshev-like inequality is obtained by noting for a random variable Z that

$$
E|Z|^{\rho}=s|z|^{\rho_{f_{Z}}(z) d z \geq} \int_{|z| \geq \varepsilon} \varepsilon^{\rho_{f}}(z) d z=\varepsilon^{\rho} \operatorname{Prob}(|Z|>\varepsilon),
$$

or $\operatorname{Prob}(|Z|>\varepsilon) \leq E|Z| \rho / \varepsilon^{\rho}$. (When $\rho=2$, this is the conventional Chebyshev inequality. When $\rho=1$, one has $\operatorname{Prob}(|Z|>\varepsilon) \leq E|Z| / \varepsilon$.) Taking $Z=Y_{n}-Y_{0}$, one has

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\left|Y_{n}-Y_{0}\right|>\varepsilon\right) \leq \varepsilon^{-\rho} \lim _{n \rightarrow \infty} E\left|Y_{n}-Y_{0}\right|^{\rho}
$$

Hence, convergence in ρ-mean (for any $\rho>0$) implies convergence in probability. An example shows, however, that convergence almost surely or in probability does not necessarily imply convergence in ρ-mean. Suppose Y_{n} is discrete with $f_{Y_{n}}(0)=1-n^{-2}$ and $\mathrm{f}_{Y_{n}}\left(e^{\mathrm{n}}\right)=\mathrm{n}^{-2}$. Then $\mathrm{Y}_{\mathrm{n}} \xrightarrow{\text { as }} 0$ since

$$
\operatorname{Prob}\left(Y_{n^{\prime}} \neq 0 \text { for any } n^{\prime}>n\right) \leq \sum_{n^{\prime}>n} f_{Y_{n}^{\prime}}\left(e^{n^{\prime}}\right) \leq 1 / n,
$$

but $\mathbf{E}\left|Y_{n}\right|^{\rho}=e^{\rho n} / n^{2} \rightarrow+\infty$ for any $\rho>0$.
1.13 Adding a condition of a uniformly bounded ρ-order mean $E\left|Y_{n}\right|^{\rho} \leq M$ to convergence in probability $Y_{n} \xrightarrow{p} Y_{0}$ yields the result that for $0<\lambda<\rho, E\left|Y_{0}\right|^{\lambda}$ exists and $\mathbf{E}\left|Y_{n}\right|^{\lambda} \rightarrow \mathbf{E}\left|Y_{0}\right|^{\lambda}$. This result can be restated as "the moments of the limit equal the limit of the moments" for moments of order λ less than ρ. Replacing Y_{n} by $Y_{n}-Y_{0}$ and Y_{0} by 0 gives the result in Figure 2.

To prove this result, we will find useful the following property of moments: $\mathbf{E}|\mathrm{Y}|^{\lambda} \leq\left(\mathbf{E}|\mathrm{Y}|^{\rho}\right)^{\lambda / \rho}$ for $0<\lambda<\rho$. This follows from Holder's inequality (Rao, Linear Statistical Models, p. 55, 149), which states

$$
E|U V| \leq\left(E|U|^{r}\right)^{1 / r}\left(E|V|^{S}\right)^{1 / s} \text { for } r, s>0 \text { and } r^{-1}+s^{-1}=1 \text {, }
$$

by taking $U=|Y|^{\lambda}, V=1$, and $r=\rho / \lambda$. To show that $E\left|Y_{0}\right|^{\lambda}$ exists for $0<\lambda \leq \rho$, note that $E\left|Y_{n}\right|^{\rho} \leq M$ implies, by the property of moments above, that

$$
M^{\lambda / \rho} \geq E\left|Y_{n}\right|^{\lambda}=\int|y|^{\lambda_{f}} Y_{n}(y) d y \geq \int g(y) f_{Y_{n}}(y) d y
$$

where $g(y)=\min \left(|y|^{\lambda}, k^{\lambda}\right)$. Then, in particular,

$$
M \geq \int_{-k}^{k}|y| \rho_{f^{\prime}}(y) d y \longrightarrow k^{\rho_{n}} \operatorname{Prob}\left(\left|Y_{n}\right|>k\right)
$$

The Helly-Bray theorem implies, since g is continuous, that

$$
\int g(y) f_{Y_{n}}(y) d y \rightarrow \int g(y) f_{Y_{0}}(y) d y=\int_{-k}^{k}|y|{ }^{\lambda_{f_{Y}}}(y) d y+k^{\lambda} \operatorname{Prob}\left(\left|Y_{0}\right|>k\right)
$$

Hence, $M \geq \int_{-k}^{k}|y| \rho_{f^{\prime}}(y) d y$ for all k, implying that $E\left|Y_{O}\right|^{\rho} \leq M$ exists, and given $\varepsilon>0$,

$$
\left.|E| Y_{n}\right|^{\lambda}-E g\left(Y_{n}\right)\left|\leq \int_{y}\right|_{>k}|y|^{\lambda} Y_{Y_{n}}(y) d y \leq\left. k^{\lambda-\rho} \int_{y}\right|_{>k}|y|^{\rho_{f}} Y_{n}(y) d y \leq M k^{\lambda-\rho} .
$$

Then, for k and n sufficiently large, $M k^{\lambda-\rho}<\varepsilon$ and

$$
\left.|E| Y_{n}\right|^{\lambda}-E\left|Y_{0}\right|^{\lambda}\left|\leq|E| Y_{n}\right|^{\lambda}-E g\left(Y_{n}\right)\left|+\left|E g\left(Y_{n}\right)-E g\left(Y_{0}\right)\right|+\left|E g\left(Y_{0}\right)-E\right| Y_{0}\right|^{\lambda} \mid \leq 3 \varepsilon .
$$

This proves that $E\left|Y_{n}\right|^{\lambda} \longrightarrow E\left|Y_{0}\right|^{\lambda}$.
An example shows that $\mathbf{E}\left|Z_{n}\right|^{\lambda} \longrightarrow 0$ for $\lambda<\rho$ does not imply $E\left|Z_{n}\right|^{\rho}$ bounded. Take Z_{n} discrete with $f_{Z_{n}}(0)=1-\frac{\log (n)}{n}$ and $f_{Z_{n}}(n)=\frac{\log (n)}{n}$. Then for $\lambda<1$, $E\left|Z_{n}\right|^{\lambda}=\log (n) / n^{1-\lambda} \longrightarrow 0$, but $E\left|Z_{n}\right|^{1}=\log (n) \longrightarrow+\infty$.
1.14 If $Y_{n} \xrightarrow{p} Y_{0}$, then $\operatorname{Prob}\left(W_{n}\right) \longrightarrow 0$. Choose a subsequence n_{k} such that $\operatorname{Prob}\left(W_{n_{k}}\right) \leq 2^{-k}$. Then $\operatorname{Prob}\left(\bigcup_{k^{\prime}>k} W_{n_{k^{\prime}}}\right) \leq \sum_{k^{\prime}>k} \operatorname{Prob}\left(W_{n_{k^{\prime}}}\right) \leq \sum_{k^{\prime}>k} 2^{-k^{\prime}}=2^{-k}$, implying $Y_{n_{k}} \xrightarrow{\text { as }} Y_{0}$.
1.15 By the Chebyshev-like inequality in (1.12), $\operatorname{Prob}\left(\| W_{n^{\prime}}\right) \leq \sum \operatorname{Prob}\left(W_{n^{\prime}}\right) \leq$ $n^{\prime} \geq n \quad n^{\prime} \geq n$
$\sum_{n^{\prime} \geq n} E\left|Y_{n}^{\prime}-Y_{o}\right| \rho / \varepsilon^{\rho}$. If this right-hand expression is finite, then it goes to zero as
$n \rightarrow \infty$ implying $Y_{n} \xrightarrow{\text { as }} Y_{0}$. The example at the end of (1.12) shows that almost sure convergence does not imply convergence in ρ-mean. Also, the example mentioned in 1.8 which has convergence in probability but not almost sure convergence can be constructed to have ρ-mean convergence but not almost sure convergence.
1.16 A result which is very useful in applied work is that if two random variables Y_{n} and Z_{n} have a difference which converges in probability to zero, and if Y_{n} converges in distribution to Y_{0}, then $Z_{n} \xrightarrow{d} Y_{0}$ also. In this case, Y_{n} and Z_{n} are termed asymptotically equivalent. The argument demonstrating this result is similar to that for 1.9. Let y be a continuity point of $F_{Y_{0}}$ and define the following events:

$$
\begin{aligned}
& A_{n}=\left\{s \mid Z_{n}(s)<y\right\}, B_{n}=\left\{s \mid Y_{n}(s) \leq y-\varepsilon\right\}, \\
& C_{n}=\left\{s \mid Y_{n}(s) \leq y+\varepsilon\right\}, D_{n}=\left\{s| | Y_{n}(s)-Z_{n}(s) \mid>\varepsilon\right\} .
\end{aligned}
$$

Then $A_{n} \subseteq C_{n} \cup D_{n}$ and $B_{n} \subseteq A_{n} \cup D_{n}$, implying

$$
F_{Y_{n}}(y-\varepsilon)-\operatorname{Prob}\left(D_{n}\right) \leq F_{Z_{n}}(y) \leq F_{Y_{n}}(y+\varepsilon)+\operatorname{Prob}\left(D_{n}\right) .
$$

Given $\delta>0$, one can choose $\varepsilon>0$ such that $y-\varepsilon$ and $y+\varepsilon$ are continuity points of $F_{Y_{0}}$ and $F_{Y_{0}}(y+\varepsilon)-F_{Y_{0}}(y-\varepsilon)<\delta / 3$. Then one can choose n sufficiently large so that $\operatorname{Prob}\left(\mathrm{D}_{\mathrm{n}}\right)<\delta / 3,\left|\mathrm{~F}_{\mathrm{y}_{\mathrm{n}}}(\mathrm{y}+\varepsilon)-\mathrm{F}_{\mathrm{Y}_{0}}(\mathrm{y}+\varepsilon)\right|<\delta / 3$ and $\left|F_{Y_{n}}(\mathrm{y}+\varepsilon)-\mathrm{F}_{\mathrm{Y}_{0}}(\mathrm{y}+\varepsilon)\right|<\delta / 3$. Then $\left|F_{Z_{n}}(y)-F_{Y_{0}}(y)\right|<\delta$.
1.17 A useful property of convergence in probability is that

$$
Y_{n} \xrightarrow{p} Y_{0} \Rightarrow g\left(Y_{n}\right) \xrightarrow{p} g\left(Y_{0}\right) \text { for any continuous function } g \text {. }
$$

If A denotes the support of Y_{0}, then this result holds if g is continuous on a neighborhood of A; i.e., given $\varepsilon>0$ and $y \in A$, there exists $\delta>0$ such that $\left|y^{\prime}-y\right|<\delta$
$\Longrightarrow\left|g\left(y^{\prime}\right)-g(y)\right|<\varepsilon$. (Note in this definition that y^{\prime} is not required to be in A.) This results holds for vectors of random variables as well, and specializes to the rules that if $Y_{1 n} \xrightarrow{p} Y_{10}$ and $y_{2 n} \xrightarrow{p} Y_{20}$, then
(a) $Y_{1 n} \cdot Y_{2 n} \xrightarrow{p} Y_{10} \cdot Y_{20}$
(b) $Y_{1 n}+Y_{2 n} \xrightarrow{p} Y_{10}+Y_{20}$
(c) If ($\operatorname{Prob}\left(\left|Y_{20}\right|<\varepsilon\right)=0$ for some $\varepsilon>0$, then $Y_{1 n} / Y_{2 n} \xrightarrow{p} Y_{10} / Y_{20}$. These results obviously continue to hold when Y_{10} and/or Y_{20} are constants.

Demonstrating the result $g\left(Y_{n}\right) \xrightarrow{p} g\left(Y_{0}\right)$ is a good exercise in advanced calculus. Given $\varepsilon>0$, choose M such that $\operatorname{Prob}\left(\left|Y_{0}\right|>M\right)<\varepsilon / 2$, and define A_{M} to be the set of points in A satisfying $|y| \leq M$. Then A_{M} is closed and bounded. The mathematical properties of continuous functions on closed and bounded sets imply there exists $\delta>0$ such that for all $y \in A_{M},\left|y^{\prime}-y\right|<\delta \Longrightarrow\left|g\left(y^{\prime}\right)-g(y)\right|<\varepsilon$. Choose n_{0} such that for $n>n_{0}, \operatorname{Prob}\left(\left|Y_{n}-Y_{0}\right|>\delta\right)<\varepsilon / 2$. Then $\operatorname{Prob}\left(\left|g\left(Y_{n}\right)-g\left(Y_{0}\right)\right|>\varepsilon\right) \leq \operatorname{Prob}\left(\left|Y_{0}\right|>M\right.$ or $\left.\left|Y_{n}-Y_{0}\right|>\delta\right) \leq \varepsilon$.
1.18 The preceding result has an analog for convergence in distribution:

$$
Y_{n} \xrightarrow{d} Y_{0} \Longrightarrow g\left(Y_{n}\right) \xrightarrow{d} g\left(Y_{0}\right) \text { for any continuous function } g
$$

This result holds so long as g is continuous on a neighborhood of the support of Y_{0}. It also holds for vectors of random variables. To illustrate the result, suppose $Y_{n} \xrightarrow{d} Y_{0}$, with Y_{o} standard normal. Then Y_{o}^{2} is chi-squared, implying that Y_{n}^{2} converges in distribution to a chi-squared random variable.

The result $g\left(Y_{n}\right) \xrightarrow{d} g\left(Y_{0}\right)$ is now proved. Let S_{ε} be the open set of points a distance less than ε from the support of Y_{0}; Then g is continuous on $S_{3 \varepsilon}$ for some $\varepsilon>0$. From mathematical analysis, there is a continuous function $\lambda(y)$ that equals 1 for $y \in S_{\varepsilon}$ and 0 for $y \notin S_{2 \varepsilon}$. Then $\tilde{g}(y)=g(y) \lambda(y)$ is continuous for all y. Let F_{n}
be the CDF of Y_{n}, F the CDF of Y_{0}, G_{n} the CDF of $Z_{n}=\tilde{g}\left(Y_{n}\right)$, and G the CDF of $Z=\tilde{g}\left(Y_{0}\right) \equiv g\left(Y_{0}\right)$. By 1.11, for any bounded continuous function h,
 function and $Y_{n} \xrightarrow{d} Y_{0}$. Then, $Z_{n} \xrightarrow{d} Z$. But for any $\varepsilon^{\prime}>0, \operatorname{Prob}\left(\left|\tilde{g}\left(Y_{n}\right)-g\left(Y_{n}\right)\right|>\varepsilon^{\prime}\right) \leq$ $\operatorname{Prob}\left(Y_{n} \notin S_{\varepsilon}\right) \equiv 1-F_{Y_{n}}\left(S_{\varepsilon}\right)$ and, from 1.8, $\lim \sup F_{Y_{n}}\left(S_{\varepsilon}\right) \geq F_{Y_{0}}\left(S_{\varepsilon}\right)=1$. Then $\tilde{g}\left(Y_{n}\right)-g\left(Y_{n}\right) \xrightarrow{p} 0$, implying by 1.16 that $g\left(Y_{n}\right) \xrightarrow{d} g\left(Y_{0}\right)$.
1.19 Convergence properties are sometimes summarized in a notation called $O_{p}(\cdot)$ and $o_{p}(\cdot)$ which is very convenient for manipulation. (Sometimes too convenient; it is easy to get careless and make mistakes using this calculus.) The definition of $o_{p}(\cdot)$ is $Y_{n} \xrightarrow{p} Y_{0} \Leftarrow=\Longrightarrow Y_{n}=Y_{0}+o_{p}(1)$, and $n^{-\alpha}\left(Y_{n}-Y_{0}\right) \xrightarrow{p} 0 \Leftarrow \Longrightarrow Y_{n}-Y_{0}=o_{p}\left(n^{\alpha}\right)$. Thus $o_{p}(\cdot)$ is a notation for convergence in probability to zero of a suitably normalized sequence of random variables.

The notation $Y_{n}=O_{p}(1)$ is defined to mean that given $\varepsilon>0$, there exists a large M (not depending on n) such that $\operatorname{Prob}\left(\left|Y_{n}\right|>M\right)<\varepsilon$ for all n. A sequence with this property is called stochastically bounded. An abbreviated list of rules for o_{p} and O_{p} is given in Figure 3.

A sequence that is convergent in distribution is stochastically bounded, but the reverse is not necessarily true. We first show convergence in distribution implies stochastic boundedness: If $Y_{n} \xrightarrow{d} Y_{0}$, then one can find M and n_{0} such that $\pm M$ are continuity points of $Y_{0}, \operatorname{Prob}\left(\left|Y_{0}\right| \leq M\right)>1-\varepsilon / 2$, and for $n>n_{0}, F_{Y_{n}}$ and $F_{Y_{0}}$ evaluated at M or $-M$ respectively differ by at most $\varepsilon / 4$. Then $\operatorname{Prob}\left(\left|Y_{n}\right|>M\right)<\varepsilon$ for $n>n_{0}$. This implies $Y_{n}=O_{p}(1)$. On the other hand, one can have $Y_{n}=O_{p}(1)$ without having convergence to any distribution (e.g., consider $Y_{n} \equiv 0$ for n odd and Y_{n} standard
normal for n even). The notation $Y_{n}=O_{p}\left(n^{\alpha}\right)$ means $n^{-\alpha} Y_{n}=O_{p}(1)$.

Figure 3. Rules for $O_{p}(\cdot)$ and $o_{p}(\cdot)$
Definition: $Y_{n}=o_{p}\left(n^{\alpha}\right) \Leftarrow=\Rightarrow \operatorname{Prob}\left(\left|n^{-\alpha} Y_{n}\right|>\varepsilon\right) \rightarrow 0$ for each $\varepsilon>0$.
Definition: $Y_{n}=O_{p}\left(n^{\alpha}\right) \Longleftrightarrow \Rightarrow$ for each $\varepsilon>0$, there exists $M>0$ such that $\operatorname{Prob}\left(\left|n^{-\alpha} Y_{n}\right|>M\right)<\varepsilon$ for all n

1. $Y_{n}=o_{p}\left(n^{\alpha}\right) \Longrightarrow Y_{n}=O_{p}\left(n^{\alpha}\right)$
2. $Y_{n}=o_{p}\left(n^{\alpha}\right) \& \beta>\alpha \Longrightarrow Y_{n}=o_{p}\left(n^{\beta}\right)$
3. $Y_{n}=O_{p}\left(n^{\alpha}\right) \& \beta>\alpha \Rightarrow Y_{n}=o_{p}\left(n^{\beta}\right)$
4. $Y_{n}=o_{p}\left(n^{\alpha}\right) \& Z_{n}=o_{p}\left(n^{\beta}\right) \Longrightarrow Y_{n} \cdot Z_{n}=o_{p}\left(n^{\alpha+\beta}\right)$
5. $Y_{n}=O_{p}\left(n^{\alpha}\right) \& Z_{n}=O_{p}\left(n^{\beta}\right) \Longrightarrow Y_{n} \cdot Z_{n}=O_{p}\left(n^{\alpha+\beta}\right)$
6. $Y_{n}=O_{p}\left(n^{\alpha}\right) \& Z_{n}=o_{p}\left(n^{\beta}\right) \Longrightarrow Y_{n} \cdot Z_{n}=o_{p}\left(n^{\alpha+\beta}\right)$
7. $Y_{n}=o_{0}\left(n^{\alpha}\right) \& Z_{n}=o_{p}\left(n^{\beta}\right) \& \beta \geq \alpha=Y_{n}+Z_{n}=o_{p}\left(n^{\beta}\right)$
8. $Y_{n}=O_{p}\left(n^{\alpha}\right) \& Z_{n}=O_{p}\left(n^{\beta}\right) \& \beta \geq \alpha \Longrightarrow Y_{n}+Z_{n}=O_{p}\left(n^{\beta}\right)$
9. $Y_{n}=O_{p}\left(n^{\alpha}\right) \& Z_{n}=o_{p}\left(n^{\beta}\right) \& \beta>\alpha \Longrightarrow Y_{n}+Z_{n}=o_{p}\left(n^{\beta}\right)$
10. $Y_{n}=O_{p}\left(n^{\alpha}\right) \& Z_{n}=o_{p}\left(n^{\beta}\right) \& \beta<\alpha \Longrightarrow Y_{n}+Z_{n}=O_{p}\left(n^{\alpha}\right)$
11. $Y_{n}=O_{p}\left(n^{\alpha}\right) \& Z_{n}=o_{p}\left(n^{\alpha}\right) \Longrightarrow Y_{n}+Z_{n}=O_{p}\left(n^{\alpha}\right)$

As an illustration of 1.19 , we prove the very useful rule 6 :

$$
n^{-\alpha} Y_{n} \text { stochastically bounded } \& n^{-\beta} Z_{n} \xrightarrow{p} 0 \Rightarrow n^{-\alpha-\beta} Y_{n} Z_{n} \xrightarrow{p} 0
$$

Given $\varepsilon>0, Y_{n}=O_{p}\left(n^{\alpha}\right) \Longrightarrow \exists M>0$ such that $\operatorname{Prob}\left(\left|n^{-\alpha} Y_{n}\right|>M\right)<\varepsilon / 2$. Next $Z_{n}=o_{p}\left(n^{\beta}\right)$ implies $\exists n_{0}$ such that for $n>n_{0}, \operatorname{Prob}\left(\left|n^{-\beta} Z_{n}\right|>\varepsilon / M\right)<\varepsilon / 2$. Hence $\operatorname{Prob}\left(\left|n^{-\alpha-\beta} Y_{n} Z_{n}\right|>\varepsilon\right) \leq \operatorname{Prob}\left(\left|n^{-\alpha} Y_{n}\right|>M\right)+\operatorname{Prob}\left(\left|n^{-\beta} Z_{n}\right|>\varepsilon / M\right)<\varepsilon$. Demonstration of the remaining rules is left as an exercise.

2. Laws of Large Numbers

2.1 Consider a sequence of random variables $Y_{1}, Y_{2}, \ldots, Y_{n}, \ldots$ and a corresponding sequence of averages $X_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$. Laws of large numbers are concerned with the conditions under which the X_{n} converge to a constant, either in probability (weak laws) or almost surely (strong laws).
2.2 Figure 4 lists a sequence of laws of large numbers. The case of independent identically distributed (i.i.d.) random variables yields the strongest result (Kolmogorov I). With additional conditions it is possible to get a WLLN even for correlated variable provided the correlations of distant random variables approach zero sufficiently rapidly.

To illustrate the basis of laws of large numbers, the proofs of the first three WLLN will be outlined. Consider first Khinchine's theorem. Let $\psi(\mathrm{t})$ be the characteristic function of Y_{1}. Then X_{n} has characteristic function $\psi(t / n)^{n}$. Since EY ${ }_{1}$ exists, ψ has a Taylor's expansion $\psi(t)=1+\psi^{\prime}(\lambda t) t$, where $0<\lambda<1$. Then $\psi(t / n)^{n}=\left[1+\frac{t}{n} \psi^{\prime}\left(\lambda \frac{t}{n}\right)\right]^{n}$. But $\psi^{\prime}(\lambda t / n) \longrightarrow \psi^{\prime}(0)=\mu$. There is a mathematical result stating that when a sequence of scalars α_{n} has a limit, then $\left[1+\alpha_{n} / n\right]^{n} \longrightarrow \exp \left(\lim \alpha_{n}\right)$. Then $\psi(t / n)^{n} \rightarrow e^{\imath \mu t}$. But this is the characteristic function of a constant random variable μ, implying $X_{n} \xrightarrow{d} \mu$, and hence $X_{n} \xrightarrow{p} \mu$.

Figure 4. Laws of Large Numbers for $X_{n}=\frac{1}{n} \sum_{i=1} Y_{i}$
WEAK LAWS (WLLN)

1. (Khinchine) If the Y_{n} are i.i.d., and $E Y_{n}=\mu$, then $X_{n} \xrightarrow{p} \mu$
2. (Chebyshev) If the Y_{n} are uncorrelated with $E Y_{n}=\mu$ and
$E\left(Y_{n}-\mu\right)^{2} \equiv \sigma_{n}^{2}$ satisfying $\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=1} \sigma_{i}^{2}=0$, then $X_{n} \xrightarrow{p} \mu$
3. If the Y_{n} have $E Y_{n}=\mu, E\left(Y_{n}-\mu\right)^{2} \equiv \sigma_{n}^{2}$, and $\left|E\left(Y_{n}-\mu\right)\left(Y_{m}-\mu\right)\right| \leq$
$\rho|n-m| \sigma_{n} \sigma_{m}$ with $\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=0}^{n} \sigma_{i}^{2}=0$ and $\sum_{i=0}^{\infty} \rho_{i}^{2}<+\infty$, then $X_{n} \xrightarrow{p} \mu$

STRONG LAWS (SLLN)

1. (Kolmogorov I) If the Y_{n} are i.i.d., and $E Y_{n}=\mu$, then $X_{n} \xrightarrow{\text { as }} \mu$
2. (Kolmogorov II) If the Y_{n} are independent, $\mathbf{E} Y_{\mathrm{n}}=\mu$, and

$$
E\left(Y_{n}-\mu\right)^{2} \equiv \sigma_{n}^{2} \text { satisfying } \sum_{n=1} \sigma_{n}^{2} / n^{2}<+\infty \text {, then } X_{n} \xrightarrow{\text { as }} \mu
$$

3. (Kolmogorov III) If the Y_{n} are uncorrelated, $E Y_{n}=\mu$, and

$$
E\left(y_{n}-\mu\right)=\sigma_{n}^{2} \text { satisfying } \sum_{n=1}(\log n)^{2} \sigma_{n}^{2} / n^{2}<+\infty \text {, then } X_{n} \xrightarrow{\text { as }} \mu
$$

4. (Serfling) If the Y_{n} have $E Y_{n}=\mu, E\left(Y_{n}-\mu\right)^{2} \equiv \sigma_{n}^{2}$, and

$$
\left|E\left(Y_{n}-\mu\right)\left(Y_{m}-\mu\right)\right| \leq \rho|n-m| \sigma_{n} \sigma_{m} \text {, with } \sum_{i=1}^{\infty}\left(\frac{\log (i)}{i}\right)^{2} \sigma_{i}^{2}<+\infty \text { and }
$$

$$
\infty
$$

$$
\sum_{i=0} \rho_{i}^{2}<+\infty, \text { then } X_{n} \xrightarrow{\text { as }} \mu
$$

Next consider Chebyshev's theorem. One has $E\left(X_{n}-\mu\right)^{2}=\frac{1}{n} \sum_{i=1}^{n} \sigma_{n}^{2}$. If this approaches zero, then Chebyshev's inequality implies $X_{n} \xrightarrow{p} \mu$.

Finally, consider version 3 of the WLLN. Chebyshev's inequality states that $\left.P\left(\left|X_{n}-\mu\right|<\varepsilon\right)<E\left(X_{n}-\mu\right)^{2} / \varepsilon^{2} \leq\left.\frac{1}{\varepsilon^{2} n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{i} \sigma_{j} \rho\right|_{i-j} \right\rvert\,$. An application of the CauchySchwartz inequality yields

$$
\begin{aligned}
\left.\left.\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{i} \sigma_{j} \rho\right|_{i-j} \right\rvert\, & \leq\left(\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma_{i}^{2}\right)^{1 / 2}\left(\frac{1}{n^{2}} \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{j}^{2} \rho_{i-j}^{2}\right)^{1 / 2} \\
& \leq\left(\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma_{i}^{2}\right)^{1 / 2}\left(\frac{M^{2}}{n^{2}} \sum_{j=1}^{n} \sigma_{j}^{2}\right)^{1 / 2}=M\left(\frac{1}{n^{2}} \sum_{i=1}^{n} \sigma_{i}^{2}\right) \longrightarrow 0
\end{aligned}
$$

where $\sum_{i=1}^{n} \rho_{\mid i-j}^{2} \mid \leq 2 \sum_{k=0}^{\infty} \rho_{k}^{2} \equiv M^{2}<+\infty$.

3. Central Limit Theorems

4.1 Consider a sequence of random variables Y_{1}, \ldots, Y_{n} with zero means, and the associated sequence of normalized averages $Z_{n}=\frac{1}{\sqrt{n}} \sum_{i=1} Y_{i}$. Central limit theorems (CLT) are concerned with conditions under which the Z_{n} converge in distribution to a normal random variable Z_{0}. Figure 5 lists several basic central limit theorems.

Figure 5. Central Limit Theorems for $Z_{n}=\frac{1}{\sqrt{n}} \sum_{i=1} Y_{i}$

1. (Lindeberg-Levy) Y_{n} i.i.d., $E Y_{n}=0, E Y_{n}^{2}=\sigma^{2}<+\infty$

$$
\Longrightarrow \mathrm{Z}_{\mathrm{n}} \xrightarrow{d} \mathrm{Z}_{\mathrm{o}} \sim N\left(0, \sigma^{2}\right)
$$

2. (Lindeberg-Feller) Y_{n} independent, $E Y_{n}=0, E Y_{n}^{2}=\sigma_{n}^{2}$,

$$
\begin{aligned}
& B_{n}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2} \longrightarrow+\infty, \sigma_{n}^{2} / B_{n}^{2} \rightarrow 0, \text { and for } \varepsilon>0, \\
& \frac{1}{B_{n}^{2}} \sum_{i=1}^{n} \int_{|y|>\varepsilon B_{n}} y^{2} f_{f_{i}}(y) d y \longrightarrow 0 \Longrightarrow Z_{n} \xrightarrow{d} Z_{o} \sim N\left(0, \lim _{n \rightarrow \infty} \frac{B_{n}^{2}}{n}\right)
\end{aligned}
$$

3. (Corollary to Lindeberg-Feller) $Z_{n} \xrightarrow{d} Z_{o} \sim N\left(0, \sigma_{0}^{2}\right)$ if the Y_{n} are independent, $E Y_{n}=0, E Y_{n}^{2}=\sigma_{n}^{2}, \frac{1}{n} \sum_{i=1} \sigma_{n}^{2} \longrightarrow \sigma_{0}^{2}<+\infty$, and one of the following conditions holds:
(i) for some $q>2, \sum_{i=1}^{n} E\left|Y_{i}\right| q_{1}\left(\sum_{i=1}^{n} \sigma_{i}^{2}\right)^{q / 2} \longrightarrow 0$
(ii) for some $q>2, E\left|Y_{n} \sigma_{n}\right| q$ is uniformly bounded, all n
(iii) $\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} \int_{|y|>k \sigma_{i}} y^{2} f_{Y_{i}}(y) d y \rightarrow 0$ and $\sum_{i=1}^{n} \sigma_{i}^{3 /} / n^{3 / 2} \rightarrow 0$
4. (lbragimov-Linnik) Y_{n} stationary and strongly mixing with mixing coefficients $\alpha(n), E Y_{n}=0, E Y_{n}^{2}=\sigma^{2}, E\left|Y_{n}\right|^{q}<+\infty$ and
$\sum_{n=1}^{\infty} \alpha(n)^{1-2 / q}<+\infty$ for some $q>2 \Longrightarrow Z_{n} \xrightarrow{d} Z_{0} \sim N\left(0, \sigma^{2}+2 \sum_{i=1}^{\infty} E Y_{1} Y_{1+i}\right)$

Generally, stronger conditions are needed for CLT than were required for laws of large numbers. The most straightforward results are obtained for independent and identically distributed (iid) random variables. When the variables are not independent, one must impose conditions that limit the degree of dependence in order to get a CLT. One such result is the Ibragimov-Linnik CLT in the table. A sequence Y_{n} is stationary if the vector $\left(Y_{1}, \ldots, Y_{m}\right)$ and the vector $\left(Y_{i}, \ldots, Y_{i+m}\right)$ have the same joint distribution, for every m and i. An implication of stationarity is that the Y_{i} all have the same mean and the same variance (if they exist). Recall the definition of strong mixing from Chap. 3. Let $\mathfrak{I}_{\mathrm{t}}^{-}$be the product σ-field of events that use only information up through time t . Let $\mathfrak{I}_{\mathrm{t}+\mathrm{n}}^{+}$denote the product σ-field of events that use only information from time $\mathrm{t}+\mathrm{n}$ on. The Y_{i} are strong mixing if there exists a scalar $\alpha(n)$ satisfying $\lim _{n \rightarrow \infty} \alpha(n)=0$ such that $|P(\mathbb{A} \cap \mathbb{B})-P(\mathbb{A}) P(\mathbb{B})| \leq \alpha(n)$ for all $\mathbb{A} \in \mathfrak{I}_{t}$ and $\mathbb{B} \in \mathfrak{T}_{t+n}^{+}$; they are uniform mixing if $|P(\mathbb{A} \mid \mathbb{B})-P(\mathbb{A})| \leq \phi(n)$ for all $\mathbb{A} \in \mathfrak{T}_{t}^{-}$and $\mathbb{B} \in \mathfrak{I}_{t+n}^{+}$and $\lim _{n \rightarrow \infty} \phi(n)=0$. They are strict mixing if $|P(\mathbb{A} \cap B)-P(\mathbb{A}) P(B)| \leq$ $\psi(\mathrm{n}) \mathrm{P}(\mathbb{A}) \mathrm{P}(\mathbb{B})$ and $\lim _{\mathrm{n} \rightarrow \infty} \psi(\mathrm{n})=0$. There are links between the mixing conditions and bounds on correlations between events that are remote in time:
(1) Strict mixing \Longrightarrow Uniform mixing \Longrightarrow Strong mixing.
(2) If the Y_{i} are uniform mixing with $E Y_{i}=0$ and $E Y_{i}^{2}=\sigma_{i}^{2}<+\infty$, then $\left|E Y_{i} Y_{i+n}\right| \leq 2 \sqrt{\phi(n)} \sigma_{i} \sigma_{i+n}$.
(3) If the Y_{i} are strong mixing with $E Y_{i}=0$ and $E\left|Y_{i}\right|^{d}<+\infty$ for some $d>2$, then $\left|E Y_{i} Y_{i+n}\right| \leq 8 \alpha(n)^{1-2 / d} \sigma_{i} \sigma_{i+n}$.
(4) If there exists a sequence ρ_{i} with $\lim _{i \rightarrow \infty} \rho_{i}=0$ such that $|E(U-E U)(W-E W)| \leq$ $\rho_{n} \sqrt{\left(E(U-E U)^{2}\right)\left(E(W-E W)^{2}\right)}$ for all bounded continuous functions $U=g\left(Y_{1}, \ldots, Y_{t}\right)$ and
$\mathrm{W}=\mathrm{h}\left(\mathrm{Y}_{\mathrm{t}+\mathrm{n}}, \ldots, \mathrm{Y}_{\mathrm{t}+\mathrm{n}+\mathrm{m}}\right)$ and all $\mathrm{t}, \mathrm{n}, \mathrm{m}$, then the Y_{i} are strict mixing.
Only a proof of the Lindeberg-Levy central limit theorem (CLT) will be outlined here. The approach is to show that the characteristic function of Z_{n} converges for each argument to the characteristic function of a normal. The CLT then follows from the limit properties of characteristic functions (Chap. 3).

Let $\psi(t)$ be the of of Y_{1}. Then Z_{n} has of $\psi(t / \sqrt{n})^{n}$. Since $E Y_{1}=0$ and $E Y_{1}^{2}=\sigma^{2}$, $\psi(\mathrm{t})$ has a Taylor's expansion $\psi(\mathrm{t})=\left[1+\psi^{\prime \prime}\left(\lambda \mathrm{t} \mathrm{t}^{2} / 2\right]\right.$, where $0<\lambda<1$ and $\psi^{\prime \prime}$ is continuous with $\psi "(0)=-\sigma^{2}$. Then

$$
\psi(t / \sqrt{n})^{n}=\left[1+\frac{\psi^{\prime \prime}(\lambda t / \sqrt{n}) t^{2}}{2 n}\right]^{n} \rightarrow e^{\left(t^{2} / 2\right) \lim \psi^{\prime \prime}(\lambda t / \sqrt{n})}=e^{-\sigma^{2} t^{2} / 2} .
$$

Thus, the cf of Z_{n} converges for each t to the of of $Z_{o} \sim N\left(0, \sigma^{2}\right)$.

4. Extensions of Limit Theorems

4.1. Limit theorems can be extended in several directions: (1) obtaining results for weighted sums of random variables, (2) sharpening the rate of convergence to the limit for "well-behaved" random variables, and (3) establishing "uniform" laws that apply to random functions. In addition, there a variety of alternatives to the cases given above where independence assumptions are relaxed. The first extension gives limit theorems for random variables weighted by other (non-random) variables, a situation that occurs often in econometrics. The second extension provides tools that allow us to bound the probability of large deviations of random sums. This is of direct interest as a sharper version of a Chebychev-type inequality, and also useful in obtaining further results. To introduce uniform laws, first define a random function (or stochastic process) $\mathrm{y}=\mathrm{Y}(\theta, \mathrm{s})$ that maps a state of Nature s and a real
variable (or vector of variables) θ into the real line. This may also be written, suppressing the dependence on s, as $\mathrm{Y}(\theta)$. Note that $\mathrm{Y}(\cdot, \mathrm{w})$ is a realization of the random function, and is itself an ordinary non-random function of θ. For each value of $\theta, \mathrm{Y}(\theta, \cdot)$ is an ordinary random variable. A uniform law is one that bounds sums of random functions uniformly for all arguments θ. For example, a uniform WLLN would say $\operatorname{Lim}_{\mathrm{n} \rightarrow \infty} \mathrm{P}\left(\sup _{\theta}\left|\frac{1}{\mathrm{n}} \sum_{\mathrm{i} \leq \mathrm{n}} \mathrm{Y}_{\mathrm{i}}(\theta, \cdot)\right|>\varepsilon\right)=0$. Uniform laws play an important role in establishing the properties of statistical estimators that are nonlinear functions of the data, such as maximum likelihood estimates.
4.2 Consider a doubly indexed array of constants a_{in} defined for $1 \leq \mathrm{i} \leq \mathrm{n}$ and n
$n=1,2, \ldots$, and weighted sums of the form $X_{n}=\sum_{i=1} a_{i n} Y_{i}$. If the Y_{i} are independent, what are the limiting properties of X_{n} ? The way arrays like $a_{i n}$ typically arise is n
that there are some weighting constants c_{i}, and either $a_{i n}=c_{i} / \sum_{j=1} c_{j}$ or $a_{i n}=c_{i} / \sqrt{\sum_{j=1}^{n} c_{j}^{2}} . \quad$ If $c_{i}=1$ for all i, then $a_{i n}=n^{-1}$ or $n^{-1 / 2}$, respectively, leading to the standard limit theorems.

Assume the Y_{i} are independently identically distributed with mean zero. If the n
$a_{i n}$ satisfy $\lim _{n \rightarrow \infty} \sum_{j=1}\left|a_{j n}\right|=0$ and $\lim _{n \rightarrow \infty} \max _{j \leq n}\left|a_{j n}\right|=0$, then $X_{n} \xrightarrow{p} 0$. This is a weighted version of Khinchine's WLLN, and is proved in the same way. Let $\zeta(\mathrm{t})$ be the second characteristic function of Y_{1}. From the properties of characteristic functions we have $\zeta^{\prime}(0)=0$ and a Taylor's expansion $\zeta(t)=t \cdot \zeta^{\prime}(\lambda t)$ for some $0<\lambda<1$. The
second characteristic function of X_{n} is then

$$
\gamma(\mathrm{t})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{in}} \mathrm{t} \cdot \zeta^{\prime}\left(\lambda_{\mathrm{in}} \mathrm{a}_{\mathrm{in}} \mathrm{t}\right),
$$

n

n

implying $|\gamma(\mathrm{t})| \leq \sum_{\mathrm{i}=1}\left|\mathrm{a}_{\mathrm{in}} \mathrm{t} \cdot \zeta^{\prime}\left(\lambda_{i n} \mathrm{a}_{\mathrm{in}} \mathrm{t}\right)\right| \leq|\mathrm{t}| \cdot\left(\max _{\mathrm{i} \leq \mathrm{n}}\left|\zeta^{\prime}\left(\lambda_{i n} \mathrm{a}_{\mathrm{in}} \mathrm{t}\right)\right|\right) \cdot \sum_{\mathrm{i}=1}\left|\mathrm{a}_{\mathrm{in}}\right|$.
n
Then $\lim \sum_{i=1}\left|a_{i n}\right|<\infty$ and $\lim \left(\max _{\mathrm{i} \leq \mathrm{n}}\left|\mathrm{a}_{\mathrm{in}}\right|\right)=0$ imply $\gamma(\mathrm{t}) \longrightarrow 0$ for each t , and hence X_{n} converges in distribution, hence in probability, to 0 .

Next assume the Y_{i} are independently identically distributed with mean zero and n
variance $\sigma^{2}<\infty, \lim _{n \rightarrow \infty}\left(\max _{\mathrm{i} \leq \mathrm{n}}\left|\mathrm{a}_{\mathrm{in}}\right|\right)=0$, and $\lim _{\mathrm{n} \rightarrow \infty} \sum_{\mathrm{i}=1} \mathrm{a}_{\mathrm{in}}^{2}=1$. Then X_{n} converges in distribution to a normal random variable with mean zero and variance σ^{2}.

The proof of this proposition parallels the Lindeberg-Levy CLT proof. The second characteristic function of X_{n} now has the Taylor's expansion

$$
\gamma(t)=-(1 / 2) \sigma^{2} t^{2} \sum_{i=1}^{n} a_{i n}^{2}+\sum_{i=1}^{n}\left[\zeta "\left(\lambda_{i n} a_{i n} t\right)+\sigma^{2}\right] a_{i n}^{2} t^{2} / 2 .
$$

The limit assumptions imply $\gamma(\mathrm{t})+(1 / 2) \sigma^{2} \mathrm{t}^{2}$ is bounded in magnitude by

$$
\sum_{i=1}^{n}\left|\zeta^{\prime \prime}\left(\lambda_{i n} a_{i n} t\right)+\sigma^{2}\right| a_{i n}^{2} t^{2} / 2 \leq\left(\sum_{i=1}^{n} a_{i n}^{2} t^{2} / 2\right) \cdot \max _{i \leq n}\left(\left|\zeta^{\prime \prime}\left(\lambda_{i n} a_{i n} t\right)+\sigma^{2}\right| \longrightarrow 0,\right.
$$

implying that for each $t, \gamma(\mathrm{t})$ converges to the characteristic function of a normal with mean 0 and variance σ^{2}.
4.3 Chebyshev bounds give an easy, but crude, bound on the probability in the tail of a density: for $\varepsilon>0, \operatorname{Prob}(Y>\varepsilon) \leq \int_{\varepsilon}^{\infty}(|y| / \varepsilon)^{\rho_{f}}{ }_{Y}(y) d y \leq E_{Y}|Y|{ }^{\rho} / \varepsilon{ }^{\rho}$. For random variables with well behaved tails, sharper bounds can be found, and used in turn to get sharper limit theorems. First, suppose independent identically distributed random variables Y_{i} with zero mean and the bound $\left|Y_{i}\right| \leq 1$, and $X_{n}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}$. Chebyshev's inequality gives $P\left(X_{n}>\varepsilon\right) \leq 1 / n \varepsilon^{2}$, since $\operatorname{var}\left(Y_{j}\right) \leq 1$. However, a better inequality due to Hoeffding states that $\operatorname{Prob}\left(X_{n}>\varepsilon\right)<e^{-n \varepsilon^{2} / 2}$. This and similar bounds can be found in Pollard, Convergence of Stochastic Processes, and Shorak and Wellner, Empirical Processes. If the Y_{i} are not necessarily bounded, but have a proper moment generating function, one can get the inequality $P\left(X_{n}>\varepsilon\right)<e^{-\tau \varepsilon \sqrt{n}+\kappa}$, where τ and κ are positive constants determined by the distribution of Y_{i}.

To illustrate the use of the last inequality, note that

$$
P\left(\sup _{i \geq n}\left|X_{i}\right|>\varepsilon\right)<\sum_{i=n}^{\infty} 2 e^{-\tau \varepsilon \sqrt{i}+\kappa} \leq \int_{n-1}^{\infty} 2 e^{-\tau \varepsilon \sqrt{z}+\kappa} d z \leq 4(1+\tau \varepsilon \sqrt{n-1}) e^{-\tau \varepsilon \sqrt{n-1}+\kappa} \longrightarrow 0 .
$$

This implies $X_{n} \xrightarrow{\text { as }} 0$, a SLLN.
To show the inequality $P\left(X_{n}>\varepsilon\right)<e^{-\tau \varepsilon \sqrt{n}+\kappa}$, first note for any random variable X that $P(X>\varepsilon) \leq \inf _{t>0} e^{-\varepsilon t} m_{X}(t)$, where m_{X} is the mgf of X. Second, if Y_{i} has mgf $m_{Y}(t)<\infty$ for $|t|<2 \tau$, then $m_{Y^{\prime}}(t)=1+m_{Y}{ }^{\prime \prime}(\lambda t) t^{2} / 2$ for some $|\lambda|<1$, for each $|\mathrm{t}|<2 \tau$, from the properties of the moment generating function. Define $M=\max _{t \mid<\tau} m_{Y^{\prime}}(t)$; then $m_{Y}(t) \leq 1+M^{2} / 2$ for $|t| \leq \tau$. The mgf of X_{n} then satisfies $m_{X}(t) \leq\left(1+\mathrm{Mt}^{2} / 2 n^{2}\right)^{n}$ for $|t| \leq \tau$. Hence,

$$
P\left(X_{n}>\varepsilon\right) \leq \inf _{0<t \leq \tau} e^{-\varepsilon t}\left(1+M t^{2} / 2 n^{2}\right)^{n} .
$$

Taking $t=\tau \sqrt{n}$ and using the inequality $\left(1+M \tau^{2} / 2 n\right)^{n} \leq e^{M \tau^{2} / 2}$ gives the claimed result with $\kappa=M \tau^{2} / 2$.
4.4 This section states a uniform SLLN for random functions on a subset Θ of a Euclidean space \mathbb{R}^{q}. Let (S, \mathcal{F}, P) denote a probability space. Define a random function as a mapping Y from $\Theta \times S$ into \mathbb{R} with the property that for each $\theta \in \Theta, Y(\theta, \cdot)$ is measurable with respect to (S, \mathcal{F}, P). Note that $\mathrm{Y}(\theta, \cdot)$ is simply a random variable, and that $\mathrm{Y}(\cdot, \mathrm{s})$ is simply a function of $\theta \in \Theta$. Usually, the dependence of Y on the state of nature is suppressed, and we simply write $Y(\theta)$. A random function is also called a stochastic process, and $Y(\cdot, s)$ is termed a realization of this process. A few definitions are needed:

A measurable random function $Y(\theta, \cdot)$ is separable if there exists a countable dense subset Θ_{0} of Θ and a set $A \in \mathcal{F}$ with $P(A)=1$ such that for each $s \in A$ and $\theta \in \Theta$, there exists a sequence $\theta_{i} \in \Theta_{0}$ such that $\lim _{i \rightarrow \infty} Y\left(\theta_{i}, s\right)=Y(\theta, s)$.

A measurable random function $Y(\theta, \cdot)$ is almost surely continuous at $\theta_{0} \in \Theta$ if for each $\varepsilon>0$, there exist measurable events $A_{k}\left(\varepsilon, \theta_{0}\right)$ which contain all states of Nature s such that $\sup _{\left|\theta-\theta_{0}\right| \leq 1 / k}\left|Y(\theta, s)-Y\left(\theta_{0} s\right)\right|>\varepsilon$ and which converge monotonically as $k \rightarrow \infty$ to a set $A_{\star}\left(\varepsilon, \theta_{0}\right)$ that has probability zero.

Finite-dimensional Euclidean spaces contain countable dense subsets (e.g., the points with rational coordinates), and any closed and bounded subset of a space with this property also contains a countable dense subset. Then, the main restriction imposed by separability when Θ is closed and bounded is that Y is regular enough so that its values everywhere are determined by its values on a countable dense subset. This is a much weaker condition than continuity, as we require only that some sequence
yield the limiting value, not all sequences. Furthermore, we can handle a countable number of isolated points of discontinuity simply by including them in Θ_{0}. Often in the theory of stochastic processes, separability is assumed by construction: a random function $\mathrm{Y}^{\prime}(\theta, \mathrm{s})$ which may not be separable is replaced by an "equivalent" version $Y(\theta, s)=\limsup _{\theta^{\prime} \in \Theta_{0} \& \theta^{\prime} \rightarrow \theta} Y^{\prime}\left(\theta^{\prime}, s\right)$ for $\theta \notin \Theta_{0}$.

The condition of almost sure continuity allows the modulus of continuity to vary with state of Nature, so there is not necessarily a fixed neighborhood of θ_{0} on which the function does not vary by more than ε, independent of the state of Nature. For example, the function $Y(\theta, s)=\theta^{S}$ defined for $\theta \in[0,1]$ and s distributed uniformly on the unit interval is continuous at $\theta=0$ for every s, but $A_{k}(\varepsilon, 0)=(0,-\log \varepsilon)$ has positive probability for all k. The exceptional sets $A_{k}(\varepsilon, \theta)$ can vary with θ, and there is no requirement that there be a set of states of Nature with probability one, or for that matter with positive probability, where $Y(\theta, s)$ is continuous for all θ. As a result, a function can be pointwise almost surely continuous, and still always have discontinuities. For example, assuming $\theta \in[0,1]$ and s distributed uniformly on the unit interval, and defining $Y(\theta, s)=1$ if $\theta \geq s$ and $Y(\theta, s)=0$ otherwise gives a function that always has a discontinuity, but is nevertheless almost surely continuous. For closed and bounded Θ, which always contains a countable dense set, almost sure continuity implies separability. The following result establishes a uniform SLLN for random functions that satisfy almost sure continuity.

Lemma. Assume $\mathrm{Y}_{\mathrm{i}}(\theta)$ are independent identically distributed random functions with a finite mean $\psi(\theta)$ for θ in a closed bounded set $\Theta \subseteq \mathbb{R}^{q}$. Assume that for each $\theta \in \Theta, \mathrm{Y}_{\mathrm{i}}(\cdot)$ is almost surely continuous at θ. Assume there exists a positive
envelope random variable Z satisfying $Z \geq \max _{\theta \in \Theta}\left|Y_{i}(\theta)\right|$ and $\mathbf{E} Z<+\infty$. Then, $X_{n}(\theta)=\frac{1}{n} \sum_{i=1}^{n} Y_{i}(\theta)$ satisfies $\sup _{\theta \in \Theta}\left|X_{n}(\theta)-\psi(\theta)\right| \xrightarrow{\text { as }} 0$.

Proof: We follow an argument of Tauchen (1985). Let ($\mathrm{S}, \mathfrak{F}, \mathrm{P}$) be the underlying probability space, and write the random function $Y_{i}(\theta, s)$ to make its dependence on the underlying state of Nature explicit. We have $\psi(\theta)=\int_{S} Y(\theta, s) P(d s)$. Define $u\left(\theta_{0}, s, k\right)=$ $\sup _{\left|\theta-\theta_{0}\right| \leq 1 / k}\left|Y(\theta, s)-Y\left(\theta_{0}, s\right)\right|$. Let $\varepsilon>0$ be given. Let $A_{k}\left(\varepsilon / 2, \theta_{0}\right)$ be the measurable set given in the definition of almost sure continuity, and note that for $k=k\left(\varepsilon / 2, \theta_{0}\right)$ sufficiently large, the probability of $A_{k}\left(\varepsilon / 2, \theta_{0}\right)$ is less than $\varepsilon / 4 \cdot(\mathbf{E} Z)$. Then,

$$
\begin{gathered}
E u\left(\theta_{0}, \cdot, k\right) \leq \int_{A_{k}\left(\varepsilon / 2, \theta_{0}\right)} u\left(\theta_{0}, s, k\right) P(d s)+\int_{A_{k}\left(\varepsilon / 2, \theta_{0}\right)^{c}} u\left(\theta_{0}, s, k\right) P(d s) \\
\leq \int_{A_{k}\left(\varepsilon / 2, \theta_{0}\right)} 2 \cdot Z(s) \cdot P(d s)+\int_{A_{k}\left(\varepsilon / 2, \theta_{0}\right)^{c}}(\varepsilon / 2) \cdot P(d s) \leq \varepsilon .
\end{gathered}
$$

Let $\mathrm{B}\left(\theta_{\mathrm{o}}\right)$ be an open ball of radius $1 / \mathrm{k}\left(\varepsilon / 2, \theta_{0}\right)$ about θ_{0}. These balls constructed for each $\theta_{0} \in \Theta$ cover the compact set Θ, and it is therefore possible to extract a finite subcovering of balls $B\left(\theta_{j}\right)$ with centers at points θ_{j} for $j=1, \ldots, J$. Let $\mu_{\mathrm{j}}=\operatorname{Eu}\left(\theta_{\mathrm{j}},, \mathrm{k}\left(\varepsilon / 2, \theta_{\mathrm{j}}\right)\right) \leq \varepsilon$. For $\theta \in \mathrm{B}\left(\theta_{\mathrm{j}}\right),\left|\psi(\theta)-\psi\left(\theta_{\mathrm{j}}\right)\right| \leq \mu_{\mathrm{j}} \leq \varepsilon$. Then

$$
\begin{aligned}
\sup _{\theta \in B\left(\theta_{j}\right)}\left|x_{n}(\theta)-\psi(\theta)\right| \leq & \sup _{\theta \in B\left(\theta_{j}\right)}\left|x_{n}(\theta)-X_{n}\left(\theta_{j}\right)-\mu_{j}\right|+\mu_{j} \\
& +\left|x_{n}\left(\theta_{j}\right)-\psi\left(\theta_{j}\right)\right|+\sup _{\theta \in B\left(\theta_{j}\right)}\left|\psi\left(\theta_{j}\right)-\psi(\theta)\right|
\end{aligned}
$$

$$
\leq\left|\frac{1}{n} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{u}\left(\theta_{\mathrm{j}} \cdot, \cdot \mathrm{k}\left(\varepsilon / 2, \theta_{\mathrm{j}}\right)\right)-\mu_{\mathrm{j}}\right|+\varepsilon+\left|\mathrm{X}_{\mathrm{n}}\left(\theta_{\mathrm{j}}\right)-\psi\left(\theta_{\mathrm{j}}\right)\right|+\varepsilon .
$$

Apply Kolmogorov's SLLN to each of the first and third terms to determine a sample size n_{j} such that

$$
P\left(\sup _{n \geq n_{j}}\left|\frac{1}{n} \sum_{i=1}^{n} u\left(\theta_{j}, \cdot, k\left(\varepsilon / 2, \theta_{j}\right)\right)-\mu_{j}\right|>\varepsilon\right)<\varepsilon / 2 J
$$

and

$$
P\left(\sup _{n \geq n_{j}}\left|X_{n}\left(\theta_{j}\right)-\psi\left(\theta_{j}\right)\right|>\varepsilon\right)<\varepsilon / 2 J .
$$

With probability at least $1-\varepsilon / J$, $\sup _{n \geq n_{j}} \sup _{\theta \in B\left(\theta_{j}\right)}\left|X_{n}(\theta)-\psi(\theta)\right| \leq 4 \varepsilon$. Then, with probability at least $1-\varepsilon, \sup _{n \geq n_{0}} \sup _{\theta \in \Theta}\left|X_{n}(\theta)-\psi(\theta)\right| \leq 4 \varepsilon$, where $n_{o}=\max \left(n_{j}\right)$.

The construction in the proof of the lemma of a finite number of approximating points can be reinterpreted as the construction of a finite family of functions, the $\mathrm{Y}\left(\theta_{\mathrm{j}}, \cdot\right)$, with the approximation property that the expectation of the absolute difference between $Y(\theta, \cdot)$ for any θ and one of the members of this finite family is less than ε. Generalizations of the uniform SLLN above can be obtained by recognizing that it is this approximation property that is critical, with a limit on the how rapidly the size of the approximating family can grow with sample size for a given ε, rather than continuity per se; see Pollard (1984).
4.5 Central limit theorems for sums of non-independent random variables are critical for time-series analysis. The result of Ibragimov and Linnik given in Figure 5 is a typical and fairly strong representative of the variety of results that are
available. To illustrate its use, consider a structure that appears frequently in econometric time series analysis. Suppose Z_{i} are i.i.d. random variables with three finite moments and a zero mean, and that Y_{i} are weighted averages of current and past Z_{i}; i.e., $Y_{i}=\sum_{j=0}^{\infty} \beta_{j} Z_{j-i}$, a moving average process. If $\sum_{j=0}^{\infty} e^{\lambda j} \cdot \beta_{j}^{2}<+\infty$ for some $\lambda>0$, so that the moving average weights eventually decay at an exponential rate, then the Y_{i} are stationary with three finite moments and mean zero, and one strong mixing. This is sufficient for application of the Ibragimov-Linnik CLT.

In general, CLT are much messier to state and prove than the independent case. One powerful tool is martingale theory, which exploits the property that when sums of innovations that have conditional mean zero satisfy some boundedness properties, then these sums behave much like sums of independent innovations. Martingale methods will be presented in a future version of this book.

