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Econ 240B, Fall 2001        Daniel McFadden

Covariances for Bivariate Selection Model Second-Step Estimates

Consider the bivariate latent variable model with normal disturbances,

(1) y* = xβ + � ,
w* = zα + σν ,

where x and z are vectors of exogenous variables, not necessarily all distinct, α and β are parameter
vectors, again not necessarily all distinct, and σ is a positive parameter.  The interpretation of y* is
latent desired hours of work, and of w* is latent log potential wage.  The disturbances � and ν have
a standard bivariate normal distribution

(2) ~ N  ,
�
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0
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with zero means, unit variances, and correlation ρ.

There is a nonlinear observation rule determined by the application that maps the latent
variables into observations.  A typical rule might be "Observe y = 1 and w = w* if y* > 0; observe y
= -1 and nominally w = 0 when y* � 0".  This could correspond, for example, to an application where
the event of working (y = 1) or not working (y = 0) is observed, but the wage is observed only if the
individual works (y* > 0). 

The event of working is given by a probit model, P(y�x) = Φ(yxβ).  The conditional log
likelihood of w given participation is

(3) l2(α,β,σ,ρ) = -log σ + log φ( )  + log Φ  - log Φ(xβ).
w�zα
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See Chapter 2 for the derivation of this likelihood.  Writing

(4) w = zα + σE(ν|x,z,y=1) + ξ

for the observations with participation defines a disturbance ξ that by construction has conditional
mean zero, given x,z, in the selected sample.  Using the property that the conditional expectation of
ν given y = 1 equals the conditional expectation of ν given �, integrated over the conditional density
of � given y = 1, plus the property of the normal that dφ(�)/d� = -��φ(�), one has



2

(5)  E{w�z,y=1} = zα + σE{ν�y=1} = zα + σ E{ν��}φ(�)d�/Φ(xβ) �
��

�xβ

= zα + σρ �φ(�)d�/Φ(xβ) = zα + σρφ(xβ)/Φ(xβ) � zα + λM(xβ), 

�
��

�xβ

where λ = σρ and M(c) = φ(c)/Φ(c) is called the inverse Mill's ratio.  Further, using the relationship
  
(6) E(ν2��) = Var(ν��) + {E(ν��)}2 = 1 - ρ2 + ρ2

�
2, 

and the integration-by-parts formula 

(7) �
2φ(�)d� = - �φ�(�)d� = -cφ(c) + φ(�)d� = -cφ(c) + Φ(c), �

��

�c �
��

�c �
��

�c

one obtains

(8) E{(w-zα)2�z,y=1} = σ2E{ν2�y=1} = σ2 E{ν2��}φ(�)d�/Φ(xβ) �
��

�xβ

= σ2 {1 - ρ2 + ρ2
�

2}φ(�)d�/Φ(xβ) = σ2{1 - ρ2 + ρ2 - ρ2xβφ(xβ)/Φ(xβ)} �
��

�xβ

= σ2{1 - ρ2xβφ(xβ)/Φ(xβ)} = σ2{1 - ρ2xβ�M(xβ)}.

Then,

(9) E  = E{(w-zα)2�z,y=1} - [E{w-zα�z,y=1}]2[w � zα � E{w�zα�z,y�1}]2|z,y�1

= σ2{1 - ρ2xβφ(xβ)/Φ(xβ) - ρ2φ(xβ)2/Φ(xβ)2} = σ2{1 - ρ2M(xβ)[xβ + M(xβ)}. 

Then (4) is a regression equation that with β known so that M(xβ) is a known transformation of
observations has E(ξ|x,z,y=1) = 0 for the participant sub-population, but E(ξ2|x,z,y=1) given by (9)
and heteroscedastic..

The Heckman two-step procedure estimates (4) by OLS, with a consistent estimator for β
obtained from the probit selection model plugged into the inverse Mills ratio formula.  This
regression estimates only the product λ � σρ, but consistent estimates of σ and ρ could be obtained
in a further step: The OLS regression does not correct for heteroscedasticity or the presence of earlier
stage estimates.  It is nevertheless consistent, but printed out standard errors are not consistent. 

The general theory of two-step GMM estimation can be used to get consistent estimates of
the covariance matrix for the estimates in (4).  Suppose a random sample of observations (x,y,z,w),
with x and z interpreted as explanatory variables, y as the dependent variable determining selection,
and w as the dependent variable determining the continuous outcome, given selection.  Suppose in
the first stage one estimates the parameter vector β by bN satisfying

(10) 0 = ENh(bN;x,y),
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where EN denotes empirical expectation (or sample average) and h(β;x,y) = �βlogΦ(yxβ) is the score
of the marginal likelihood of y.  

Suppose in the second stage one estimates a parameter vector θ = (α,λ) with λ = σρ by 
coefficients tN = (aN,cN) obtained by applying OLS to the model w = zα + λM(xbN) + ζ, where M(xbN)
= φ(xbN)/Φ(xbN) is an inverse Mills ratio evaluated at xbN.  This regression corresponds to the
moments

(11) 0 = ENg(tN,bN;x,y,z,w) � EN (w-zaN-cNM(xbN)).
z�

M(xbN)

Note that the g moments do not depend on y; this will simplify formulas later.  Make a Taylor's
expansion of both the first-stage and the second-stage moment conditions around the true β, α, and
λ.  Suppress the x,y,z,w arguments to simplify notation:

(12)  =  - (bN - β) - (tN - θ) + op,
0
0

N
ENh(β)

ENg(θ,β)
A
B

N
0
C

N

where A = -plim EN�βh(β), B = -plim EN�βg(θ,β), and C = -plim EN�θg(θ,β).

The term  is asymptotically normal by a central limit theorem, with a covarianceN
ENh(β)

ENg(θ,β)

matrix , with Ωhh = plim ENh(β)h(β)�, Ωhg = plim ENh(β)g(θ,β)�, and Ωgg = plim
Ωhh Ωhg

Ωgh Ω»

ENg(θ,β)g(θ,β)�.  Solve the first block of equations and substitute the solution (bN - β) =N

A-1 ENh(β) + op into the second block to obtainN

(13) 0 = {ENg(θ,β) - BA-1ENh(β)} - C (tN - θ) + op.N N

The term in braces on the right-hand-side of this expression has an asymptotic covariance matrix 

(14) Ωgg - BA-1Ωhg - ΩghA�-1B� + BA-1ΩhhA�-1B�.



4

Then, (tN - θ) = C-1 {ENg(θ,β) - BA-1ENh(β)} + op has asymptotic covariance matrixN N

(15)  acov(tN) = C-1{Ωgg - BA-1Ωhg - ΩghA�-1B� + BA-1ΩhhA�-1B�}C�-1

This is the general formula for covariances of second-step estimators, and there will be some
simplification for the application.  In general, if B = 0, there is no correction; this is the "block
diagonality" case where θ can be estimated consistently even if the estimator of β is not consistent.
In the bivariate selection problem, letting m(xβ) = dM(xβ)/d(xβ),

(16) B = -E �β (w-zα-λM(xβ)) 
z�

M(xβ)

(17) = -λE  - Ex,z Ew|x,z(w-zα-λM(xβ)) = -λE
z�xm(xβ)

M(xβ)xm(xβ)
z�

m(xβ)x�
z�xm(xβ)

M(xβ)xm(xβ)

.
Then B = 0 if λ = σρ = 0; i.e., if ρ = 0 so that selection is "at random" and is independent of the
determination of the latent w.  A useful implication of this result is that for testing the hypothesis that
ρ = 0, one is in the block diagonal case under the null, so that the covariance correction for first-stage
estimation does not enter the determination of standard errors.  Further, the w regression is
homoscedastic when ρ = 0.  Then, a conventional T-test for λ = 0 can be carried out using the
standard OLS statistics, without any corrections for the estimation of β in  the inverse Mills ratio or
for heteroscedasticity.  

It will be useful to work out the form of the C matrix, 

(18) C = -E �θ (w-zα-λM(xβ)) = .
z�

M(xβ)

z�z z�M(xβ)

M(xβ) M(xβ)2

Note that C is just the "X�X" matrix for the second-stage regression.  If the regression were
homoscedastic, then C would equal Ωgg.  However, it is not, and Ωgg is the array appearing in the
center of White's robust covariance matrix estimator for regressions with heteroscedasticity of
unknown form.

If g does not depend on y, then Ωgh = Ex,zEw�x,z{g�Ey�xh} = 0.  This is true for the bivariate
selection application.  Then, one has the simplification

(19) acov(tN) = C-1{Ωgg + BA-1ΩhhA�-1B�}C�-1

The fact that the first stage of estimation in the bivariate selection problem was maximum marginal
likelihood gives a further simplification.  One has h(β;x,y) = �βlogΦ(yxβ), and hence A = -
E�ββlogΦ(yxβ).  The information equality for maximum likelihood then implies A =
E(�βlogΦ(yxβ))(�βlogΦ(yxβ))� = Ωhh, and the covariance matrix for tN simplifies further to
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(20) acov(tN) = C-1{Ωgg + B(Ωhh)-1B�}C�-1.

All the terms of this covariance matrix could be estimated from sample analogs, computed
at the consistent estimates.  The following table summarizes consistent estimators for the various
covariance terms; recall that EN denotes empirical expectation (sample average): 

Matrix Estimator
 C -EN�θg(tN,bN)
 B -EN�βg(tN,bN)
 A -EN�βh(bN)
 Ωhh ENh(bN)h(bN)�
 Ωgh ENg(tN,bN)h(bN)�
 Ωgg ENg(tN,bN)g(tN,bN)�


