
     1  Stratification may in itself be economical, permitting the contacting and interviewing of subjects at reduced cost.  In
addition, stratification may concentrate observations in areas yielding high information on the behavior of economic interest. 

     2  In this chapter, we will treat the data vector (z,y) as discrete.  There is no fundamental change if some components of (z,y)
are continuous; it is merely necessary to replace summations with integrals with respect to appropriate continuous or counting
measures.  There are additional technical assumptions required to assure measurability and integrability when some components
are continuous.
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CHAPTER 2.  SAMPLING AND SELECTION

1. INTRODUCTION 

Economic survey data are often obtained from sampling protocols that involve stratification,
censoring, or selection.  Econometric estimators designed for random  samples may be inconsistent
or inefficient when applied to these samples.  Several  strands in the econometrics literature have
investigated estimators appropriate to such data:  seminal papers of Heckman (1974) on sample
selection, and Manski and Lerman (1977) on choice-based sampling; further work on endogenous
stratification by Hausman and Wise (1977), Manski and McFadden (1981), Cosslett (1981), and
Hsieh, Manski, and McFadden (1984); and related work on switching regression by Goldfeld and
Quandt (1973, 1975), Madalla and Nelson (1974), and Lee and Porter (1984).  This chapter
synthesizes this literature, and provides machinery that can be used to crank out estimators for a
variety of biased sampling problems. 

When the econometrician can influence sample design, then the use of stratified sampling
protocols combined with appropriate estimators can be a powerful tool for maximizing the useful
information on structural parameters obtainable within a data collection budget.1  

The estimation problem facing an econometrician can be described, schematically, in terms
of a contingency table relating a vector of exogenous variables z and a vector of endogenous
variables y, as in the table below where each column and row corresponds to different values for the
vector of variables.  The joint distribution of (z,y) in the population is a probability   

(1)        p(z,y) � P(y�z,βo)p(z) � Q(z�y)q(y),  

where P(y�z,βo) is the conditional probability of the endogenous vector y, given the exogenous
vector z, defined as a member of a parametric family with true parameter  vector βo; p(z) is the
marginal distribution of the exogenous variables, obtained by a row sum in the table; q(y) is the
marginal distribution of y, obtained by a column sum in the table; and Q(z�y) is the conditional
distribution of z given y, defined by Bayes law in equation (1).2  We identify P(y�z,βo) as the
structural model of econometric interest; where by "structural" we mean that this conditional
probability law is invariant in different populations or policy environments where the marginal
distribution of z is altered.  A structural model will result if there is a stable causal relationship from



     3  The log likelihood of an observation is log P(y�z,β) + log p(z), and the kernel of this log likelihood is the part that depends
on the parameter vector β.
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z to y, with no contemporaneous feedback from y to z.  One would expect this to be the case if z
describes the environment of an economic agent (e.g., prices, income) and y describes the agent's
behavioral response (e.g., occupation choice, hours of labor supplied).  However, there are many
economic applications where it is a reasonable approximation for policy analysis to assume P(y�z,βo)
is a “reduced form” with the needed invariance property, without invoking strict assumptions on
causality.

y1 y2 ..... yJ

z1 P(y1|z1,βo)p(z1) P(y2|z1,βo)p(z1) ..... P(yJ|z1,βo)p(z1) p(z1)

z2 P(y1|z2,βo)p(z2) P(y2|z2,βo)p(z2) ..... P(yJ|z2,βo)p(z2) p(z2)

: : : : :

zK P(y1|zK,βo)p(zK) P(y2|zK,βo)p(zK) ..... P(yJ|zK,βo)p(zK) p(zK)

q(y1) q(y2) ..... q(yJ) 1

A simple random sample draws independent observations from the population, each with
probability law P(y�z,βo)�p(z).  The kernel of the log likelihood of this sample depends only on the
conditional probability P(y�z,β), not on the marginal density p(z); thus, maximum likelihood
estimation of the structural parameters βo does not require that the marginal distribution p(z) be
parameterized or estimated.3  In this sample, z is ancillary to βo, and the observation that it can be
conditioned out without loss of information on βo can be elevated to a general principle of statistical
inference (Cox and Hinckley, 1974). 

We next introduce a notation for stratified or biased samples.  Suppose the data are collected
from one or more strata, indexed s = 1,..., S.  Each stratum is characterized by a sampling protocol
that determines the segment of the population that qualifies for interviewing.  Define R(z,y,s) to be
the qualification probability that a population member with characteristics (z,y) will qualify for the
subpopulation from which the stratum s subsample will be drawn.  Examples of sampling protocols
and their characterizations in terms of qualification probabilities follow: 

1. Simple random subsample, with R(z,y,s) � 1. 

2. Exogenous stratified sampling, with R(z,y,s) = 1 if z � As for a subset As of the universe
Z of exogenous vectors, R(z,y,s) = 0 otherwise.  The set As might define a location, such as
a census tract, or a socioeconomic characteristic such as race.  The protocol for identifying
the qualified subpopulation under locational stratification is typically to enumerate the
response units at a location, and then sample randomly from this enumeration.  In the



     4  The inverse of the qualification factor is called the raising factor.
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contingency table, this corresponds to sampling randomly from one or more rows.  The
protocol for identifying the qualified subpopulation using a socioeconomic criterion is
typically a screening interview.  Exogenous stratified sampling can be generalized to
differential rates by permitting R(z,y,s) to be any function from (z,s) into the unit interval;
a protocol for such sampling might be, for example, a screening interview that qualifies a
proportion of the respondents that is a function of respondent age. 

3. Endogenous stratified sampling, with R(z,y,s) = 1 if y � Bs, with Bs a subset of the
universe of endogenous vectors Y, and R(z,y,s) = 0 otherwise.  The set Bs might identify a
single alternative or set of alternatives among discrete responses, such as the subpopulation
whose appliance and energy consumption choices include an air  conditioner. Alternately,
Bs might identify a range of a continuous response, such as an income category.  A classical
choice-based sample for discrete response is the case where each response corresponds to a
different stratum.  In Figure 1, endogenous sampling corresponds to sampling randomly from
one or more columns.  Endogenous samples with strata corresponding to single columns are
called pure choice-based samples.  Endogenous stratified sampling can be generalized to
qualification involving both  exogenous and endogenous variables, with Bs defined in general
as a subset of Z×Y.  For example, in a study of mode choice, a stratum might qualify bus
riders (endogenous) over age 18 (exogenous). It can also be generalized to differential
sampling rates, with a proportion R(z,y,s) between zero and one qualifying in a screening
interview. 

4. Sample selection/attrition, with R(z,y,s) giving the proportion of the population with
variables (z,y) whose availability qualifies them for stratum s.  For example, R(z,y,s) may
give the proportion of subjects with variables (z,y) that can be contacted and will agree to be
interviewed, or the proportion of subjects meeting an endogenous selection condition, say
employment, that qualifies them for observation of wage (in z) and hours worked (in y). 

The joint probability that a member of the population will have variables (z,y) and will qualify for
stratum s is R(z,y,s)�P(y�z,βo)�p(z).  Then for stratum s, the proportion of the population qualifying
into the stratum, or qualification factor4,  is 

(2)       r(s) =   R(z,y,s)�P(y�z,βo)�p(z),  �
z

�
y

and the conditional distribution of (z,y) given qualification is 

(3)       G(z,y�s) = R(z,y,s)�P(y�z,βo)�p(z)/r(s).  

A sample from stratum s is governed by the probability law G(z,y�s).  Note that G(z,y�s) depends on
the unknown parameter vector β and on the distribution p(z) of the explanatory variables.  In simple



     5  Note that n(z,y�s)/ns is the empirical probability measure for a random sample of size ns from the population with law
G(z,y�s).  In the case of discrete variables with a finite number of configurations, the n(z,y|s) are simply cell counts.  Nothing is
changed for continuous variables, except that technically one must consider stochastic limits of empirical processes. 
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cases of stratification, such as Examples 1-3 above, R(z,y,s) is fully specified by the sampling
protocol.  The qualification factor r(s) may be known, for example when stratification is based on
census tract with known sizes; estimated from the survey, for example when qualification is
determined by a screening interview; or estimated from an auxiliary sample.  In case of attrition or
selection, R(z,y,s) may be an unknown function, or may contain unknown parameters. 

Suppose a random sample of size ns is drawn from stratum s, and let N = �sns denote total
sample size.  Let n(z,y�s) denote the number of observations in the stratum s subsample that fall in
cell (z,y).5  Then, the log likelihood for the stratified sample is 

(4)       L =    n(z,y�s)�Log G(z,y�s).  �
S

s�1
�

z
�

y

This likelihood does not include screening or auxiliary data on the qualification factors, which will
be informative if these factors are unknown. 

2. EXOGENOUS STRATIFIED SAMPLING 

When the qualification probability R(z,y,s) is independent of y, the qualification factor r(s)

=  R(z,s)p(z) is independent of βo, and the log likelihood function (4) separates into the sum�
z

of a kernel 

(5)       L1 =    n(z,y�s)�Log P(y�z,β)  �
S

s�1
�

z
�

y

and terms independent of β.  Hence, the kernel is independent of the structure of exogenous
stratification.  This implies that estimators designed for random samples will have the same
properties in exogenously stratified samples.  The information matrix for the likelihood function
under exogenous stratification, 

(6)     J =  µs   P(y�z,βo)�[�βLog P(y�z,βo)]�[�βLog P(y�z,βo)]�,   �
S

s�1
�

z

R(z,s)p(z)
r(s) �

y

depends on the sample design.  Then, exogenous stratification can be used to increase the
information available in a sample of given size; this is precisely the objective of classical
experimental design. 
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3. ENDOGENOUS STRATIFICATION 

Suppose the qualification probability R(z,y,s) depends on y.  Then the qualification factor
(2) depends on βo, and the log likelihood function (4) has a kernel depending in general not only on
β, but also on the unknown marginal distribution p(z).  Further, any unknowns in the qualification
probability also enter the kernel.  There are four possible strategies for estimation under these
conditions: 

1. Brute force -- Assume p(z) and, if necessary, R(z,y,s), are in parametric families, and
estimate their parameters jointly with β.  For example, in multivariate discrete data analysis,
an analysis of variance representation absorbs the effects of stratification, and allows one to
back out the structural parameters.  This approach is straightforward and needs no further
discussion for small problems, but is burdensome or infeasible when the Z variables have
many dimensions or categories, or are continuous. 
2. Weighted Exogenous Sample Maximum Likelihood -- This is a pseudo-maximum
likelihood approach which starts from the likelihood function appropriate to a random
sample, and reweights the data (if possible) to achieve consistency.  A familiar form of this
approach is the classical survey research technique of reweighting a sample so that it appears
to be random. 
3. Conditional Maximum Likelihood -- This approach pools the observations across strata,
and then forms the conditional likelihood of y given z in this pool.  This  has the effect of
conditioning out the unknown density p(z). 
4. Full Information Maximum Likelihood -- This approach estimates p(z)  nonparametrically
as a function of the remaining parameters, and substitutes to  concentrate the likelihood as
a function of the finite parameter vector.   

4. WEIGHTED EXOGENOUS SAMPLE MAXIMUM LIKELIHOOD (WESML) 

Recall that the kernel of the log likelihood for exogenous sampling is given by (5).  Suppose
now endogenous sampling with true log likelihood (4), and consider a pseudo- maximum likelihood
criterion based on (5),

(7)       W(β) =     n(z,y�s)�w(z,y,s)�Log P(y�z,β),  �
S

s�1
�

z
�

y

where w(z,y,s) is a weight introduced to achieve consistency.  Assume that ns/N � µs as N � �.
Then, using the notation “�as” to denote almost sure convergence,

(8)       n(z,y|s)/N � [n(z,y|s)/ns]�[ns/N]�as G(z,y|s)µs,  

implying from (3) that 
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(9)       W(β)/N �as µs   G(z,y|s)�w(z,y,s)�Log P(y�z,β)  �
S

s�1
�

z
�

y

=  p(z)�  { R(z,y,s)w(z,y,s)µs/r(s)}�P(y�z,βo)�Log P(y�z,β). �
z

�
y

�
S

s�1

A sufficient condition for consistency of the pseudo-maximum likelihood estimator is that the
bracketed term, 

(10)                               R(z,y,s)w(z,y,s)ns/N�r(s)  �
S

s�1

be independent of y.  Suppose r(s) is consistently estimated by f(s), from government statistics,
survey frame data such as the average refusal rate, or an auxiliary sample.  Consider the weights
 

(11)                                w(z,y) = ;    �
S

s�1
R(z,y,s)ns/Nf(s)

�1

these are well-defined if the bracketed expressions are positive, and R(z,y,s) contains no unknown
parameters.  These weights do not depend on the stratum from which the observation is drawn, but
do depend generally on the endogenous variable y. 

When the qualification probabilities R(z,y,s) are strictly positive for all (z,y) and all strata,
and contain no unknowns, another set of possible weights is 

(12)      w(z,y,s) = 1/R(z,y,s).  

These can be interpreted as reweighting observations in inverse proportion to the  probability with
which they qualify from the population, and are precisely the weighting most commonly used in
classical survey research.  When the weights (11) and (12) are both feasible, the weights (11) are
more efficient.

A classical application of WESML estimation is to a sample in which the strata coincide with
the possible configurations of y, so that R(z,y,s) = 1(y = s).  In this case, w(z,y) = N�f(y)/ny, the ratio
of the population to the sample frequency.  Another application is to enriched samples, where a
random subsample (s = 1) is enriched with an endogenous subsamples from one or more
configurations of y; e.g., s  = y = 2.  Then, w(z,1) = N/n1 and w(z,2) = N�f(2)/[n1�f(2) + n2].

When the r(s) are known, and f(s) � r(s), the WESML estimator has an asymptotic
covariance matrix Jw

-1HwJw
-1, where 

(13)           Jw = - (µs/r(s))   w(z,y,s)R(z,y,s)P(y|z,βo)p(z)�ββl ,  �
S

s�1
�

z
�

y
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(14)         Hw = µs
2  w(z,y,s)2[R(z,y,s)P(y|z,βo)p(z)/r(s)]�[�βl]�[�βl]� - qs�qs� �

S

s�1
�

z
�

y
�

S

s�1

where l = log P(y|x,β) and 

qs =  µs w(z,y,s)�[R(z,y,s)�P(y|z,βo)�p(z)/r(s)]�βl, �
z

�
y

and l and its derivatives are evaluated at βo.  These covariance terms come from a Taylor's expansion
of the first-order conditions for maximization of W(β), and can be estimated consistently by
replacing terms with their sample analogs. 

5. CONDITIONAL MAXIMUM LIKELIHOOD (CML) 

Pool the observations from the different strata.  Then, the data generation process for the pool
is 

          Pr(z,y) = G(z,y|s)ns/N,  �
S

s�1

and the conditional probability of y given z from this pool is 

          Pr(y|z) =  .  
�

S

s�1
G(z,y|s)ns/N

�
y

�
S|

s�1
G(z,y|s)ns/N

Substituting (3) yields a formula independent of p(z), 

(15)      Pr(y|z) =  .  
�

S

s�1
R(z,y,s)�P (y�z,βo)�n s /N�r (s)

�
y

�
S

s�1
R(z,y,s)�P (y�z,βo)�n s /N�r (s)

The CML estimator maximizes the conditional likelihood of the pooled sample in β and any
unknowns in R(z,y,s).  When r(s) is known, or one wishes to condition on estimates f(s) of r(s) from
auxiliary samples, (15) is used directly.  More generally, given auxiliary sample information on the
r(s), these can be treated as parameters and estimated from the product of the likelihood (15) and the
likelihood of the auxiliary sample. 
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For discrete response in which qualification does not depend on z, the formula (15)

simplifies to Pr(y�z) =  , where αy = R(z,y,s)�ns/N�r(s) can be treated as an
P(y�z,βo)�αy

�
y

P(y�z,βo)�αy

�
S

s�1

alternative-specific constant.  For multinomial logit choice models, Pr(y�z) then reduces to a
multinomial logit formula with added alternative-specific constants.  It is possible to estimate this
model by the CML method using standard random sample computer programs for this model,
obtaining consistent estimates for slope parameters, and for the sum of log αy and alternative-specific
parameters in the original model.  It remains necessary to use formulas for endogenous sampling to
estimate the asymptotic covariance matrix consistently.

For the previous example of an enriched sample, one has Pr(1�z) = P(1�z,βo)�n1/N�D and
Pr(2�z) = P(2�z,βo)�[n1/N + n2/N�r(2)]/D, where D = n1/N + P(2�z,βo)�n2/N.  An example in a different
context shows the breadth of application of (15).  Suppose y is a continuous variable, and the sample
consists of a single stratum in which high income families are over-sampled by screening, so that
the qualification probability is R(z,y,1) = γ < 1 for y � yo and R(z,y,1) = 1 for y > yo.  Then Pr(y�z)
= γ�P(y�z,βo)/D for y � yo and Pr(y�z) = P(y�z,βo)/D for y > yo, where D = γ + (1- γ)�P(y>yo�z,βo).

When the r(s) are known, the asymptotic covariance matrix of the CML estimator is
Jc

-1HcJc
-1, where 

(16)      Jc = - (µs/r(s))  R(z,y,s)P(y|z,βo)p(z)�ββc ,  �
S

s�1
�

z
�

y

(17)     Hw = µs
2  [R(z,y,s)P(y|z,βo)p(z)/r(s)][�βc]�[�βc] - qs qs	  �

S

s�1
�

z
�

y
�

S

s�1

where c = log Pr(y|z,β) and qs =  µs [R(z,y,s)P(y|z,βo)p(z)/r(s)]�βc, and c and its�
z

�
y

derivatives evaluated at βo.  Note that the structure of this covariance matrix is the same as that for
WESML. 

6. FULL INFORMATION CONCENTRATED MAXIMUM LIKELIHOOD (FICLE) 

Formally, the likelihood (4) can be treated as a function of the unknown parameter vector β,
any unknown parameters in the qualification probabilities, and the unknown multivariate density
p(z), with this whole density treated as an unknown parameter, possibly infinite dimensional. This
is a semiparametric estimation problem, in which a finite parameter vector is to be estimated in the
presence of a possibly infinite-dimensional vector of nuisance parameters.  In some applications, this
can be done by direct formal maximization of the likelihood in p(z), given the remaining parameters,
yielding a concentrated likelihood function of the finite parameter vector. 
Let 
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(18)      L =    n(z,y�s)�Log G(z,y�s) �
S

s�1
�

z
�

y

+ λs[r(s) -  R(z,y,s)P(z,y,s)p(z)] + λo[1 - p(z)]  �
S

s�1
�

z
�

y
�

z

be a Lagrangian for the formal maximization problem.  Solving the first-order-condition for p(z)

yields 

(19)      p(z) = /  .  �
S

s�1
�

y
n(z,y�s) �

S

s�1
�

y
λsR(z,y,s)�P(y�z,βo) � λo

Substituting (19) into (18), simplifying, and dropping terms independent of the unknowns, yields 

(20)    L1 =   n(z,y�s)�Log  �
S

s�1
�

z
�

y

R(z,y,s)�P.(y|z,β)/r(s)

N ��
S|

s�1
λs[�

y
R(z,y,s)�P.(y|z,β) � r(s)]

+  �  �
z

�
S

s�1
�

y
n(z,y�s)

�
S

s�1
λs[r(s) ��

y
R(z,y,s)�P.(y�z,β)]

N ��
S|

s�1
λs[�

y
R(z,y,s)�P.(y|z,β) � r(s)]

A joint critical point of this concentrated function in β and the λs gives the FICLE estimator.  Cosslett
(1981) has shown that estimators in this class are fully efficient.  Since this is a semiparametric
problem, Cosslett's argument required calculation by variational methods of the least information
contained in the parametric part of the problem; this method in its general form provides what are
now called the Wellner efficiency bounds.  The asymptotic covariance matrix of the FICLE
estimators has the same general structure as the previous estimators, but the specifics are
complicated by the presence of the finite vector of nuisance parameters λs.  For straightforward
response-based endogenous samples, with y used to define non-overlapping strata, the FICLE criteria
and the CML criteria can be manipulated  into almost the same form, with ns/Nf(s) and λs/N
appearing in analogous positions and converging to the same limit.  

7. ENDOGENOUS SAMPLING IN THE MNL CASE

An important simplification of the CML method occurs for what in biostatistics is termed
logistic regression in case-control designs.  Suppose that the vector of covariates is partitioned into
components z = (v,x) with v discrete.  (In biostatistics, v will often include variables such as age and
gender whose distributions are matched between cases and controls.)   Suppose that P(y|v,x) has a
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multinomial logit form, P(y|v,x) = exp(αy+γyv+xβy)/�y�exp(αy�+γy�v+xβy�).  In this model, the βy are
slope coefficients for the covariates x, and  αy and γyv are response-specific effects and interactions
of response-specific and v-specific effects.  Suppose that the qualification probability R(v,x,y,s) does
not depend on x, but does depend on y and v through a sample design that first draws a stratum of
cases for a specified y, and then draws strata of controls that are screened so that their distribution
of v’s “matches” the distribution of v’s among the cases.  For example, the controls may be matched
in distribution with the cases on age and gender.  For identification, a normalization such as α1 = γ1v
= β1 = 0 is imposed.  The conditional probability g(y|z) is again of multinomial logit form, with the
same βy parameters but with the remaining parameters shifted from their population values by
sampling factors, 

g(y|v,x) = exp(α*y+γ*yv+xβy)/�y�exp(α*y�+γ*y�v+xβy�),

with α*y +γ*yv= αy +γyv +log(�s R(v,y,s)�f(s)/r(s)).  Note that consistent estimation of this model
requires the inclusion of all the alternative-specific effects and interactions that are modified by
sampling factors.  However, if these variables are included, then the slope parameters βy are
estimated consistently without further adjustments for endogenous sampling.  (If the raising factors
are estimated rather than known, there is an additional contribution to the asymptotic covariance
matrix; see Hsieh, Manski, and McFadden (1985).  If the model already contained v-effects and v-y
interaction effects, then no modification to a random sampling likelihood is needed to estimate the
βy parameters consistently.  (Of course, in this case, the estimates of the main and interaction effects
will incorporate the effects of the case/control sample design.)  If the model contains interactions of
v and x in addition to v-effects and v-y effects, then the coefficients on these interactions would
contain additional sampling factors that must be removed to obtain consistent estimates of the
corresponding population interactions.)  The simplification above was first noted by Anderson
(1972).

8. EXTENSIONS AND CONCLUSIONS

Both the WESML and CML estimators are computationally practical in a variety of
endogenous sampling situations, and have been widely used.  In general, neither estimator dominates
the other.  Monte Carlo experience is that the WESML estimator is more efficient when the weights
for different alternatives are nearly the same, and that CML is more efficient when the weights differ
substantially across alternatives.  The FICLE estimator has not been widely used.  

When the population qualification factors r(s) are unknown, and consistently estimated by
f(s) obtained from auxiliary data, then the estimators described above are consistent.  However, in
computing the asymptotic covariance matrices of the estimators, it is necessary to take account of
presence of estimated quantities in estimation criterion.  This will in general contribute additional
terms to the asymptotic covariance matrix; see Newey and McFadden (1995).  A more efficient
procedure is to estimate the r(s) jointly using the sample and auxiliary data.  Hsieh, Manski, and
McFadden (1985) develop the procedures for doing this.
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Extensions of the theory of endogenous sampling can be made to more complex
applications, and to more complex sources of auxiliary information, such as duration data (with
length-biased sampling) and endogenously recruited panel data,; see Lancaster and Imbens (1990)
and McFadden (1996).

9. SELECTION

There are a variety of econometric problems where dependent variables are discrete,
censored at lower or upper limits, or truncated or selected so they are not always observed.  It is often
convenient to model the behavior of such variables as the result of a two-stage process,

  )))�    )))�  ,
Exogenous
Variables

Latent
Dependent Variables

Observed
Dependent Variables

where there are intermediate unobserved (latent) variables that are in the first stage determined by
exogenous variables through a conventional linear model, and observed dependent variables that in
the second stage are determined by some non-linear mapping.  The structure of the first mapping,
the dimensionality of the latent variables, and the structure of the non-linear mapping can all be
varied to fit particular applications.  Historically, latent variable models come from psychometrics,
where both the mappings from exogenous variables to latent variables, and from latent variables to
observed dependent variables are linear, and the critical feature is that the dimensionality of the
latent variables is much lower than the dimensionality of the observed dependent variables.  A
classical psychometric application is to ability testing, where the observed dependent  variables are
responses to test items, and the latent variables are factors such as verbal, quantitative, and motor
abilities.  In their most general form, these are called Multiple-Indicator, Multiple Cause (MIMC)
models, and analysis of the mapping from latent to observed dependent variables is called factor
analysis.  An example of an economic application of MIMC models is the Friedman permanent
income hypothesis,  where the observed dependent variables are measured yearly incomes and there
is a single latent variable, permanent income.  These lecture notes will discuss the second major
application of latent variable models, to situations where the mapping from latent to observed
dependent variables is nonlinear, and the observed dependent variables are not necessarily
continuous.

A fairly general notation for a model with m latent variables for each observation unit is yj
*

= xjβ + �j, where j = 1,...m.  This can be written more compactly in matrix notation as y* = Xβ + �,
where y* � 
m is a m×1 vector of latent variables for one observation, X is a m×k array of
explanatory variables whose rows are the xj vectors, β is a k×1 vector of parameters, and � is a m×1
vector of disturbances with a multivariate density f(��θ) that contains additional parameters θ.  This
notation can accommodate β parameters that differ across equations by introducing variables in each
xj in interaction with dummies for the different equations.  The observed dependent variables are
given by a mapping y = h(y*) that is in general nonlinear and many-to-one.  Some examples illustrate
the possibilities, and indicate the scope of possible applications: 
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(21) y* � 
1 and y = h(y*) =  
�1 if y � � 0

�1 if y � < 0

generates a binomial response model.  An  application might be to firms' decisions to go bankrupt
or stay in business, where y* is latent expected profit; see also application (5) below.

(22) y* � 
1 and y = h(y*) =  
y � if y � � 0

0 if y � < 0

generates a censored data (Tobit) model.  An application might be to expenditure on clothing in a
one-week observation period, where zeros are common. 

(23) y* � 
1 and y = h(y*) =  , 
y � if y � � c

NA if y � < c

where NA means no observation is available and c is a constant, generates a truncated data model.
An application might be to competitive (among buyers) auction prices for units of a good, where a
transaction is observed only if a bid exceeds a reservation price c.  In case y* < c, one may in one
variant of this model observe x, and in another variant observe nothing about x. 

(24)  y* � 
1 and y = h(y*) is given by y = i if λi � y* < λi+1 for i = 0,...,J, with  λ0 = -� and λJ+1 = +�,

where λ1 to λJ are parameters.  This mapping generates an  ordered response or count model.  An
application might be to household choice of  number of children, or to wealth or income within
brackets established by the  questionnaire.

(25) y* � 
2 and y = h(y*) =  
(�1,y �

2 ) if y �

1 � 0

(�1,NA) if y �

1 < 0

has the following interpretation:   if y1
* � 0, then y1 = +1 is an indicator for this, and y2 = y2

* is
observed. If y1

* < 0, then y1 = -1 is an indicator for this, and y2 is not observed.  Variants may have
x2 observed or not when y2 is unobserved.  An application is to bankruptcy decisions of the firm,
where y1

* is expected profit and y2
* is realized profit.  This is termed a bivariate selection model.

 
(26) y* � 
m and y = h(y*) is a mapping from 
m into {1,...,m}, where y = i if yi

* � yj
*  for j � i.

This generates a multinomial response model in which the observed response corresponds to the
maximum of the latent variables.  An application might be to choice of occupation. 

(27)  y* � 
m and y = h(y*) is a mapping from 
m into {-1,+1}m, with yj = +1 if yj
* � 0, and yj = -1

otherwise.  
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This generates a multivariate binomial response model.  An application might be to panel data on
employment status. 

(28)  y* � 
m and y = h(y*) is a mapping from 
m into {0,1,2,...}m, with yj = kj for an integer kj if
λij � yi,j+1 < λi,j+1.  

This is a multivariate ordered response or count model.  An application is to numbers of units
purchased of each of m goods. 

Let A(y) denote the set of y* that map into observation y; this can be written as A(y) = h-1(y),
where h-1 denotes the inverse of the (possibly) many-to-one mapping h.  Then, the probability of an
observation can be written   

 g(y�X,β,θ) = f(y*-Xβ�θ)dy*.�A(y)

The integral should be interpreted as extending over the dimensions where the condition y* � h-1(y)
gives a range of values.  In the Tobit example (2) above, y = 0 implies h-1(0) = (-�,0], and the integral
is over this interval.  However, y > 0 implies h-1(y) = y, and g(y�X,β,θ) = f(y-Xβ�θ) without
integration.  In the bivariate selection model (5), the observation (+1,y2) requires integration in one

dimension, g((+1,y2)�X,β,θ) = f(y1
*-x1β,y2-x2β�θ)dy1

*, while the observation (-1,NA) requires�
��

0

integration in both dimensions, g((-1,NA)�X,β,θ) =  f(y1
*-x1β,y2

*-x2β�θ)dy1
*dy2

*. �
0

�� �
��

��

Consider the log likelihood of an observation, l(β,θ) = log g(y�X,β,θ).  The score with respect
to the parameters γ = (β,θ) is

�γl(β,θ) =  �A(y)
�γlogf(y �

�Xβ�θ) �f(y �
�Xβ�θ)dy �

�A(y)
A(y)f(y �

�Xβ�θ)dy �

= E ;�γlogf(y �
�Xβ�θ)|y ��h �1(y)

that is to say, the score of the observation y can be expressed as the conditional expectation of the
score of the latent variable model, conditioned on the event that the latent vector yields y.  If these
integrals can be evaluated analytically or numerically, then it is usually feasible to do maximum
likelihood estimation of the parameters.  Even when the integrals are intractable, it may be possible
to approximate them by simulation methods.

The basic latent variable model setup above can be extended in several ways.  For
time-series or panel data, X may contain variables determined by lagged latent variables.  If
disturbances are serially correlated, one confronts all the problems of identification, stationarity, and
consistent estimation that occur in conventional linear systems, plus additional problems of dealing
with initial conditions.  The leading author who has worked on these problems is Heckman.  The
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latent variable model can also be extended to have a more full-blown simultaneous-equations form,
with complex paths linking observed and latent variables, with a multiple-indicator, multiple-cause
structure.  Leading authors on MIMC models are Goldberger and Joreskog.

10. THE BIVARIATE SELECTION PROBLEM

An important economic application of latent variable models is to the problem of selection:
Who or what we can observe about economic agents is influenced by their behavior, so that our data
are not representative of the whole population.  Our analysis needs to correct for the effects of
selection if we are to make consistent inferences about the population.  A classic example of
selection occurs in the study of wages and hours worked of married women.  These variables are
observed only for women who are working, but the same economic factors that determine these
variables also influence the decision to work.  For example, an unobserved disturbance that gives
Mrs. Smith a higher-than-average potential wage and Mrs. Jones a lower than-average potential wage
is more likely to induce Mrs. Smith into the labor force than Mrs. Jones.  Then, a regression of wage
on family characteristics using data for workers will typically overestimate the potential wage of
non-workers.  The econometric analysis of this problem provides a good tutorial for a broad
spectrum of selection problems that arise because of economic behavior or because of survey design
(e.g., deliberate stratification).  

Consider a bivariate latent variable model with normal disturbances,

(29)                                                            y* = xβ + � ,
w* = zα + σν ,

where x and z are vectors of exogenous variables, not necessarily all distinct, α and β are parameter
vectors, again not necessarily all distinct, and σ is a positive parameter.  The interpretation of y* is
latent desired hours of work, and of w* is latent log potential wage.  The disturbances � and ν have
a standard bivariate normal distribution

(30)                                ~ N  ,
�

ν
0
0

,
1 ρ
ρ 1

with zero means, unit variances, and correlation ρ.

There is a nonlinear observation rule determined by the application that maps the latent
variables into observations.  A typical rule might be "Observe y = 1 and w = w* if y* > 0; observe y
= -1 and do not observe w when y* � 0".  This could correspond, for example, to an application
where the event of working (y = 1) or not working (y = 0) is observed, but actual hours worked are
not, and the wage is observed only if the individual works (y* > 0).  It is sometimes convenient to
code the discrete response as s = (y+1)/2; then s = 1 for workers, s = 0 for non-workers.

The event of working is given by a probit model.  The probability of working is P(y=1�x) =
P(� > -xβ) = Φ(xβ), and of not working is P(y=-1�x) = P(� � -xβ) = Φ(-xβ), where Φ is the standard
univariate cumulative normal.  This can be written compactly as
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 P(y�x) = Φ(yxβ).

In the bivariate normal, the conditional density of one component given the other is
univariate normal, 

��ν ~ N(ρν,1-ρ2) = �φ  1

1�ρ2

��ρν

1�ρ2

and 

ν�� ~ N(ρ�,1-ρ2) = �φ . 
1

1�ρ2

ν�ρ�

1�ρ2

The joint density can be written as the product of the marginal density of one component times the
conditional density of the other, 

(�,ν) ~ φ(ν)� �φ  = φ(�)� �φ .  1

1�ρ2

��ρν

1�ρ2

1

1�ρ2

ν�ρ�

1�ρ2

The density of (y*,w*) can then be written

(31)                f(y*,w*) = φ( )� �φ  1
σ

w �
�zα
σ

1

1�ρ2

y �
�xβ�ρ(w �

�zα)/σ

1�ρ2

 = φ(y*-xβ)� �φ  .  
1

σ 1�ρ2

w �
�zα�ρσ(y �

�xβ)

σ 1�ρ2

Now consider the log likelihood of an observation, l(α,β,σ,ρ).  In the case of a non-worker (y = -1
and w = NA), the density (23) is integrated over y* < 0 and all w*.  Using the second form in (23),
this gives probability Φ(-xβ).  In the case of a worker, the density (23) is integrated over y* � 0.
Using the first form in (23)

(32)              el(α,β,σ,ρ) =   .

Φ(�xβ) if y � �1

1
σ
φ( w�zα

σ
)�Φ

xβ�ρ w�zα
σ

1�ρ2
if y � 1

The log likelihood can be rewritten as the sum of the marginal log likelihood of the  discrete variable
y and the conditional log likelihood of w given that it is observed, l(α,β,σ,ρ) = l1(α,β) + l2(α,β,σ,ρ),
with the marginal component,

(33)                        l1(β) = log Φ(yxβ) ,
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and the conditional component (that appears only when y = 1),

(34)       l2(α,β,σ,ρ) = -log σ + log φ( )  + log Φ  - log Φ(xβ) .
w�zα
σ

xβ�ρ w�zα
σ

1�ρ2

One could estimate this model by maximizing the sample sum of the full likelihood function l, by
maximizing the sample sum of either the marginal or the conditional  component, or by maximizing
these components in sequence.  Note that asymptotically  efficient estimation requires maximizing
the full likelihood, and that not all the parameters are identified in each component; e.g., only β is
identified from the marginal component.  Nevertheless, there may be computational advantages to
working with the marginal or conditional likelihood, at least in the first step of estimation.
Maximization of l1 is a conventional binomial probit problem, which can be done easily with many
canned programs.  Maximization of l2 could be done either jointly in all the parameters α, β, ρ, σ;
or alternately in α, ρ, σ, with the estimate of β from a first-step binomial probit substituted in and
treated as fixed.  The first case, maximization of l2 in all the parameters, provides estimates whose
variances are estimated by the inverse of the information matrix for l2.  The maximization of l2 with
an estimate of β substituted in requires use of the formula for the variance of a GMM estimator
containing an embedded estimator; see the lecture notes on this topic.  Neither of these procedures
is fully efficient, and the two methods cannot be ranked in terms of efficiency. 

When ρ = 0, the case of "exogenous" selection in which there is no correlation between the
random variables determining selection into the observed population and the level of the observation,
note that l2 reduces to the log likelihood for a regression with normal disturbances, implying that the
maximum likelihood estimates for α and σ will be the OLS estimates.  However, when ρ � 0,
selection matters and regressing of w on z will not give consistent estimates of α and σ.

An alternative to maximum likelihood estimation is a GMM procedure based on the
moments of w.  Using the property that the conditional expectation of ν given y = 1 equals the
conditional expectation of ν given �, integrated over the conditional density of � given y = 1, plus
the property of the normal that dφ(�)/d� = -��φ(�), one has

(35)         E{w�z,y=1} = zα + σE{ν�y=1} = zα + σ E{ν��}φ(�)d�/Φ(xβ) �
��

�xβ

= zα + σρ �φ(�)d�/Φ(xβ) = zα + σρφ(xβ)/Φ(xβ) � zα + λM(xβ), 

�
��

�xβ

where λ = σρ and M(c) = φ(c)/Φ(c) is called the inverse Mill's ratio.  (As a computational note, it is
much better when calculating M to use a direct approximation to this function, rather than taking the
ratio of computational approximations to φ and Φ.)  Further, using the relationship 
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                                     E(ν2��) = Var(ν��) + {E(ν��)}2 = 1 - ρ2 + ρ2
�

2, 

and the integration-by-parts formula 
                      

�
2φ(�)d� = - �φ	(�)d� = -cφ(c) + φ(�)d� = -cφ(c) + Φ(c), �

��

�c �
��

�c �
��

�c

one obtains

(36)            E{(w-zα)2�z,y=1} = σ2E{ν2�y=1} = σ2 E{ν2��}φ(�)d�/Φ(xβ) �
��

�xβ

= σ2 {1 - ρ2 + ρ2
�

2}φ(�)d�/Φ(xβ) = σ2{1 - ρ2 + ρ2 - ρ2xβφ(xβ)/Φ(xβ)} �
��

�xβ

= σ2{1 - ρ2xβφ(xβ)/Φ(xβ)} = σ2{1 - ρ2xβ�M(xβ)}.

Then,

(37)     E  = E{(w-zα)2�z,y=1} - [E{w-zα�z,y=1}]2[w � zα � E{w�zα�z,y�1}]2|z,y�1

= σ2{1 - ρ2xβφ(xβ)/Φ(xβ) - ρ2φ(xβ)2/Φ(xβ)2} = σ2{1 - ρ2M(xβ)[xβ + M(xβ)}. 

It is possible to go on and compute higher moments, using the recursion formula:  

µ(c,k,λ) � E1(�>c)�(�-λ)k = (�-λ)kφ(�)d�  = -(c-λ)k-1φ(c) - λ�µ(c,k-1,λ) + (k-1)�µ(c,k-2,λ).�
�

��c

A GMM estimator for this problem can be obtained by applying NLLS, for the observations with y
= 1, to the equation

(38)                        w = zα + σρM(xβ) + ζ,

where ζ is a disturbance that satisfies E{ζ�y=1} = 0.  This ignores the heteroskedasticity of ζ, but it
is nevertheless consistent.  This regression estimates only the product λ � σρ, but consistent
estimates of σ and ρ could be obtained in a second step:  The formula for the variance of ζ,

(39)          V{ζ�x,z,y=1} = σ2{1 - ρ2M(xβ)[xβ + M(xβ)]},

suggests obtaining an estimate of σ2 by regressing the square of the estimated residual, ζe
2, on one

and the variable M(xβe)[xβe + M(xβe)], where βe is the estimated parameter vector.  Then, the
estimated coefficients a and b in the regression

(40)                ζe
2 = a + b{M(xβe)[xβe + M(xβe)]} + ξ

provide consistent estimates of σ2 and σ2ρ2, respectively.
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The GMM estimator above is asymptotically inefficient because it fails to correct for
heteroskedasticity, but more fundamentally because there are common parameters between the
regression and the variance of the disturbances, and because the disturbance ζ is not normally
distributed, so there is information in moments beyond the first two.  The first of these inefficiencies
could be eliminated by an estimated GLS-type transformation:  From the first-step NLLS regression
and the estimator of σ described above, calculate the weight 

 τ2 = 1 - ρe
2M(xβe)[xβe + M(xβe)],  

and then rerun a weighted NLLS regression,

(41)                w/τ = (z/τe)α + σρ(M(xβe)/τe) + (ζ/τe). 

The variance of this regression is now σ2, so that all the parameters of the original problem are
estimated by the regression parameters plus the estimated variance of the regression.

The NLLS estimator above involves about the same amount of calculation as full maximum
likelihood estimation, so that the latter method is usually preferable because it is asymptotically
efficient, and the standard errors obtained from the information matrix are easier to calculate than
the two-step GLS standard errors.  However, there is an alternative two-step estimation procedure,
due to Heckman, that requires only standard computer software, and is widely used:

[1] Estimate the binomial probit model, 

(42)                        P(y�x,β) = Φ(yxβ)  ,

by maximum likelihood.

[2] Estimate the linear regression model, 

(43)                        w = zα + λM(xβe) + ζ, 

where λ = σρ and the inverse Mill's ratio M is evaluated at the parameters estimated from the first
stage.

To estimate σ and ρ, and increase efficiency, one can do two additional steps,

[3] Estimate σ2 using the procedure described in (12), with estimates λe from the second step and
βe from the first step; and

[4] Estimate the weighted linear regression model 

(44)                        w/τ = (z/τ)α + λM(xβe)/τ + (ζ/τ), 
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where 
τ2 = {1 - ρe

2M(xβe)[xβe + M(xβe)]},  

and the parameters in this weight come from the first and second steps, plus
 
 ρe 2 = λe 2/σe 2 

with λe
2 from step two and σe

2 from step three.

The standard errors of the first-step estimates βe are obtained from the binomial probit
maximum likelihood.  However, the second-step estimates αe and λe have standard errors that are not
given correctly by the regression (35), both because the errors are heteroskedastic and because a
right-hand-side variable contains embedded parameters from an earlier step; see the lecture notes on
GMM estimation with embedded estimates for the formulas for the correct standard errors.

One limitation of the bivariate model is most easily seen by examining the regression (43).
Consistent estimation of the parameters α in this model requires that the term M(xβ|) be estimated
consistently.  This in turn requires the assumption of normality, leading to the first-step probit model,
to be exactly right.  Were it not for this restriction, estimation of α in (43) would be consistent under
the much more relaxed requirements for consistency of OLS estimators.  To investigate this issue
further, consider the bivariate selection model (29) with the following more general distributional
assumptions:  (i) � has a density f(�) and associated CDF F(�); and (ii) ν has  E(ν��) = ρ� and a
second moment E(ν2��) = 1 - ρ2 that is independent of  �.  Define the truncated moments

J(xβ) = E(���>-xβ) = �f(�)d�/[1 - F(-xβ)] �
�

�xβ

and

K(xβ) = E(1 - �2��>-xβ) = [1 - �2]f(�)d�/[1 - F(-xβ)] .�
�

�xβ

Then, given the assumptions (i) and (ii),

E(w�z,y=1) = zα + σρE(���>-xβ) = zα + σρJ(xβ), 

 E((w - E(w�z,y=1))2�z,y=1) = σ2{1 - ρ2[K(xβ) + J(xβ)2]}. 

Thus, even if the disturbances in the latent variable model were not normal, it would nevertheless
be possible to write down a regression with an added term to correct for  self-selection that could be
applied to observations where y = 1:

(45)        w = zα + σE{ν�xβ+�>0} + ζ = zα + σρJ(xβ) + ζ,

where ζ is a disturbance that has mean zero and the heteroskedastic variance

 E(ζ2�z,y=1)) = σ2{1 - ρ2[K(xβ) + J(xβ)2]}. 
  



20

Now suppose one runs the regression (37) with an inverse Mill's ratio term to correct for
self-selection, when in fact the disturbances are not normal and (44) is the correct specification.
What bias results?  The answer is that the closer M(xβ) is to J(xβ), the less the bias.  Specifically,
when (44) is the correct model, regressing w on z and M(xβ) amounts to estimating the misspecified
model

 w = zα + λM(xβ) + {ζ + λ[J(xβ) - M(xβ)]} .

The bias in NLLS is given by

  = λ ; 

� � α
λe � λ

Ez	z Ez	M

EMz EM 2

�1 Ez(J�M)
EM(J�M)

this bias is small if λ = σρ is small or the covariance of J - M with z and M is small.  
Calculation for some standard distributions shows that when disturbances deviate from

normal, M may not be a good approximation to J, implying that bias due to  misspecification can be
substantial.  For example, consider as alternatives to the normal density for � the logistic density,

 f(�) = e-a�/(1+e-a�)2,  a = , 
3
π

and the bilateral exponential density,

f(�) = (1/2 )�e-���/ . 2 2

For these densities, the function J can be calculated analytically.  For the logistic density, one obtains
J(�) = -� + (1/a)�log(1+ea�)�(1+e-a�), and for the bilateral exponential density, one obtains J(�) =
e-c���

�(1 + c���)/2cF(�), where F(�) =  1(�<0)�ec� + 1(��0)�(1 - e-c�) and c = 2-1/2.  The J(�) functions
have the same qualitative shape for the normal, bilateral exponential, and logistic densities, but  they
are substantially shifted, so that there is at least significant bias to the estimated intercept in the
regression if J is misspecified.

A natural question in semiparametric estimation is whether there is a robust method for
estimating α that does not require that the distributions of � and ν be fully parametric.  It should be
clear intuitively that approximating the unknown true J(�) function by a series of functions of �, such
as a low order polynomial in �, should be sufficient to approximately span the space containing J(�),
and that this in turn would be sufficient to eliminate for practical purposes any bias in estimation of
α.  The question would remain at to how many terms to use in an approximation.
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