PROBLEM SET 3 (Stochastic Limits)

(Due Monday, Feb. 23, with discussion in section on Feb. 18)

1. Ignoring adjustments for family composition and location, an American family is said to be below the poverty line if its annual income is less than $\$ 14,800$ per year. Let Y_{i} be the income level of family i, drawn randomly and independently from this population, and let Q_{i} be one if Y_{i} is less than $\$ 14,800$, zero otherwise. Family income can obviously never be larger than GDP, so that it is bounded above by a (very big) constant G, and cannot be negative.
2. Hoeffding's inequality says that if independent identically distributed random variables Y_{i} satisfy $E Y_{i}=0$ and $\left|Y_{i}\right| \leq B$, then

$$
\operatorname{Prob}\left(\frac{1}{n} \sum_{i=1}^{n} Y_{i}>\varepsilon\right)<\exp \left(-\varepsilon^{2} n / 2 B^{2}\right)
$$

Use this inequality to show that $\frac{1}{n} \sum_{i=1}^{n} Y_{i} \xrightarrow{\text { as }} 0$. 3.

