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Economics 240B, Second Half Daniel M cFadden © 1999
CHAPTER 1. DISCRETE RESPONSE MODELS
1. INTRODUCTION

When economic behavior is expressed as a continuous variable, alinear regression model
Is often adequate to describe the impact of economic factors on this behavior, or to predict this
behavior in atered circumstances. For example, astudy of food expenditures asafunction of price
indices for commodity groups and income, using households from the Consumer Expenditure
Survey, can start by modeling indirect utility as atranslog function and from this derive alinear in
logs regression equation for food expenditures that does a good job of describing behavior. This
situation remainstrue even when the behavioral responseislimitedin range (e.g., food consumption
of householdsis non-negative) or integer-valued (e.g., college enrollment by state), provided these
departures from a unrestricted continuous variable are not conspicuous in the data (e.g., food
consumption is observed over arange where the non-negativity restriction is clearly not binding;
college enrollments are in the thousands, so that round-off of the dependent variable to an integer
Is negligible relative to other random elements in the model). However, there are a variety of
economic behaviors where the continuous approximation is not a good one. Here are some
examples:

(1) For individuals: Whether to attend college; whether to marry; choice of occupation; number
of children; whether to buy ahouse; what brand of automobile to purchase; whether to migrate,
and if so where; where to go on vacation.

(2) For firms: Whether to build a plant, and if so, at what location; what commodities to
produce; whether to shut down, merge or acquire other firms; whether to go public or private;
whether to accept union demands or take a strike.

For sound econometric analysis, one needs probability model sthat approximate thetrue data
generation process. Tofindthese, itisnecessary tothink carefully about the economic behavior, and
about the places where random factors enter this behavior. For ssmplicity, we initially concentrate
on asingle binomial (YesNo) response. An exampleillustrates the process:

Y ellowstone National Park has been overcrowded in recent years, and large user feesto control
demand are under consideration. The National Park Service would like to know the elasticity
of demand with respect to user fees, and the impact of a specified fee increase on the total
number of visitorsand onthevisitorsby incomebracket. Theresultsof alarge household survey
are available giving household characteristics (income, number of children, etc.), choice of
vacation site, and times and costs associated with vacations at alternative sites. Each vacation
IS treated as an observation.

Start with the assumption that households are utility maximizers. Then, each household will have
an indirect utility function, conditioned on vacation site, that gives the payoff to choosing this
particular site and then optimizing consumptionin light of thischoice. Thisindirect utility function

Page 1, Chapter 1-1



will depend on commaodity prices and on household income net of expenditures mandated by the
vacation site choice. It may aso contain factors such as household tastes and perceptions, and
unmeasured attributes of sites, that are, from the standpoint of the analyst, random. (Some of what
appears to be random to the analyst may just be heterogeneity in tastes and perceptions over the
population.) Now consider the difference between theindirect utility of aY ellowstone vacation and
the maximumindirect utilities of alternative uses of leisure. Thisisafunctiony” =f(z,{) of observed
variables z and unobserved variables{. We put a"*" on the utility differencey to indicate that is
latent rather than observed directly. Includedinzarevariablessuch ashouseholdincome, wagerate,
family characteristics, travel time and cost to Y ellowstone, and so forth. The form of this function
will begoverned by the nature of indirect utility functionsand the sourcesof {. Insomeapplications,
it makes sense to parameterize the initial indirect utility functionstightly, and then takef to be the
function implied by this. Often, it is more convenient to take f to be a form that is flexibly
parameterized and convenient for analysis, subject only to the generic properties that a difference
of indirect utility functions should have. In particular, it isamost always possible to approximate
f closely by afunction that is linear in parameters, with an additive disturbance: (z,0) = xp - &,
where f is a kx1 vector of unknown parameters, x is a 1xk vector of transformations of z, and
e = -f(z,0) + Ef(z,{) is the deviation of f from its expected value in the population. Such an
approximation might come, for example, fromaTaylor'sexpansion of Efinpowersof (transformed)
observed variables z.

Suppose the gain in utility from vacationing in Y ellowstone rather than at an alternative siteis
indeed given by y' = xB - £. Suppose the disturbance ¢ isknown to the household and unknown to
the econometrician, but the cumulative distribution function (CDF) of € isafunction F(e) that is
known up to a finite parameter vector. The utility-maximizing household will then choose
Yellowstoneif y* > 0, or e <xB. The probability that this occurs, given x, is

P(e < xPB) = F(xB).

Definey = 1if Yellowstone is chosen, y = -1 otherwise; then, y is an (observed) indicator for the
eventy’ > 0. The probability law governing observed behavior isthen, in summary,

B F(xB) ify=1
P/Ixp) = {1 ~F(@) ify=-1"

Assume that the distribution of € is symmetric about zero, so that F(e) = 1 - F(-¢); thisis not
essential, but it simplifies notation. The probability law then has an even more compact form,

P(y|xB) = F(yxB) .

How can you estimate the parameters §? An obviousapproachismaximum likelihood. The
log likelihood of an observation is

I(B[y.x) =log P(y|xp) = log F(yx) .

If you have arandom sample with observationst = 1,...,T, then the sample log likelihood is
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.
L:(B)= )Y logF(yx®).

t=1

The associated score and hessian of the log likelihood are
T

vﬁLT(B) = tht/ F/(thtB)/ F(thtB)

t=1

T
Viglr(B) = tXI: X/ X{ F" (yxB)F(yxB) - [F' (yxB)/F(yxp)1%} -

A maximum likelihood program will either ask you to provide these formula, or will calcul ate them
for you analytically or numerically. If the program converges, thenit will thenfind avalueof  (and
any additional parameters upon which F depends) that are (at |east) alocal maximum of L. It can
fail to converge to a maximum if no maximum exists or if there are numerical problems in the
evaluation of expressions or in the iterative optimization. The estimates obtained at convergence
will havetheusual large-samplepropertiesof MLE, provided theusual regularity conditionsaremet,
as discussed later.

It is sometimes useful to write the score and hessian in a slightly different way. Let d =
(y+1)/2; thend = 1 for Yellowstone, d = O otherwise, and d isan indicator for a'Y ellowstone trip.
Then, we can write

I(y|x,B) = dlog F(xp) + (1-d)-log F(-xp).

Differentiating this expression, and noting that F'(xp) = F'(-x), we get
Vil = xF' (xB{ d/F(xB) - (1-d)/F(-xB)} = w(xp)-x-[d - F(xP)],

where w(xp) = F'(XB)/F(xB)F(-xp). The sample scoreisthen

T

VBLT(B) = W(Xtﬁ)'Xt"[dt - F(XtB)] .

t=1
The MLE condition that the sample score equal zero can beinterpreted as aweighted orthogonality
condition between a residua [d - F(xB)] and the explanatory variables x. Put another way, a
weighted non-linear least squares (NLLS) regression d, = F(x,8) + n,, with observation t weighted
by w(x)*, will be equivalent to MLE.*

The hessian can also be rewritten using d rather thany: Vgl = -x’x-S(xp), where (xB) =

L 0.) S | Fro®)  FOB)AL-2F(p)) ™ o of s
FOB)F(P) [d- F(xB)] FORFC®  FopFop? | e expectation of S(xB)

Tobe precise, iterated NLLS, with the B appearing in the weighting function replaced by the last iterate, will converge to the
MLE estimator; asingle NLLS without weighting provides estimates of  that are consistent and asymptotically normal, but not
asymptotically efficient; and one iterate with weights calcul ated from a consistent estimator of  will be asymptotically equivalent
to MLE.
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F'(8,)°
FOB)F(-xB,)

in sufficiently large samplesis eventually amost surely negative definite in a neighborhood of j,.

It should be clear from the sample score, or the analogous NLLS regression, that the
distribution function F enters the likelihood function in an intrinsic way. Unlike linear regression,
thereis no simple estimator of B that rests only on assumptions about the first two moments of the
disturbance distribution.?

thetruevaluep,is > 0, so that the sample sum of the hessians of the observations

2. FUNCTIONAL FORMSAND ESTIMATORS

In principle, the CDF F(e) will have aform deduced from the application; in many cases, this
form would naturally be conditioned on the observed explanatory variables. However, an amost
universal practice isto assume that F(e) has one of the following standard distributions that are not
conditioned on x:

(1) Probit: Fisstandard normal.

(2) Logit: F(e) = 1/(1+€®), the standard logistic CDF.

(3) Linear: F(e) =¢, for 0 < € < 1, the standard uniform distribution.
(4) Log-Linear: F(e) = €, for € < 0, astandard exponential CDF.

There are many canned computer programs to fit models (1) or (2). Model (3) can befit by
linear regression, although heteroscedasticity isanissue. Model (4) is not usually acanned program
whenoneisdealingwithindividual observations, but for repeated observationsat each configuration
of x itisaspecia case of the discrete analysis of variance model that iswidely used in biostatistics
and can be fitted using ANOVA or regression methods. Each of the distributions above has the
property that the function s(xp) that appears in the hessian is globally positive, so that the log
likelihood function isglobally concave. Thisisconvenient inthat any local maximum isthe global
maximum, and any stabl e hill-climbing algorithm will alwaysget to theglobal maximum. Thelinear
and log-linear distributions are limited inrange. Thisistypically not aproblemif therange of x is
such that the probabilities are bounded well away from zero and one, but can be a serious problem
when some probabilities are near or at the extremes, particularly when the model is used for
forecasting.

The remainder of this section deals with some alternatives to maximum likelihood
estimation, and can be skipped on first reading. Recall that MLE chooses the parameter vector  to
achieve orthogonality between the explanatory variables x, and residuals d - F(xp), with weights
w(XpB). When the explanatory variablesaregrouped, or for other reasonsthereare multipleresponses
observed for the same x, thereisanother estimation procedurethat isuseful. Letj=1,...,Jindex the
possible x configurations, m; denote the number of responses observed at configuration x;, and s

AWe will seelater that there are some more robust esti mators, not as simple, that avoid having to place F in a parametric
family, or use a non-parametric estimate of F. Sometimes assumptions on F are sufficiently problematic so this extra complexity
isworth the trouble.
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denote the number of "successes' among these responses (i.e., the number withd = 1). Letp, =
F(x;B,) denote the true probability of a success at configuration x;. Invert the CDF to obtain ¢, =
F*(p) =x;B. Notethat p=F(c) impliesdc/dp = 1/F'(c) and 6°c/op? = - F"(c)/F'(c)®. Then,aTaylor's
expansion of F*(s/my) about p; gives

sm-p  (§m-p)? F'(F )
F'(F (p)) 2 F'(F ()

=XPrvi+g,

Fi(s/m) =FX(p) +

whereq isapoint between p, and s/my, v, = (s/m; - p)/F'(F(p,)) isadisturbancethat has expectation
zero and avariance proportional to p,(1-p,)/m;, and §; isadisturbance that goesto zero in probability
relative to v;. Then, when the m, are all large (the rule-of-thumb is s > 5 and m-5 > 5), the
regression

Fi(s/m) =xB +v,

gives consistent estimates of . Thisis called Berkson's method. It can be made asymptotically
equivalent to MLE if aFGL S transformation for heteroscedasticity is made. Note however that in
genera thistransformation isnot even defined unless s isbounded away from zero and my, soit does
not work well when some x’s are continuous and cell counts are small. Note that Berkson's
transformation in the case of probit is ®*(s/m,); in the case of logit is log(s/(m;-s)); in the case of
linear is s; and in the case of the exponential model islog(s/my). Itisafairly general proposition
that the asymptotic approximation isimproved by using thetransformation F*((5+0.5)/(m;+1)) rather
than F*(s/m)) as the dependent variable in the regression; for logit, this minimizes the variance of
the second-order error.

Thereis an interesting connection between the logit model and a technique called normal
linear discriminant analysis. Suppose that the conditional distributions of x, givend =1 or given
d = 0, are both multivariate normal with respective mean vectors p, and p, and a common
covariance matrix Q. Note that these assumptions are not necessarily very plausible, certainly not
If some of the x variables are limited or discrete. If the assumptions hold, then the means 1, and
and the covariance matrix Q can be estimated from sample averages, and by Bayes law the
conditional distribution of d givenx when aproportion g, of the population has stated = 1 hasalogit
form

P(d=1/) = q,N(X-11,,Q) _ 1
N MG Q) + AN, Q) 1+ exp(-a-xp)

wherep = Q™ (u,-H,) and o = W, QM - B’ Q M, + 10g(a,/q,). Thisapproach producesafairly robust
(although perhaps inconsistent) estimator of the logit parameters, even when the normality
assumptions are obviously wrong.

3. STATISTICAL PROPERTIESOF MLE

The MLE estimator for most binomial response modelsisaspecia case of the general setup
treated in the statistical theory of MLE, so that theincantation " consistent and asymptotically normal
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(CAN) under standard regularity conditions' istrue. Thisisasimple enough application so that it
is fairly straightforward to see what these "regularity” conditions mean, and verify that they are
satisfied. Thisisathought exercise worth going through whenever you are applying the maximum
likelihood method. First, hereisalist of fairly general sufficient conditionsfor MLE to be CANin
discrete response models; these are taken from M cFadden "Quantal Response Models", Handbook
of Econometrics, Vol. 2, p. 1407. Commentaries on the assumptions are giveninitalics.

(1) Thedomain of the explanatory variablesis ameasurable set X with aprobability p(x). This
just means that the explanatory variables have a well-defined distribution. It certainly holdsif
the domain (support) of X isa closed set, and p is a continuous density on X.

(2) The parameter spaceisasubset of R¥, and the true parameter vector isin theinterior of this
space. Thissaysyou have a finite-dimensional parametric problem. Thisassumption does not
require that the parameter space be bounded, in contrast to many sets of assumptions used to
conclude that MLE are CAN. Therestriction that the true parameter vector be in the interior
excludes some cases where CAN breaks down. This is not a restrictive assumption in most
applications, but it is for some. For example, suppose a parameter in the probit model is
restricted (by economic theory) to be non-negative, and that this parameter isin truth zero.
Then, its asymptotic distribution will be the (non-normal) mixture of a half-normal and a point
mass.

(3) Theresponse model ismeasurablein x, and for amost all x iscontinuousin the parameters.
The standard models such as probit, logit, and the linear probability model are all continuous
in their argument and in X, so that the assumption holds. Only pathological applications in
which a parameter determines a "trigger level” will violate this assumption.

(4) Themode satisfiesaglobal identification condition (that guaranteesthat thereisat most one
global maximum; see McFadden, ibid, p. 1407). The concavity of the log likelihood of an
observation for probit, logit, linear, and log linear models guarantees global identification,
provided only that the x's are not linearly dependent.

(5) The model isonce differentiable in the parametersin some neighborhood of the true values.
Thisissatisfied by the four CDF from Section 2 (provided parameters do not give observations
on the boundary in the linear or log linear models where probabilities are zero or one), and by
most applications. Thisis weaker than most general MLE theorems, which assume the log
likelihood istwice or three times continuously differentiable.

(6) The log likelihood and its derivative have bounds independent of the parameters in some
neighborhood of the true parameter values. Thefirst derivative has a Lipschitz property in this
neighborhood. This property is satisfied by the four CDF, and any CDF that are continuously
differentiable.
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(7) The information matrix, equal to the expectation of the outer product of the score of an
observation, is nonsingular at the true parameters. This is satisfied automatically by the four
CDF in Section 2, provided the x’s are not linearly dependent.

Theresult that conditions (1)-(7) guarantee that MLE estimates of 3 are CAN iscarried out
essentially by linearizing the first-order condition for the estimator using a Taylor’s expansion, and
arguing that higher-order terms than the linear term are asymptotically negligible. With lots of
differentiability and uniform bounds, thisisan easy argument. A few extratricksare needed to carry
this argument through under the weaker smoothness conditions contained in (1)-(7).

4. EXTENSIONS OF THE MAXIMUM LIKELIHOOD PRINCIPLE

The assumptions under which the maximum likelihood criterion produces CAN estimates
include, critically, the condition (2) that the parametric family of likelihoods that are being
maximized include the true data generation process. There are several reasonsthat this assumption
can fail. First, you may have been mistaken in your assumption that the model you have written
down includes the truth. This might happen in regression analysis because some variable that you
think does not influence the dependent variable or is uncorrelated with the included variables
actually does belong in the regression. Or, in modeling a binomial discrete response, you may
assume that the disturbance in the model y* = xp - ¢ is standard normal when it isin truth logistic.
Second, you may deliberately write down a model you suspect is incorrect, smply because it is
convenient for computation or reduces data collection problems. For example, you might write
down amodel that assumesobservationsareindependent even though you suspect they arenot. This
might happenindiscrete responseanalysiswhereyou observe several responsesfrom each economic
agent, and suspect there are unobserved factors such astastes that influence all the responses of this
agent.

What arethe statistical consequencesof thismodel misspecification? Theanswer isthat this
will generally causethe CAN property tofail, but in somecasesthefailureislessdisastrousthan one
might think. The most benign situation arises when you write down alikelihood function that fails
to use al the available data in the most efficient way, but is otherwise consistent with the true
likelihood function. For example, if you have several dependent variables, such as binomial
responses on different dates, you may write down amodel that correctly characterizes the marginal
likelihood of each response, but fails to characterize the dependence between the responses. This
setup is called quasi-maximum likelihood estimation. What may happen in this situation is that not
all the parametersin the model will be identified, but those that are identified are estimated CAN,
although not necessarily with maximum efficiency. In the example, it will be parameters
characterizing the correlations across responses that are not identified. Also fairly benign is a
method called pseudo-maximum likelihood estimation, where you write down alikelihood function
with the property that the resulting maximum likelihood estimates are in fact functions only of
selected moments of the data. A classic example is the normal regression model, where the
maximum likelihood estimates depend only on first and second moments of the data. Then the
estimates that come out of this criterion will be CAN even if the pseudo-likelihood function is
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misspecified, solong asthetruelikelihood function and the pseudo-likelihood function coincidefor
the moments that the estimators actually use.

More tricky is the situation where the likelihood you write down is not consistent with the
truelikelihood function. Inthiscase, the parametersin the model you estimate will not necessarily
match up, even in dimension, with the parameters of the true model, and there is no real hope that
you will get reasonable estimates of these true parameters. However, even here there is an
interesting result. Under quite general conditions, it is possible to talk about the "asymptotically
least misspecified model”, defined as the model in your misspecified family that asymptotically has
the highest log likelihood. To set notation, suppose f(y|X) is the true data generation process, and
o(y|x,B) is the family of misspecified models you consider. Define 3, to be the parameters that
maximize

E, f(y[x)-log g(y|x.B).

Then, B, determines the least misspecified model. While 3, does not characterize the true data
generation process, and the parameters as such may even be misleading in describing this process,
what is true is that B, characterizes the model g that in a "likelihood metric" is as close an
approximation as one can reach to the true data generation process when one restricts the analysis
to the g family. Now, what is interesting is that the maximum likelihood estimates b from the
misspecified model are CAN for 3, under mild regularity conditions. A colloquial way of putting
thisisthat MLE estimates are usually CAN for whatever it isthey converge to in probability, even
if the likelihood function is misspecified.

All of the estimation procedures just described, quasi-likelihood maximization,
pseudo-likelihood maximization, and maximization of a misspecified likelihood function, can be
interpreted as special cases of a general class of estimators called generalized method of moment
estimators. Oneof theimportant features of these estimatorsisthat they have asymptotic covariance
matricesof theform I'™*XI""*, whereI” comes from the hessian of the criterion function, and X comes
from the expectation of the outer product of the gradient of the criterion function. For true maximum
likelihood estimation, thisform reducesto X, but more generally thefull form I'*XI""* isrequired.

One important family of quasi-maximum likelihood estimators arises when an application
hasalikelihood functionintwo sub-vectorsof parameters, anditis convenient to obtain preliminary
CAN estimates of one sub-vector, perhaps by maximizing aconditional likelihood function. Then,
thelikelihood is maximized in the second sub-vector of parametersafter plugginginthe preliminary
estimates of the first sub-vector. Thiswill be a CAN procedure under general conditions, but it is
necessary to use a formula of the form I'*XI""* for its asymptotic covariance matrix, where X
includes a contribution from the variance in the preliminary estimates of the first sub-vector. The
exact formulas and estimators for the terms in the covariance matrix are given in the lecture notes
on generalized method of moments.

5. TESTING HYPOTHESES
It isuseful to see how the general theory of large sample hypothesis testing plays out in the

discrete response application. For motivation, return to the example of travel to Y ellowstone Park.
The basic model might be binomial logit,
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P(y|xB) = F(yxB) = L/(1 + exp(-yxp)),

where x includes travel time and travel cost to Yellowstone, and family income, all appearing
linearly:
XB=TTP+ TCP, + I'B3 + Py,

with TT = travel time, TC = travel cost, | = income. The parameter 3, is an intercept term that
captures the "average" desirability of Y ellowstone relative to alternatives after travel factors have
been taken into account. The Park Serviceis particularly concerned that an increase in Park entry
fees, which would increase overall travel cost, will have aparticularly adverse effect onlow income
families, and asks you to test the hypothesis that sensitivity to travel cost increases asincomefalls.
This suggests the alternative model

XB=TT-P; + TCB, + B3+ B, + B TCI,

with the null hypothesisthat 3; = 0. Thishypothesis can be tested by estimating the model without
the null hypothesisimposed, so that . isestimated. TheWald test statistic isthe quadratic form (b
- 0)'V(by)*(bs - 0); it isjust the square of the T-statistic for this one-dimensional hypothesis, and it
Isasymptotically chi-square distributed with one degree of freedom when the null hypothesisistrue.
When the null hypothesisisnon-linear or of higher dimension, the Wald statistic requiresretrieving
the covariance matrix of the unrestricted estimators, and forming the matrix of derivatives of the
constraint functions evaluated at b. An aternative that is computationally easier when both the
unrestricted and restricted models are easy to estimate is to form the Likelihood Ratio statistic
2[L+(b) - L+(b*)], where b and b* are the estimates obtained without the null hypothesis and with
the null hypothesis imposed, respectively, and L; is the sample log likelihood. This statistic is
asymptotically equivalent to theWald statistic. Finally, the Lagrange Multiplier statistic isobtained
by estimating the model under the null hypothesis, evaluating the score of the unrestricted model at
the restricted estimates, and then testing whether this scoreis zero. In our example, thereisasdlick

way to do this. Regress a normalized residua [d, - F(x,0)]/ F(xb)F(-xb) from the restricted

model on the weighted explanatory variables x- F'(xb)/ F(xb)F(-xb) . that appear in the

unrestricted model. The F-test for the significance of the explanatory variablesin thisregressionis
asymptotically equivalent to the Lagrange Multiplier test. The reason this trick works is that the
Lagrange Multiplier test isatest of orthogonality between the normalized residual and the weighted
variablesin the unrestricted model.

6. MULTINOMIAL RESPONSE
Conceptualy, it is straightforward to move from modeling binomial response to modeling
multinomial response. When consumers or firms choose among multiple, mutually exclusive

aternatives, such as choice of brand of automobile, occupation, or plant location, it is natural to
introduce the economic agent’s objective function (utility for consumers, profit for firms), and
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assume that choice maximizes this objective function. Factors unobserved by the analyst,
particularly heterogeneity in tastes or opportunities, can beinterpreted asrandom componentsinthe
objective functions, and choice probabilities derived as the probabilities that these unobserved
factors are configured so as to make the respective alternatives optimal.

Supposethereare Jalternatives, indexed C={1,...,J} , and suppose the economic agent seeks
to maximize an objective function U(z,s,v;), where z, are observed attributes of alternativei, sare
characteristics of the decision maker, and v, summarizesall the unobserved factorsthat influencethe
attractiveness of alternativei. Then, the multinomial response probability is

P<(i|z9) = Prob({v|U(z,sv)) > U(z,sv) for j = i}),

where z = (z,,...,z;). For example, if C = {1,...,J} is the set of automobile brands, with z the
attributes of brand i including price, size, horsepower, fuel efficiency, etc., then this model can be
used to explain brand choice, or to predict the shares of brands as the result of changing prices or
new model introductions. If one of the alternativesin Cisthe "no purchase" alternative, the model
can describe the demand for cars as well as brand choice. If C includes both new and used
alternatives, then it can explain replacement behavior. If i € Cidentifiesaportfolio of two brands,
or one brand plus a"no purchase", it can explain the holdings of two-car families.

Placing U in aparametric family and making v arandom vector with aparametric probability
distribution produces a parametric probability law for the observations. However, it is difficult to
do thisin away that leads to simple algebraic forms that do not require multivariate integration.
Consequently, the development of multinomial response models has tended to be controlled by
computational issues, which may not accommodate some features that might seem sensible given
theeconomic application, such ascorrelation of unobservablesacrossalternative portfoliosthat have
common elements.

The simplest multinomia response model is multinomial logit (MNL), which has a closed
form

P(i|z,) = exp(xB)/ Z exp(x;B),
jeC
where x; is a vector of known functions of z, and s. This model is derived from the maximizing
framework above by assuming U(z;,s,v;) = X, + ¢, with the g; independently identically distributed

with the special CDF  exp(-e “ ), termed the Type| extreme value distribution.

The likelihood of observation n from aMNL model for choicefrom Cis

ln: Z din'log(PCn(i))l

ieC
where Po,(i) = e / Y & | and d, =1 indicates choice and d,, = O for non-chosen
keC

aternatives. The gradient, or score, is
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Sﬁzvﬁln: Z din'[xin' Z an'PCn(k)]

ieC keC

= Y b Pe] % = Y [t~ Pl Xicn

ieC ieC

wherexg, = Y. Pey(i)Xin
ieC
The score has the interpretation of requiring orthogonality in the sample between the explanatory
variables x;,, and the residuals d,, - P, (i). The hessian, or information matrix, is

Hn = 'Vﬁﬁln = Z PCn(i)'[Xin - XCn]'[xin - XCn] ',
ieC

The matrix H, is positive semi-definite, and the expectation of H, will be positive definite so long
asthe x;, are not linearly dependent. This assures that the log likelihood function is concave.

N
Consider thesampleloglikelihood L, = [,. Any parameter vector that setsthe sample

n=1
score to zero will also be aglobal maximum, and standard iterative maximization by a procedure
like Newton-Raphson will converge to a global maximum.®> The Newton-Raphson iterative
adjustment in parameters will be

,1 N
Y s

n=1

N 1N
(Z Z PCn(I) 'XiCnXiCnl) Z Z Xi(:n'[din - PCn(i)]v

n=1 ieC n=1 ieC

N
Ap= (Z H,
n=1

Where Xic, = Xin = Xen = Xin = Y, Pou(i)Xin  The adjustment A can also be interpreted as the
ieC

estimates of the coefficients from alinear regression of [d,, - Pc,(i)]/ /P.,(i)  onthe variables

J/Pci(i)  “Xicn- This has the same form as a Lagrange Multiplier test statistic, and one can write

down a criterion for convergence that is identical to a LM test of whether the last iterate of the
parameter vector is the true parameter vector. (One would want to accept the hypothesis and stop
iterating only if there is very little probability of a type Il error, accepting a false hypothesis.

A step size adjustment may speed convergence or avoid "overshooting” that could interfere with convergence.
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Therefore, the convergence criterion should use thisLM statistic with avery large type | error, say
99.9%.)

One implication of the MNL model is that the ratio of the probabilities of two aternatives
i and j depends only on x; and x;, and not on the presence or properties of other aternatives; i.e.,

P ()/P(G) = €% . Thisis caled the Independence from Irrelevant Alternatives (I1A)

property. Thisisavery restrictive property when x;,, depends only on attributes of alternativei for
each i. It implies patterns of cross-elasticities of substitution that are implausible for many
applications. For example, aMNL model of the multinomial choice of school for graduate study in
economics makes no allowance for the possibility that there may be unobserved factors shared by
several schools (e.g., the Northern California location of Berkeley and Stanford), so that
discrimination within this class (which we might cal the "blue department” and the "red
department”) islikely to be sharper than it is between one of these departments and an East Coast
department such as Princeton. The lIA property is a powerful restriction which if true can greatly
simplify estimation and forecasting, and if false produces a misspecified model that can give
misleading estimates and forecasts. The IIA property isnot on its face particularly plausible, and
what isremarkable about the MNL model isthat it often performswell inforecasting situationseven
when |1 A doesnot appear to bereasonable. However, it isimportant to understand the consequences
of thellA property of MNL, and to develop modelsfor discrete response that can be used when 11A
Isclearly invalid.

7.ALTERNATIVESTO THE MNL MODEL FOR MULTINOMIAL RESPONSE

Asin the derivation of the MNL model, associate with aternative i in afeasible set C a
"payoff" u; = z + ¢;, which in the case of consumer choice may be the indirect utility attached to
alternative i and in the case of firm choice may be profit from alternativei. The z are observed
explanatory variables, and the ¢; are unobserved disturbances. Observed choice is assumed to
maximize payoff: y, = 1(u, > u, for j € C). One form of this model is a random coefficients
formulation u; = za, Ea = B, & = z(a - B), implying cov(e;,g;) = z-:Cov(a)z' . For C={1,..,J},
define u, z, €, and y to be Jx1 vectors with components u,, z, €;, y;, respectively. Define a (J-1)xJ
matrix A; by starting from the JxJ identity matrix, deleting row i, and then replacing column i with
the vector (-1,...,-1). For example, letting 1,, denote a (J-1)x1 vector of ones and | ,, denote an
identity matrix of dimension J-1, one has

Ap=1[-15; 4]

Then alternativei ischosenif Aju < 0. The probability of thisevent is

P.(z,0) = Pr(Au < 0/2,0) = f

Aju<

f(u|z,0)du,
0

wheref(u|z,0) isthe conditional density of u given z. The parameters 6 include the slope parameters
B and any additional parameters characterizing the distribution of the disturbances €. The
multivariate integral defining P,(z,0) can be calculated analytically in specia cases, notably
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multinomial logit and its generalizations. However, for most densities the integral is analytically
intractable, and for dimensions much larger than J =5 is also intractabl e to evaluate with adequate
precision using standard numerical integration methods. Then, the four practical methods of
working with random utility modelsfor complex applicationsare (1) use of nested multinomial logit
and related specializations of Generalized Extreme Value (GEV) models, (2) use of multinomial
probit with special factor-analytic structure to provide feasible numerical integration; (3) use of
multinomial probit with simulation estimators that handle high dimensions; and (4) use of mixed
(random coefficients) multinomial logit, with simulation procedures for the coefficients.

GEV Models

Assumethat theindirect utility of i can be written u, = v, + ¢, with ¢, adisturbance and v, the
systematic part of utility, depending on observed variables and unknown parameters. For example,
one might havev, = a(y-t) + yX;, wherey isincome, t; isthe cost of alternativei (including costs of
time), and ¢; is a part that varies randomly across consumers. Thetermsa, y are parameters.

The e’'s have ajoint CDF of generalized extreme value (GEV) form if

F(e,...e) = exp(-HEe ™ ,.e 7)),

where (i) H(w,,...,w;) isanon-negative linear homogeneous function of w > 0, satisfying (ii) if any
argument goes to +e°, then H goes to +-; and (iii) the mixed partial derivatives of H exist, are
continuous, and aternate in sign, with non-negative odd mixed derivatives. A function H with
properties (i) - (iii) will be termed a GEV generating function.

Theoreml. SupposeH(w) for w = (w,,...,w;) iISaGEV generating function. Then, F(e) isaCDF
with Extreme Value Type | univariate marginals. Further the random utility model u, = v; + ¢;
with e distributed F(e) satisfies

Emax u=log HE" ,.e"” )+E,
where E = 0.5772156649 is Euler’s constant, and the choice probabilities satisfy

P= e ‘H (" ,.e"” )HeEe" ,.e").

J
Thelinear functionH= Y  w;isaGEV generating functionwhich yieldsthe multinomial
i=1
logit (MNL) model. The following result can be used to build up complex choice models. In this
theorem, the sets A and B are not required to be mutually exclusive.

Theorem?2. If setsA B satisfy AuB ={1,...,J}, H*(w,) and H®(w;) are GEV generating functions
inw, and wy, respectively, and if s> 1, then H(w) = H*(w,%"s + H®(w;) isa GEV generating
functionin (wy,...,w;).
One can use this theorem to show that athree-level nested MNL model is generated by afunction
H of theform
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M K . L ];
H= Y ) ZW_SmS/kSmSk ,
m-=1 k=1 [icA, I

where the A, partition{1,...,J} and s',,S,, > 1. Thisform correspondsto atree: m indexes major
branches, k indexes limbs from each branch, and i indexesthe final twigs. Thelarger s', or s,, the
more substitutable the alternativesin A,,.. If s', =s,, = 1, this model reduces to the MNL model.
The GEV model ismost efficiently estimated by MLE, but aconvenient (and numerically relatively
stable) method of getting preliminary estimatesisto proceed sequentially, starting at the innermost
nests. At each level of nesting, choice can be represented by a MNL model, which will however
depend on parameters estimated from deeper levels of nesting. Details of this estimation procedure
are given in McFadden (1984).

One interesting feature of GEV models is that they provide a convenient computational
formula for the exact consumers’' surplus associated with a policy that changes the attributes of
aternatives. Let v, = a(y-t) + v X' and v," = a(y-t) + vy X", where x;" is the vector of original
attributes and x;” isthe vector of improved attributes. Then, the willingness-to-pay for the change
fromx’' tox” is

wTp= 1. {Iog He",...e" - log H(evll,...,eV'J)} .
o

This is the "log sum" formula first developed by Ben Akiva (1972), McFadden (1973), and
Domencich and M cFadden (1975) for the multinomial logit model, and by M cFadden (1978, 1981)
for the nested logit model. Thisformulaisvalid only when the indirect utility function islinear in
income.

The MNP Model

A density that is relatively natural for capturing unobserved effects, and the patterns of
correlation of these effects across alternatives, isthe multivariate normal distribution with aflexible
covariance matrix. Thisistermed the multinomial probit model. If € = z&, where & isinterpreted
asarandom variation in "taste" weights across observations with £ ~ N(0,Q2), then the transformed
variablew = Ajuismultivariate normal of dimension J-1 with mean A,z and covariance A;zQz'A;'.
Unless J < 5 or dimensionality can be reduced because & has a factorial covariance structure, the
resulting MNP response probabilities are impractical to calculate by numerical integration. The
method of simulated momentswasinitially developed to handle this model; see M cFadden (1989).

For dynamic applications (e.g., multiperiod binomial probit with autocorrel ation), and other
applications with large dimension, alternatives to simulation of the MNP model with a unrestricted
covariance matrix may perform better. McFadden (1984, 1989) suggests a "factor analytic* MNP
with a components of variance structure, starting from

K
u=zp+ My + oV,
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where &;,.... ¢, Vy,...,v; @e independent standard normal, with the &, interpreted as levels of
unobserved factors and the ), as the loading of factor k on aternativei. The\'s are identified by
normalizations and exclusion restrictions. The choice probabilities for this specification are

Po)= [~ oew) i 0(&d)
Joo Jotr ]

Vj=— 1

9 ﬁ o (-2)B + LAy Al & + oy,

O;

av;dg, -y

Numerical integration (when K+1 < 5) or simulation methods can be used to approximate this
function and its derivatives for purposes of approximate maximum likelihood estimation. If
simulation is used, two important rules should be followed: First, the Monte Carlo draws used for
simulation should be made once and then frozen over the course of iterative search for parameters.
This avoids "chatter" that can destroy the statistical properties of simulation-based estimators.
Second, the number of simulation draws per observation should rise faster than the square root of
samplesize. Thiswill assure that the simulation is asymptotically negligible, and cannot interfere
with the CAN properties of MLE.

Mixed MNL (MMNL)

Mixed MNL is a generalization of standard MNL that shares many of the advantages of
MNP, allowing a broad range of substitution patterns. Train and McFadden (1999) show that any
regular random utility model can be approximated as closely as one wants by a MMNL model.
Assumevu, = za + g;, with theg, independently identically Extreme Valuel distributed, and o random
with density f(a;0), where 6 is a vector of parameters. Conditioned on a,

Lzla)= e /Y, e .
Unconditioning on a,

P@EO)= [ Lizo)f(oo)da.
Thismodel can beestimated by sampling randomly from f(a;60), approximating P,(z|0) by anaverage
inthisMonte Carlo sample, and varying 6 to maximizethelikelihood of the observations. Caremust
betakentoavoid chatter inthedrawswhen 6 varies. The MMNL model has proved computationally
practical and flexible in applications. It can approximate MNP models well, and provides one
convenient route to specification of models with flexibility comparable to that provided by MNP.

8. TESTSFOR THE IIA PROPERTY OF MNL
Alternatives to the MNL model may be derived from random utility models in which
subsets of aternatives have disturbances ¢, that are correlated, perhaps because of common

unobserved attributes. Common components of disturbances cancel out of the determination
of choicewithin such asubset. Asaresult, discrimination of differencesin observed attributes
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Is sharper in asubset than overal; thereisless random noise to blur discrimination. Testsfor
the presence of sharper discrimination in subsets isthen atest of the I1A property of the MNL
model.

For any discrete response model, including but not limited to MNL, let s, denote the
score of an observation, and H,, the negative of the hessian for an observation. A Taylor's
expansion of the sample score about the maximum likelihood estimator establishesthat inlarge
samples

N N
b- ﬁo = ( Z Hn)-l( Z Sn) + O(N-llz)l

n=1 n=1

N
and the covariance matrix of b - B, is approximately Q = ( Z H.)*, where all expressions
n=1
areevauated at B,. Insufficiently large samples, bis approximately normally distributed with
mean 3, and covariance matrix €2, and the quadratic form

N N N
(b-Bo)'Qc*(b - Bo) = ( S)'( Ho)™( S)
n=1 n=1 n=1
Is approximately chi-squared distributed with degrees of freedom equal to the dimension of 3.
Thisis a Wald test statistic for the null hypothesis that B = B,. It can also be applied to a
subvector of B, with the commensurate submatrix of Q" inthe center of the quadratic form, to
test the null hypothesis that this subvector takes on specified values.
We describe a series of hypothesis testing procedures that can be interpreted astests of
thellA property of MNL. Wewill show aconnection between these stati stics and conventional
test statistics for omitted variables.

Hausman-McFadden I1A Test:*

Estimate the MNL model twice, once on afull set of alternatives C, and second on a
specified subset of alternatives A and the subsamplewith choicesfrom thissubset. If [1A holds,
the two estimates should not be statistically different. If 1A fails, then there may be sharper
discrimination within the subset A, so that the estimates from the second setup will be larger
in magnitude than the estimates from the full set of aternatives. Let 8, denote the estimates
obtained from the second setup, and Q2,, denotetheir estimated covariancematrix. Let 3. denote
the estimates of the same parameters obtained from the full choice set, and Q. denote their
estimated covariance matrix. (Some parameters that can be estimated from the full choice set
may not be identified in the second setup, in which case . refersto estimates of the subvector
of parameters that are identified in both setups.) Consider the quadratic form

(Be - Ba)'(Q4 - Q) (Be - Ba) -
Thishas achi-square distribution when 1A istrue. In calculating thistest, one must be careful
to restrict the comparison of parameters, dropping components as necessary, to get Q, - Q.

“Hausman-McFadden, Econometrica, 1984.
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non-singular. When thisis done, the degrees of freedom of the chi-square test equals the rank
of Q, - Q.. The simple form of the covariance matrix for the parameter difference arises
because 3. is the efficient estimator for the problem.

McFadden omitted variables test.

Estimate the basic MNL model, using al the observations; let P,, = P.(i) denote the
fitted model. Suppose A is a specified subset of alternatives. Create new variables in one of
the following three forms:

a If x;,, are the variablesin the basic logit model, define new variables

0~ PPy ificA
je

Zin = jGA

0 ifi ¢ A
The variables z,, can be written in abbreviated form as z;,, = ;s (Xi,, - Xan), Where §,, = 1 iff

e Aand Xy, = Y, PinaX; and P, is the conditional probability of choice of j given
JEA

choice from A, calculated from the base mode!.

b. If V,, = X, isthe representative utility from the basic model, calculated at basic model
estimated parameters, define the new variable

0~ PV P ificA
JE je

0 ifi ¢ A

or more compactly, z,, = §;a(Vin - Van)-

c. Define the new variable

log(P,,,.0) —kz Pl 00(P ) ificA
€A

0 ifi ¢ A

in = ’

where P,, , is calculated using the basic model estimates.

O The constructions b. and c. are the same. The denominators of the probabilities in the
expression -log(P,,») that appears in the type c. variable drop out, leaving the terms in the
construction b.

O Estimate an expanded MNL model that contains the basic model variables plus the new
variablesz,,. Thentest whether these added variablesare significant. If thereis asingle added

°p. McFadden, "Regression based specification tests for the multinomial logit model" Journal of Econometrics, 1987.
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variable, asin the construction b., then the T-statistic for this added variable is the appropriate
test statistic. More generally, one can form alikelihood ratio statistic

LR=2

with z’s without z’s

( Log Likeli hood) ( Log Likeli hood)

If I1A holds, thislikelihood ratio statistic has a chi-square distribution with degrees of freedom
equal to the number of added z variables (after eliminating any that are linearly dependent).

Properties:

O The test using variables of type a is statistically asymptotically equivalent to the
Hausman-M cFadden test for the subset of alternatives A.

O The test using variables of type b. is equivalent to a one-degree-of-freedom
Hausman-M cFadden test focused in the direction determined by the parameters 3. It will have
greater power than the previoustest if thereissubstantial variationintheV’'sacrossA. Itisalso
asymptotically equivalent to a score or Lagrange Multiplier test of the basic MNL model
against anested MNL model inwhich subjects discriminate more sharply between aternatives
within A than they do between alternatives that are not both in A. One minus the coefficient
of thevariable can beinterpreted as apreliminary estimate of theinclusive value coefficient for
the nest A.

O If there are subset-A-specific dummy variablesin the basic model, then someof the omitted
type a. variables are linearly dependent upon these variables, and cannot be used in the testing
procedure. Put another way, subset-A-specific dummy variables can mimic the effects of
increased discrimination within A due to common unobserved components.

O One may get arelection of the null hypothesis either if 11A isfalse, or if thereis some other
problem with the model specification, such as omitted variables or afailure of the logit form
due, say, to asymmetry or to fat tailsin the disturbances.

O Rejection of the IIA test will often occur when I1A is false, even if the nest A does not
correctly represent the pattern of nesting. However, the test will typically have greatest power
when A isanest for which an I1A failure occurs.

O Thetests described above arefor asingle specified subset A. However, itistrivia totest the
MNL model against several nests at once, simply by introducing an omitted variable for each
suspected nest, and testing jointly that the coefficients of these omitted variables are zero.
Alternative nestsin the test can be overlapping and/or nested. The coefficients on the omitted
variables and their T-statistics provide some guide to choice of nesting structure if the 11A
hypothesis fails.
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CHAPTER 2. SAMPLING AND SELECTION
1. INTRODUCTION

Economic survey dataare often obtained from sampling protocol sthat invol ve stratification,
censoring, or selection. Econometric estimators designed for random samples may beinconsi stent
or inefficient when applied to these samples. Several strands in the econometrics literature have
investigated estimators appropriate to such datac seminal papers of Heckman (1974) on sample
selection, and Manski and Lerman (1977) on choice-based sampling; further work on endogenous
stratification by Hausman and Wise (1977), Manski and McFadden (1981), Cosslett (1981), and
Hsieh, Manski, and McFadden (1984); and related work on switching regression by Goldfeld and
Quandt (1973, 1975), Madalla and Nelson (1974), and Lee and Porter (1984). This chapter
synthesizes this literature, and provides machinery that can be used to crank out estimators for a
variety of biased sampling problems.

When the econometrician can influence sample design, then the use of stratified sampling
protocols combined with appropriate estimators can be a powerful tool for maximizing the useful
information on structural parameters obtainable within a data collection budget.®

The estimation problem facing an econometrician can be described, schematically, in terms
of a contingency table relating a vector of exogenous variables z and a vector of endogenous
variablesy, asin the table below where each column and row correspondsto different valuesfor the
vector of variables. Thejoint distribution of (z,y) in the population is a probability

(D py) = Ply|zBn(@) = Qz|y)ay),

where P(y|z,3,) is the conditional probability of the endogenous vector y, given the exogenous
vector z, defined as a member of a parametric family with true parameter vector B,; p(z) is the
marginal distribution of the exogenous variables, obtained by a row sum in the table; q(y) is the
marginal distribution of y, obtained by a column sum in the table; and Q(z|y) is the conditional
distribution of z given y, defined by Bayes law in equation (1).” We identify P(y|z,B,) as the
structural model of econometric interest; where by "structural” we mean that this conditional
probability law is invariant in different populations or policy environments where the marginal
distribution of zisaltered. A structural model will resultif thereisastable causal relationship from

® Stratification may in itself be economical, permitting the contacting and interviewing of subjects at reduced cost. In
addition, stratification may concentrate observationsin areas yielding high information on the behavior of economic interest.

" Inthis chapter, we will treat the data vector (z,y) as discrete. Thereisno fundamental change if some components of (z,y)
are continuous; it is merely necessary to replace summations with integrals with respect to appropriate continuous or counting
measures. There are additional technical assumptions required to assure measurability and integrability when some components
are continuous.
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z to y, with no contemporaneous feedback from y to z. One would expect this to be the case if z
describes the environment of an economic agent (e.g., prices, income) and y describes the agent’s
behavioral response (e.g., occupation choice, hours of labor supplied). However, there are many
economic applicationswhereit isareasonabl e approximation for policy anaysisto assumeP(y| z,3,)
Is a“reduced form” with the needed invariance property, without invoking strict assumptions on
causality.

Y1 Yo o | e Y3
z, | PilziBo)p(z)) | PYalziBop(z) | oo P(Y;[z1.B.)P(z1) | pP(zy)
z, | PVilzBo)P(zo) | PMYalzaBo)P(z) | oo P(Y;lz2B,)P(z,) | P(z,)
z¢ | PYilze.BoP(zd) | PYolza:BoP(zi) | oo P(Y;lze:Bo)P(z0) | P(z)
aly,) aly,) | . aly,) 1

A simple random sample draws independent observations from the population, each with
probability law P(y|z,3,)-p(z). Thekernel of thelog likelihood of this sample depends only on the
conditional probability P(y|z,), not on the margina density p(z); thus, maximum likelihood
estimation of the structural parameters 3, does not require that the marginal distribution p(z) be
parameterized or estimated.? In this sample, z isancillary to B, and the observation that it can be
conditioned out without loss of information on 3, can be elevated to ageneral principle of statistical
inference (Cox and Hinckley, 1974).

We next introduce anotation for stratified or biased samples. Suppose the dataare collected
from one or more strata, indexed s=1,..., S. Each stratum is characterized by a sampling protocol
that determines the segment of the population that qualifiesfor interviewing. Define R(z,y,s) to be
the qualification probability that a population member with characteristics (z,y) will qualify for the
subpopul ation from which the stratum s subsample will be drawn. Examples of sampling protocols
and their characterizations in terms of qualification probabilities follow:

1. Simple random subsample, with R(z,y,s) = 1.

2. Exogenous stratified sampling, with R(z,y,s) = 1if z € A for asubset A, of the universe
Z of exogenous vectors, R(z,y,s) = 0 otherwise. The set A, might define alocation, such as
acensus tract, or a socioeconomic characteristic such asrace. The protocol for identifying
the qualified subpopulation under locational stratification is typically to enumerate the
response units at a location, and then sample randomly from this enumeration. In the

8 The log likelihood of an observation islog P(y|z,B) + log p(z), and the kernel of thislog likelihood is the part that depends
on the parameter vector f3.
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contingency table, this corresponds to sampling randomly from one or more rows. The
protocol for identifying the qualified subpopulation using a socioeconomic criterion is
typically a screening interview. Exogenous stratified sampling can be generalized to
differential rates by permitting R(z,y,s) to be any function from (z,s) into the unit interval;
a protocol for such sampling might be, for example, a screening interview that qualifies a
proportion of the respondents that is a function of respondent age.

3. Endogenous stratified sampling, with R(z,y,s) = 1 if y € B,, with B, a subset of the
universe of endogenous vectors Y, and R(z,y,s) = 0 otherwise. The set B, might identify a
single alternative or set of alternatives among discrete responses, such as the subpopul ation
whose appliance and energy consumption choices include an air conditioner. Alternately,
B, might identify arange of acontinuous response, such as an income category. A classical
choice-based samplefor discrete response is the case where each response corresponds to a
different stratum. InFigure 1, endogenous sampling correspondsto sampling randomly from
oneor more columns. Endogenous sampleswith strata corresponding to single columnsare
called pure choice-based samples. Endogenous stratified sampling can be generalized to
qualificationinvolving both exogenousand endogenousvariables, with B,defined in general
as asubset of ZxY. For example, in a study of mode choice, a stratum might qualify bus
riders (endogenous) over age 18 (exogenous). It can also be generalized to differential
sampling rates, with a proportion R(z,y,s) between zero and one qualifying in a screening
interview.

4. Sample selection/attrition, with R(z,y,s) giving the proportion of the population with
variables (z,y) whose availability qualifies them for stratum s. For example, R(z,y,s) may
givethe proportion of subjectswith variables (z,y) that can be contacted and will agreeto be
interviewed, or the proportion of subjects meeting an endogenous selection condition, say
employment, that qualifies them for observation of wage (in z) and hours worked (iny).

Thejoint probability that a member of the population will have variables (z,y) and will qualify for

stratum sisR(z,y,s)-P(y|z,B,):p(z). Then for stratum s, the proportion of the population qualifying
into the stratum, or qualification factor®, is

@ re= ) Y Rzy9PYzs)nd,
z y
and the conditional distribution of (z,y) given qualification is

()  G(zyl9) = Rzy.9) Py|z.) p(/r (9).

A samplefrom stratum sis governed by the probability law G(zy|s). Notethat G(zy|s) dependson
the unknown parameter vector  and on the distribution p(z) of the explanatory variables. Insimple

% Theinverse of the qualification factor is called the raising factor.

Page 21, Chapter 2-3



cases of stratification, such as Examples 1-3 above, R(z,)y,s) is fully specified by the sampling
protocol. The qualification factor r(s) may be known, for example when stratification is based on
census tract with known sizes; estimated from the survey, for example when qualification is
determined by a screening interview; or estimated from an auxiliary sample. In case of attrition or
selection, R(z,y,s) may be an unknown function, or may contain unknown parameters.

Suppose a random sample of size ngis drawn from stratum s, and let N = )’ n, denote total
samplesize. Let n(z,y|s) denote the number of observationsin the stratum s subsample that fall in
cell (z,y).”° Then, thelog likelihood for the stratified sampleis

S

@ L= Y Y n(zy|srLog G(zy|s).
z y

s=1

Thislikelihood does not include screening or auxiliary data on the qualification factors, which will
be informative if these factors are unknown.

2. EXOGENOUS STRATIFIED SAMPLING
When the qualification probability R(z,y,s) isindependent of y, the qualification factor r(s)

= Y R(z9p(z) isindependent of B,, and the log likelihood function (4) separates into the sum
z

of akernel

S

® L=3 X X n@yl9LogPyzp)
s=1 z y

and terms independent of B. Hence, the kernel is independent of the structure of exogenous

stratification. This implies that estimators designed for random samples will have the same

properties in exogenously stratified samples. The information matrix for the likelihood function

under exogenous stratification,

S
R
6) J= Y Rz9p@ Y PylzBo)[V,Log Y|z [VsLog Py|z )],
s-1 z r(s) y
depends on the sample design. Then, exogenous stratification can be used to increase the
information available in a sample of given size; this is precisely the objective of classical
experimental design.

10 Note that n(z,y|s)/nisthe empirical probability measure for arandom sample of size n, from the population with law
G(z,y|9). Inthe case of discrete variables with afinite number of configurations, the n(z,yls) are simply cell counts. Nothingis
changed for continuous variables, except that technically one must consider stochastic limits of empirical processes.
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3. ENDOGENOUS STRATIFICATION

Suppose the qualification probability R(z,y,s) depends ony. Then the qualification factor

(2) depends on B, and the log likelihood function (4) has akernel depending in general not only on
B3, but also on the unknown marginal distribution p(z). Further, any unknowns in the qualification
probability also enter the kernel. There are four possible strategies for estimation under these
conditions:

1. Brute force -- Assume p(z) and, if necessary, R(z,y,s), are in parametric families, and
estimate their parametersjointly with . For example, in multivariate discrete dataanalysis,
an analysis of variance representation absorbs the effects of stratification, and alows oneto
back out the structural parameters. This approach is straightforward and needs no further
discussion for small problems, but is burdensome or infeasible when the Z variables have
many dimensions or categories, or are continuous.

2. Weighted Exogenous Sample Maximum Likelihood -- This is a pseudo-maximum
likelihood approach which starts from the likelihood function appropriate to a random
sample, and reweights the data (if possible) to achieve consistency. A familiar form of this
approachistheclassical survey research technique of reweighting asamplesothat it appears
to be random.

3. Conditional Maximum Likelihood -- This approach pools the observations across strata,
and then forms the conditional likelihood of y given z in thispool. This has the effect of
conditioning out the unknown density p(z).

4. Full Information Maximum Likelihood -- Thisapproach estimates p(z) nonparametrically
as afunction of the remaining parameters, and substitutesto concentrate the likelihood as
afunction of the finite parameter vector.

4. WEIGHTED EXOGENOUS SAMPLE MAXIMUM LIKELIHOOD (WESML)

Recall that the kernel of thelog likelihood for exogenous samplingisgiven by (5). Suppose

now endogenous sampling with truelog likelihood (4), and consider apseudo- maximum likelihood
criterion based on (5),

(7)

S

W(B) = Y Y n@y|sw(zy.s-Log P(y|zp),
z y

s=1

where w(z,y,s) is a weight introduced to achieve consistency. Assume that n/N - p as N - .
Then, using the notation “~_.” to denote almost sure convergence,

(8)

n(z,yls)/IN = [n(z,yls)ind-[nIN] - s G(z.yls)Hs

implying from (3) that
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S
9 WEIN- > W Y Y Gzyl)w(zy.s)LogPy|zp)
z y

s
=Y p@ Y { Y R@ySWZY.IUr(9}Py|zp,)Log Py|zp).
z y

s=1

A sufficient condition for consistency of the pseudo-maximum likelihood estimator is that the
bracketed term,

(20) XS: R(z,y,s)W(z,y,S)ndN-r(s)

s=1

be independent of y. Suppose r(s) is consistently estimated by f(s), from government statistics,
survey frame data such as the average refusal rate, or an auxiliary sample. Consider the weights

-1

(11) w(zy) =

XS: R(zy,s)n/Nf(s)
s=1

these are well-defined if the bracketed expressions are positive, and R(z,y,s) contains no unknown
parameters. These weights do not depend on the stratum from which the observation is drawn, but
do depend generally on the endogenous variabley.

When the qualification probabilities R(z,y,s) are strictly positive for al (z,y) and all strata,
and contain no unknowns, another set of possible weightsis

120  w(z)y,s) = UR(z,y,s).

These can be interpreted as reweighting observations in inverse proportion to the probability with
which they qualify from the population, and are precisely the weighting most commonly used in
classical survey research. When the weights (11) and (12) are both feasible, the weights (11) are
more efficient.

A classical application of WESML estimationisto asampleinwhichthestratacoincidewith
the possible configurations of y, sothat R(z,y,s) = 1(y = s). Inthiscase, w(z,y) = N-f(y)/n,, theratio
of the population to the sample frequency. Another application is to enriched samples, where a
random subsample (s = 1) is enriched with an endogenous subsamples from one or more
configurations of y; e.g., s =y =2. Then, w(z,1) = N/n, and w(z,2) = N-f(2)/[n;f(2) + n,].

When the r(s) are known, and f(s) = r(s), the WESML estimator has an asymptotic
covariance matrix J,*H,J,*, where

S

(13) J,=- W) Y. Y W(ZY.IREZY.IPYIzBIP(2)Vl |
z y

s=1
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S S

(14)  H,= Y w2 Y. Y, wzy ) R@Y,SPYEZBIP@NOIIVI IV - Y. ae
z y

s=1 s=1
where| =1log P(y[x,B) and
G= Y Y MW [R@Y.9PYEZB) P/,
z y

and| anditsderivativesareevaluated at 3,. These covariancetermscomefromaTaylor'sexpansion
of the first-order conditions for maximization of W(p), and can be estimated consistently by
replacing terms with their sample analogs.
5. CONDITIONAL MAXIMUM LIKELIHOOD (CML)

Pool the observationsfromthedifferent strata. Then, thedatageneration processfor thepool

S
Prizy)= Y G(zyl9niN,

=1

@]

and the conditional probability of y given z from this pool is

S
) G(zylsn/N
Priylz) = —=

g
Y Y Gzyl9nyN
y

s=1

Substituting (3) yields a formulaindependent of p(z),

S
Y R@zy9)P (y|zB)n INT ()
(15 Priy)= —=

S
Y Y Rzy9P (vlzB)n  INT (9
y

s=1

The CML estimator maximizes the conditional likelihood of the pooled sample in f and any
unknownsinR(z,y,s). Whenr(s) isknown, or onewishesto condition on estimatesf(s) of r(s) from
auxiliary samples, (15) isused directly. More generaly, given auxiliary sample information on the
r(s), these can betreated as parameters and estimated from the product of thelikelihood (15) and the
likelihood of the auxiliary sample.

Page 25, Chapter 2-7



For discrete response in which qualification does not depend on z, the formula (15)

,where a, = R(z,y,s)'n/N-r(s) can betreated as an
Y Ply|zBy)u,
y

smplifiesto Pr(y|z) =
s=1

alternative-specific constant. For multinomial logit choice models, Pr(y|z) then reduces to a
multinomial logit formula with added aternative-specific constants. It is possible to estimate this
model by the CML method using standard random sample computer programs for this model,
obtaining consistent estimatesfor slope parameters, and for thesum of log a,, and alternative-specific
parametersin the original model. It remains necessary to use formulas for endogenous sampling to
estimate the asymptotic covariance matrix consistently.

For the previous example of an enriched sample, one has Pr(1|z) = P(1|z,8,)-n,/N-D and
Pr(2|z) =P(2|z,3,):[n/N + n,/N-r(2)]/D, whereD =n,/N + P(2| z,3,)-n,/N. Anexampleinadifferent
context showsthe breadth of application of (15). Supposey isacontinuousvariable, and the sample
consists of asingle stratum in which high income families are over-sampled by screening, so that
the qualification probability isR(z,y,1) =y < 1fory <y, and R(z,y,1) = 1 fory >y,. Then Pr(y|z)
= y'P(y|z,B,)/D fory <y, and Pr(y|z) = Py|z,8)/D for y >y, where D =y + (1- y)-P(y>Y, | 2,,).

When the r(s) are known, the asymptotic covariance matrix of the CML estimator is
JH I where

S
(16) J.=- > M) Y. Y. R@Y.SPYIZBIP(@)Vye,
- Z y

S

S S
(17) HW = Z p'sz Z Z [R(Z,y,S) P(ylz’Bo)p(Z)/r(S)] [v[ic] '[v[ic] - Z qs qs/
z y

s=1 s=1

where ¢ = log Prylzp) and g, = Y, Y W [RZY.S)PYIzB)p(2)/r(9]V,c, and ¢ and its
z y

derivatives evaluated at 3,. Note that the structure of this covariance matrix is the same as that for
WESML.

6. FULL INFORMATION CONCENTRATED MAXIMUM LIKELIHOOD (FICLE)

Formally, the likelihood (4) can betreated as afunction of the unknown parameter vector 3,
any unknown parameters in the qualification probabilities, and the unknown multivariate density
p(z), with this whole density treated as an unknown parameter, possibly infinite dimensiona. This
IS asemiparametric estimation problem, in which afinite parameter vector isto be estimated in the
presenceof apossibly infinite-dimensional vector of nuisance parameters. Insomeapplications, this
can bedoneby direct formal maximization of thelikelihood in p(z), giventheremaining parameters,
yielding a concentrated likelihood function of the finite parameter vector.

Let
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S
(18) L=
-1

Y ¥ n@zy|9LogGzy|s)

S y

S
+ Z )\'s[r(s) - Z Z R(Z’y’S)P(Z’y’S)p(Z)] + }\‘0[1 - Z p(Z)]

s=1 z y
be a Lagrangian for the formal maximization problem. Solving the first-order-condition for p(z)
yields
S S
(19 p@= | X X n@yl9| /|X X rRzy9PyIzB) +1,
s=1 y s=1 'y

Substituting (19) into (18), simplifying, and dropping terms independent of the unknowns, yields

R(zy.9) P (ylz,B)/r(s)

N +§; MY Rzy.9P(ylzB) - r(s)]
s y

S
(200 L,= ), Y ). n(zylsrLog

s=1 z y

S

Y aJr(e - Y Rzy.9)P(y|zB)]
y

s=1

+ ; [E g n(zy|s)

s=1

g
N +2; MY RzY.S)PyizB) - r(9)]
s= y

A joint critical point of thisconcentrated functionin § and the,givesthe FICLE estimator. Cosslett
(1981) has shown that estimators in this class are fully efficient. Since this is a semiparametric
problem, Cosslett’s argument required calculation by variational methods of the least information
contained in the parametric part of the problem; this method in its general form provides what are
now called the Wellner efficiency bounds. The asymptotic covariance matrix of the FICLE
estimators has the same genera structure as the previous estimators, but the specifics are
complicated by the presence of the finite vector of nuisance parameters A, For straightforward
response-based endogenous samples, with y used to define non-overl apping strata, the FICLE criteria
and the CML criteria can be manipulated into amost the same form, with n/Nf(s) and AJ/N
appearing in analogous positions and converging to the same limit.

7. EXTENSIONS AND CONCLUSIONS

Both the WESML and CML estimators are computationally practical in a variety of
endogenous sampling situations, and have been widely used. Ingeneral, neither estimator dominates
the other. Monte Carlo experienceisthat the WESML estimator is more efficient when the weights
for different alternatives are nearly the same, and that CML ismore efficient whentheweightsdiffer
substantially across aternatives. The FICLE estimator has not been widely used.
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When the population qualification factors r(s) are unknown, and consistently estimated by
f(s) obtained from auxiliary data, then the estimators described above are consistent. However, in
computing the asymptotic covariance matrices of the estimators, it is necessary to take account of
presence of estimated quantitiesin estimation criterion. Thiswill in general contribute additional
terms to the asymptotic covariance matrix; see Newey and McFadden (1995). A more efficient
procedure is to estimate the r(s) jointly using the sample and auxiliary data. Hsieh, Manski, and
M cFadden (1985) develop the procedures for doing this.

Extensions of the theory of endogenous sampling can be made to more complex
applications, and to more complex sources of auxiliary information, such as duration data (with
length-biased sampling) and endogenously recruited panel data,; see Lancaster and Imbens (1990)
and McFadden (1996).

8. SELECTION

There are a variety of econometric problems where dependent variables are discrete,
censored at lower or upper limits, or truncated or sel ected so they are not alwaysobserved. Itisoften
convenient to model the behavior of such variables as the result of atwo-stage process,

Observed
Dependent Variables| '

Exogenous Latent

Variables

Dependent Variables

where there are intermediate unobserved (latent) variables that are in the first stage determined by
exogenous variablesthrough aconventional linear model, and observed dependent variablesthat in
the second stage are determined by some non-linear mapping. The structure of the first mapping,
the dimensionality of the latent variables, and the structure of the non-linear mapping can all be
varied to fit particular applications. Historically, latent variable models come from psychometrics,
where both the mappings from exogenous variablesto latent variables, and from latent variablesto
observed dependent variables are linear, and the critical feature is that the dimensionality of the
latent variables is much lower than the dimensionality of the observed dependent variables. A
classical psychometric application isto ability testing, where the observed dependent variables are
responses to test items, and the latent variables are factors such as verbal, quantitative, and motor
abilities. Intheir most general form, these are called Multiple-Indicator, Multiple Cause (MIMC)
models, and analysis of the mapping from latent to observed dependent variables is called factor
analysis. An example of an economic application of MIMC models is the Friedman permanent
income hypothesis, where the observed dependent variablesare measured yearly incomesand there
Isasingle latent variable, permanent income. These lecture notes will discuss the second major
application of latent variable models, to situations where the mapping from latent to observed
dependent variables is nonlinear, and the observed dependent variables are not necessarily
continuous.

A fairly general notation for amodel with m latent variables for each observation unitisy;’
=x, + ¢, wherej = 1,..m. This can be written more compactly in matrix notation asy” = Xp + e,
where y' € R™ is a mx1 vector of latent variables for one observation, X is a mxk array of
explanatory variableswhose rows arethe x; vectors,  isakx1 vector of parameters, and e isamx1
vector of disturbanceswith amultivariate density f(e|0) that contains additional parameters6. This
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notation can accommodate  parametersthat differ acrossequationsby introducing variablesin each
X; in interaction with dummies for the different equations. The observed dependent variables are
given by amappingy = h(y") that isin general nonlinear and many-to-one. Some examplesillustrate
the possibilities, and indicate the scope of possible applications:

+1 ify">0

Dy eR'andy = h(y) = Y generates a binomial response model. An
-1 ify"<0

application might be to firms’ decisions to go bankrupt or stay in business, where y’ is latent

expected profit; see also application (5) below.

. \ ©oify" =0 .
@y cR'andy=hy) = generates a censored data (Tobit) model. An
0 ify'<0
application might be to expenditure on clothing in a one-week observation period, where zeros
are common.

ToifyT>c

Ay eRtandy=h(y) = Y Y , where NA means no observation is available and
NA ify"<c

C is a constant, generates a truncated data model. An application might be to competitive

(among buyers) auction prices for units of agood, where atransaction is observed only if abid

exceedsareservation pricec. Incasey’ <c, onemay in onevariant of thismodel observex, and

in another variant observe nothing about Xx.

@y eR'andy=h(y)isgivenbyy=iif ) <y <\, fori=0,..,J, with A, =-candL,,, =+,
where, to; are parameters. Thismapping generatesan ordered response or count model. An
application might be to household choice of number of children, or to wealth or incomewithin
brackets established by the questionnaire.

* * (+1’y2*) if yl* Z O - - . - *
(B)Y e R?andy =h(y’) = has the following interpretation: ify, > 0,
(-1,NA) ify, <0

theny, =+1isanindicator for this, andy, =y, isobserved. If y,” <0, theny, =-1isanindicator
for this, and y, is not observed. Variants may have x, observed or not when y, is unobserved.
An application is to bankruptcy decisions of the firm, where y,” is expected profit and y, is
realized profit. Thisistermed a bivariate selection model.

(6) y € R"andy = h(y’) isamapping from R™ into { 1,....m}, wherey =i if y; >y forj =i.
Thisgeneratesamultinomial response model in which the observed response correspondsto the
maximum of the latent variables. An application might be to choice of occupation.
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(7)y e R"andy = h(y’) isamapping from R™ into {-1,+1} ", withy, = +1if y;" > 0,andy,; =-1
otherwise. Thisgeneratesamultivariate binomial response model. An application might beto
panel data on employment status.

(8)y e R™andy = h(y’) isamapping from R™into {0,1,2,...} ™, with y; = k; for an integer k; if
Nij < Yije1 < Mijsr- Thisisamultivariate ordered response or count model. An application isto
numbers of units purchased of each of m goods.

Let A(y) denotethe set of y* that map into observation y; this can be written as A(y) = h'(y),
where h* denotes the inverse of the (possibly) many-to-one mapping h. Then, the probability of an
observation can be written

aly|X,B,6) = fA(y) f(y'-Xp|6)dy'".

Theintegral should be interpreted as extending over the dimensions where the conditiony” € h'(y)
givesarangeof values. Inthe Tobit example (2) above, y = 0impliesh™*(0) = (-=,0], and theintegral
is over this interval. However, y > 0 implies h(y) =y, and g(y|X,B,0) = f(y-X|6) without
integration. Inthe bivariate selection model (5), the observation (+1,y,) requiresintegration in one

dimension, g((+1y,) | X,B,0) = f Ay, X, B.Y~X.B |0)dy, ", whiletheobservation (-1,NA) requires
0

integration in both dimensions, g((-1,NA)|X,B,0) = f,o ff” f(y,"-X.B.Y, -X,|0)dy, dy, .

Consider theloglikelihood of an observation, I(B,0) =logg(y| X,B,0). Thescorewith respect
to the parametersy = (B,0) is

fA(y){Vylogf(y*—XBO)} f(y " -XB|6)dy -

VI(8,6) =
fA(y)A(y)f(y “-XplO)dy "

=E {VJogfly -Xp|0)y "eh ()} ;

that isto say, the score of the observation y can be expressed as the conditional expectation of the
score of the latent variable model, conditioned on the event that the latent vector yieldsy. If these
integrals can be evaluated analytically or numerically, then it is usually feasible to do maximum
likelihood estimation of the parameters. Even when the integralsareintractable, it may be possible
to approximate them by simulation methods.

The basic latent variable model setup above can be extended in severa ways. For
time-series or panel data, X may contain variables determined by lagged latent variables. If
disturbancesare serially correlated, one confrontsall the problemsof identification, stationarity, and
consistent estimation that occur in conventional linear systems, plus additional problems of dealing
with initial conditions. The leading author who has worked on these problems is Heckman. The
latent variable model can also be extended to have amore full-blown simultaneous-equationsform,
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with complex pathslinking observed and latent variables, with amultiple-indicator, multiple-cause
structure. Leading authors on MIMC models are Goldberger and Joreskog.

9. THE BIVARIATE SELECTION PROBLEM

An important economic application of latent variable modelsisto the problem of selection:
Who or what we can observe about economic agentsisinfluenced by their behavior, so that our data
are not representative of the whole population. Our analysis needs to correct for the effects of
selection if we are to make consistent inferences about the population. A classic example of
selection occurs in the study of wages and hours worked of married women. These variables are
observed only for women who are working, but the same economic factors that determine these
variables also influence the decision to work. For example, an unobserved disturbance that gives
Mrs. Smith ahigher-than-average potential wage and Mrs. Jonesalower than-average potential wage
ismorelikely toinduce Mrs. Smith into the labor forcethan Mrs. Jones. Then, aregression of wage
on family characteristics using data for workers will typically overestimate the potential wage of
non-workers. The econometric analysis of this problem provides a good tutorial for a broad
spectrum of selection problemsthat arise because of economic behavior or because of survey design
(e.g., deliberate stratification).

Consider a bivariate latent variable model with normal disturbances,

(21) y =xp+e,
W' =zo +ov,

where x and z are vectors of exogenous variables, not necessarily all distinct, o and  are parameter
vectors, again not necessarily al distinct, and ¢ is a positive parameter. Theinterpretation of y' is
latent desired hours of work, and of w" islatent log potential wage. The disturbances € and v have
a standard bivariate normal distribution

1p

0
~N
(pl

0
with zero means, unit variances, and correlation p.

€
(22)

A%

There is a nonlinear observation rule determined by the application that maps the latent
variablesinto observations. A typical rule might be"Observey =1andw =w" if y’ > 0; observey
= -1 and do not observe w when y* < 0". This could correspond, for example, to an application
where the event of working (y = 1) or not working (y = 0) is observed, but actual hours worked are
not, and the wage is observed only if the individual works (y* > 0). It is sometimes convenient to
code the discrete response as s = (y+1)/2; then s= 1 for workers, s= 0 for non-workers.

The event of working is given by aprobit model. The probability of workingisP(y=1|x) =
P(e > -xB) = ®(xp), and of not working is P(y=-1|x) = P(e < -xp) = ®(-x), where @ isthe standard
univariate cumulative normal. This can be written compactly as

P(y|x) = ®(yxp).
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In the bivariate normal, the conditional density of one component given the other is
univariate normal,

elv~N(pvip)= —— - [ 22
1—p2 vl—p2
and
2 1 | TpE
v|e ~N(pe,1-p°) = 0
\/1—p2 \/1—p2

The joint density can be written as the product of the marginal density of one component times the
conditional density of the other,

(e) ~ o) —- -cp( “’V] = p(e)

1 0 " -pe
1-p? V1-p?

\/1—p2 \/1—p2
The density of (y',w’) can then be written
- 1 W -z 1 “=XxB-p(w " -za)/
(23) flyw)= Lo W2y ¢ | Y XBpW —zn)lo
o (&) 1_p2 /1_p2
N 1 *_ _ *_
oy/1-p? oy 1-p?

Now consider the log likelihood of an observation, I(a,B,0,p). In the case of anon-worker (y = -1
and w = NA), the density (23) isintegrated over y" <0 and al w'. Using the second formin (23),
this gives probability ®(-xf). In the case of a worker, the density (23) is integrated over y* > 0.
Using thefirst formin (23)

DO(-xP) ify=-1
() deber= XB+P( W_m)
i(p(W_Z“)Q) ° ify=1

Theloglikelihood can be rewritten asthe sum of the marginal log likelihood of the discretevariable
y and the conditional log likelihood of w given that it is observed, I(a,B,5,p) = I*(a.,B) + I%(a,B,5,p),
with the marginal component,

(25) I*(B) = log D(yxB),

and the conditional component (that appears only wheny = 1),
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W-Zou

xB +p( J
— X 9 | -logd(xp).

(26)  1%(0,B,0p)=-logo +loge( 22 ) +log ®
° 1-p?

One could estimate this model by maximizing the sample sum of the full likelihood function |, by
maximizing the sample sum of either the marginal or the conditional component, or by maximizing
these components in sequence. Note that asymptotically efficient estimation requires maximizing
the full likelihood, and that not all the parameters are identified in each component; e.g., only B is
identified from the marginal component. Nevertheless, there may be computational advantagesto
working with the marginal or conditional likelihood, at least in the first step of estimation.
Maximization of |I* isaconventional binomial probit problem, which can be done easily with many
canned programs. Maximization of 12 could be done either jointly in all the parameters a, P, p, o;
or aternately in a, p, o, with the estimate of 3 from afirst-step binomial probit substituted in and
treated as fixed. Thefirst case, maximization of 12 in all the parameters, provides estimates whose
variances are estimated by theinverse of theinformation matrix for 1. The maximization of 12 with
an estimate of 3 substituted in requires use of the formula for the variance of a GMM estimator
containing an embedded estimator; see the lecture notes on thistopic. Neither of these procedures
isfully efficient, and the two methods cannot be ranked in terms of efficiency.

When p =0, the case of "exogenous" selection in which there is no correlation between the
random variabl esdetermining sel ection into the observed popul ation and thelevel of the observation,
notethat I? reducesto thelog likelihood for aregression with normal disturbances, implying that the
maximum likelihood estimates for a and ¢ will be the OLS estimates. However, when p # 0,
selection matters and regressing of w on z will not give consistent estimates of o and c.

An dternative to maximum likelihood estimation is a GMM procedure based on the
moments of w. Using the property that the conditional expectation of v giveny = 1 equals the
conditional expectation of v given g, integrated over the conditional density of € giveny = 1, plus
the property of the normal that do(e)/de = -e-¢(¢), one has

+oo

(27) E{w|z,y=1} = zo + oE{v|y=1} = za + © f E{v|e} o(e)de/D(XP)

= z0. + op fm e@(e)de/D(XB)
-xB
= zao. + opo(XB)/D(XP) = za + AM(XP),
where )\ = op and M(c) = o(c)/®(c) iscalled theinverse Mill’sratio. (Asacomputational note, itis

much better when calculating M to use adirect approximation to thisfunction, rather than taking the
ratio of computational approximationsto ¢ and ®.) Further, using the relationship

E(v?|e) = Var(v|e) + {E(v|e)}*=1-p* + p%’,
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and the integration-by-parts formula

ffw e’p(e)de = - f "~ eg'(e)de = -co(c) + f " o(e)de = -co(c) + ©(0),

C -C -C
one obtains

(28) E{ (W-za)?|zy=1} = ’E{v?|y=1} = o° fﬁ E{v?| €} 0(e)de/D(XB)

=c | X; {1-p*+peYo(e)de/D(XP) = o1 - p° + p - pXP(XB)/D(XB)}
=o{1- pxPo(xB)/D(XP)} = o*{1 - pXB-M(xB)}.
Then,
(29) E {[w -z - E{w-za|zy=1}1%zy-1} = E{(W-za)’|zy=1} - [E{w-za|zy=1}]
=41 - pXBo(XB)/D(XP) - p’p(XB)7D(XB)’}
=o{1- p"M(XB)[xB + M(xB)}.

It is possible to go on and compute higher moments, using the recursion formula:

u(c,k) = E1(e>c) (e-0)* = f T (e-M)Fp(e)de

= -(c-W)<(C) - Ap(Ck-10) + (k-1)-(Ck-2,).

A GMM estimator for this problem can be obtained by applying NLLS, for the observations with y
= 1, to the equation

(30) w = zo. + opM(XP) + ¢,

where ( isadisturbance that satisfies E{(|y=1} = 0. Thisignoresthe heteroskedasticity of ¢, but it
is nevertheless consistent. This regression estimates only the product L = op, but consistent
estimates of o and p could be obtained in a second step: The formulafor the variance of _,

(31) V{C|x,zy=1} = 6*{1- pM(XB)[XB + M(xB)]},
suggests obtaining an estimate of o by regressing the square of the estimated residual, {7, on one

and the variable M(XB)[XB. + M(XBo)], where B, is the estimated parameter vector. Then, the
estimated coefficients a and b in the regression

(32) CF = a+b{MXBI[XB. + MBI} +¢&

provide consistent estimates of 62 and o?p?, respectively.
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The GMM estimator above is asymptoticaly inefficient because it fails to correct for
heteroskedasticity, but more fundamentally because there are common parameters between the
regression and the variance of the disturbances, and because the disturbance ¢ is not normally
distributed, so thereisinformationin momentsbeyond thefirst two. Thefirst of theseinefficiencies
could be eliminated by an estimated GL S-typetransformation: From thefirst-step NLLSregression
and the estimator of ¢ described above, calcul ate the weight

v = 1- pPM(XBR)[XB, + M(XBJ)],
and then rerun aweighted NLL S regression,
(33) w/t = (Z/t)a + op(M(XB)/te) + (Ury).

The variance of this regression is now ¢? so that all the parameters of the original problem are
estimated by the regression parameters plus the estimated variance of the regression.

TheNLLS estimator above involves about the same amount of calculation asfull maximum
likelihood estimation, so that the latter method is usually preferable because it is asymptotically
efficient, and the standard errors obtained from the information matrix are easier to calculate than
the two-step GL S standard errors. However, there is an alternative two-step estimation procedure,
due to Heckman, that requires only standard computer software, and is widely used:

[1] Estimate the binomial probit model,

(34 P(y|x,B) = O(yxB) ,

by maximum likelihood.
[2] Estimate the linear regression model,

(35) w = zo + AM(XB,) + ¢,
where) =op andtheinverse Mill’sratio M iseval uated at the parametersestimated from thefirst
stage.
To estimate ¢ and p, and increase efficiency, one can do two additional steps,
[3] Estimate o2 using the procedure described in (12), with estimates )., from the second step and

B, from the first step; and
[4] Estimate the weighted linear regression model

(36) wit = (Z0)a + MBIk + (),

where

@ ={1- pMEBIIXB. + M(XB]},

and the parametersin this weight come from the first and second steps, plus
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2 — 2 2
Pe = Ae /Ge

with A2 from step two and 6,2 from step three.

The standard errors of the first-step estimates B, are obtained from the binomial probit
maximum likelihood. However, the second-step estimatesa, and A, have standard errorsthat are not
given correctly by the regression (35), both because the errors are heteroskedastic and because a
right-hand-side variabl e containsembedded parametersfrom an earlier step; seethelecture noteson
GMM estimation with embedded estimates for the formulas for the correct standard errors.

One limitation of the bivariate model is most easily seen by examining the regression (35).
Consistent estimation of the parameters o in thismodel requires that the term M (xp]) be estimated
consistently. Thisinturn requirestheassumption of normality, leading to thefirst-step probit model,
to beexactly right. Wereit not for thisrestriction, estimation of a in (35) would be consistent under
the much more relaxed requirements for consistency of OLS estimators. To investigate thisissue
further, consider the bivariate selection model (21) with the following more general distributional
assumptions: (i) € has a density f(e) and associated CDF F(e); and (i) v has E(v|e) = pe and a
second moment E(v?|e) = 1 - p? that isindependent of e. Define the truncated moments

JxP) = E(e|e>-xp) = f“ﬁ ef(e)de/[1 - F(-xP)]

=X

and

K(xB) = E(L - e2|e>-xp) = f”ﬁ [1- e7]f(e)de/[1 - F(-xB)]

Then, given the assumptions (i) and (ii),
E(w|zy=1) = za + opE(e|e>-xB) = za + opI(XP),
E((w - E(w|zy=1))*|zy=1) = o*{1- p?K(xB) + IxB)7}.

Thus, even if the disturbances in the latent variable model were not normal, it would nevertheless
be possible to write down aregression with an added term to correct for self-selection that could be
applied to observations wherey = 1.

(37 W = za + oE{v|xB+e>0} + { =za + opJ(XP) +
where ( is adisturbance that has mean zero and the heteroskedastic variance
E(&zy=1)) = o¥{1- p[K(xB) + IxB)7}.

Now suppose one runs the regression (30) with an inverse Mill’s ratio term to correct for
self-selection, when in fact the disturbances are not normal and (36) is the correct specification.
What bias results? The answer isthat the closer M (xp) isto J(XB), the less the bias. Specifically,
when (36) isthe correct model, regressing w on z and M (x3) amountsto estimating the misspecified
model
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w = za + AM(XB) +{C + A[IXP) - M(xB)]} -

Thebiasin NLLSisgiven by
Ezz EzZM|?

EMz EM?

o — o
Ao =M

EZ(J-M)
EM(J-M)

thisbiasissmall if A = op issmall or the covariance of J- M withz and M is small.

Calculation for some standard distributions shows that when disturbances deviate from
normal, M may not be a good approximation to J, implying that biasdueto misspecification can be
substantial. For example, consider as alternatives to the normal density for € the logistic density,

f(e) = e%/(1+e™? a= V3 |
T

and the bilateral exponential density,
fe) = (U2 y2 )l 2

For these densities, thefunction Jcan be calculated analytically. For thelogistic density, oneobtains
Je) = -x + (Va)log(1+€®)-(1+e®), and for the bilateral exponential density, one obtains J(e) =

e°l-(1+ c|e|)/2cF(e), where F(e) = 1(e<0)-€* + 1(e>0)-(1-€*)andc*= /2 . TheJ(-) functions

have the same qualitative shapefor thenormal, bilateral exponential, and logistic densities, but they
are substantially shifted, so that there is at least significant bias to the estimated intercept in the
regression if Jis misspecified.

A natural question in semiparametric estimation is whether there is a robust method for
estimating a that does not require that the distributions of £ and v be fully parametric. It should be
clear intuitively that approximating the unknown true J(-) function by aseries of functionsof €, such
asalow order polynomial in g, should be sufficient to approximately span the space containing J(-),
and that thisin turn would be sufficient to eliminate for practical purposes any biasin estimation of
a. The question would remain at to how many terms to use in an approximation.
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CHAPTER 3. GENERALIZED METHOD OF MOMENTS

1. INTRODUCTION

This chapter outlines the large-sample theory of Generalized Method of Moments (GMM)
estimation and hypothesistesting. The properties of consistency and asymptotic normality (CAN)
of GMM estimates hold under regularity conditions much like those under which maximum
likelihood estimates are CAN, and these properties are established in essentially the same way.
Further, thetrinity of Wald, LagrangeMultiplier, and Likelihood Ratio test statisticsfrom maximum
likelihood estimation extend virtually unchanged to this more general setting. Our treatment
provides a unified framework that specializes to both classical maximum likelihood methods and
traditional linear models estimated on the basis of orthogonality restrictions.

Suppose data z are generated by a process that is parameterized by a kx1 vector 6. Let (z,0)
denote thelog likelihood of z, and |et 6, denote the true value of 6 in the population. Suppose there
isan mx1 vector of functionsof z and 6, denoted g(z,0), that have zero expectation in the population
if and only if 6 equals6,;

Eg(z,0) = [9(z,0)-exp(l(z,8,))dz =0iff 6 =6,.

TheE g(z,0) are generalized moments, and the anal ogy principle suggests that an estimator of 6, can
be obtained by solving for 6 that makes the sample analogs of the population moments small.
Identification normally requires that m > k. If the inequality is strict, and the moments are not
degenerate, then there are over-identifying moments that can be used to improve estimation
efficiency and/or test the internal consistency of the model.

In this setup, there are several alternative interpretations of z. It may be the case that z is a
complete description of the data and I(z,0) is the "full information” likelihood. Alternately, some
components of observations may be margined out, and 1(z,0) may be a margina "limited
information” likelihood. Examplesarethelikelihood for one equation in asimultaneous equations
system, or the likelihood for continuous observations that are classified into discrete categories.
Also, theremay be"exogenous' variables(covariates), and thefull or [imitedinformation likelihood
above may be written conditioning on the values of these covariates. From the standpoint of
statistical analysis, variablesthat are conditioned out behavelike constants. Then, it doesnot matter
for the discussion of hypothesistesting that follows which interpretation above applies, except that
when regularity conditions are stated it should be understood that they hold almost surely with
respect to the distribution of covariates.

Several special cases of this general setup occur frequently in applications:. First, if 1(z,0) isa
full or limited information likelihood function, and g(z,0) = V,l(z,0) is the score vector, then we
obtain maximum likelihood estimation. Second, if z = (y,x,w) and g(z,0) = w’(y-x0) asserts
orthogonality in the popul ation between instruments w and regression disturbancese =y - x6,, then
GMM specializes to 2SLS, or in the case that w = X, to OLS. These linear regression setups
generalizeimmediately to nonlinear regression orthogonality conditions based on theform g(z,0) =
w’(y-h(x,0)), where h is afunction that is known up to the parameter 6. The last problem can be
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interpreted as coming from a non-linear regression model where by assumption a vector of m
exogenous variablesw are orthogonal to theregression disturbancesy - h(x,0,). Thisisanimportant
application of GMM, and as an exercise the reader should translate all of the more abstract
statements about GMM estimators into statements for this model.

Suppose ani.i.d. samplez,,...,z, from the data generation process. A GMM estimator of 6, is
the vector T, that minimizesthe generalized distance of the sample momentsfrom zero, where this
generalized distance is defined by the quadratic form

n

Q,(6) = (1/2)g,(6)'W,9,(6), where g,(6) = % tX; 9(z.,9),

and W, isamxm positive definite symmetric matrix that defines a"distance metric*. Whenm =Kk,
the matrix W,, does not enter the first-order-conditions for T, (Verify), and could by default be the
mxm identity matrix. When m > k, not all the components of g,(T, can be made zero
simultaneously, and thematrix W, determineshow deviationsfrom zero areweighted and influences
the estimator. Definethe mxm covariance matrix of the moments, Q = E g(z,0,)9(z,0,)'. Efficient
weighting of agiven set of m momentsrequiresthat W, convergeto Q™" asn - «. Exercise 1 below
asks you to verify this statement. A good candidate for W, is Q,(t,)*, where

Y 9(z.9)9z.0),

=1

Q,(0) =

Sk

—

and t, isaconsistent preliminary estimate of 6,. Define the mxk Jacobean matrix G = E V,9(z,60,),
and let

-1

G,(6) =

Sk

—

Thenthearray G,(t,) evaluated at aconsistent preliminary estimatet, of 6, will approachGasn - .
Hereafter, Q, and G, will be used as shorthand for Q,(t,) and G, (t,,), respectively.

We will denote convergence in probability by -, amost sure convergence by -, and
convergence in distribution by -, The following regularity conditions guarantee that GMM
estimators have good asymptotic properties, see Newey and McFadden (1994):

(i) Thedomain ® of 6 iscompact, and 6, isinitsinterior.

(if) The log likelihood function 1(z,0) is amost surely in z continuously differentiable with
respect to 6 in aneighborhood of 6.

(iif) The function g is measurable in z for each 0, and almost surely is continuous and
continuoudly differentiablein 6, with the derivative Lipschitz; i.e., thereis afunction a(z) with
finite expectation such that for 6,0’ € ®, |V,0(z,0) - V,0(z,0")| < a(z)|6-6'].

(iv) Eg(z,0) =0if and only if 6 = 6,,.

(v) Q isapositive definite mxm matrix, and Q, -, Q.

(vi) Gisamxk matrix of rank k, and G, -, G.

(vii) There exists a function a(z), with finite expectation, that dominates g(z,0)g(z,0)’ and
V,09(z,0); i.e., += > Ea(2), |0(z,0)9(z,0)'| < a(2), and |V,9(z,0)| < a(2).

Page 40, Chapter 3-2



Under these regularity conditions, Newey and M cFadden (1994, Theorems 2.6 and 3.4) show that
the unconstrained GMM estimator

T, = argminy.,Q,(0)
Is consistent and asymptotically normal (CAN), with
nﬂz(Tn - eo) ~d N(O’Bl)1

where B = G'Q'G.

It isuseful to summarize the stepsthat lead to the CAN result. First consider consistency. For
eachfixed 0, alaw of large numbersimpliesthat g,(0) -, Eg(6). Similarly, G,(0) -, E V,9(z,0) and
Q.(0) -, E 9(z0)g(z,0)". Using the compactness of ® and the smoothness and dominance
assumptions, these probability limits can be shown to hold uniformly in 6. This implies that if
T, 5 0o, then g,(z,) =, Eg(0,) = 0, G(x,) =, G, Qy(x,) -, Q, and Q(6) -, (1/2)(Eg(6)) 2 (EQ(0)).
By construction, Q.(T,)) < Q,(6,) -, 0. Outside aspecified small neighborhood of 0, the probability
limit of Q, is uniformly bounded away from zero. Therefore, T, is as. eventually within the
specified neighborhood. This establishes consistency.

Next consider asymptotic normality. A central limit theorem implies

(1) 'Q_ﬂz n]JZ gn(eo) = Un ~d uU-~ N(O!I)
The mean value theorem applied to the sample moments about 6, gives
(2) n]JZ gn(e) = n]JZ gn(eo) + Gn nﬂ2(6'60)1
with G, evaluated at points between 6 and 6,. Substituting this expression in the GMM first-order
condition 0= n*?v,Q(T,) = G,/Q,* n*?g,(T.) and using the consistency of T, to replace G, and Q,
by their respective asymptotic approximations G and Q yields

0=-G'Q™U,+Bn"(T-6,) +0,,
where o, denotes terms that are asymptotically negligible, implying
©) n“(T,-0,) = B'"G'Q"U, + 0, »4 B'G’'Q"U ~ N(0,B7).
The asymptotic covariance matrix B can be estimated using G,(t,) and Q,(z,), where 1, is any
n“?-consistent (preliminary) estimator of @, (i.e., n¥*(z,-6,) is stochastically bounded.) A practical
procedure for estimation is to first estimate 6, using the GMM criterion with an arbitrary Q,, such
as an mxm identity matrix. This produces an initial n¥?-consistent estimator t,. Then use the
formulas above to estimate the asymptotically efficient W, = Q (t,)*, and use the GMM criterion

with this distance metric to obtain the final estimator T,
Differentiating the identity 0 = [g(z,0)€“"dz, one has
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0 = [V,0(z,0) exp(I(z,0))dz + [g(z,0)V,I(z,0) exp(l(z,0))dz,
implying at 6, that
I' = -EgQ(z,0,)Vyl(z,0,)" = EV,0(z,6,) = G.

It will sometimes be convenient to estimate G by

n

Y 9zt

t=1

T,=-

Sl

In the maximum likelihood case g = V|, onehas Q =T = G, and the asymptotic covariance matrix
of the unconstrained estimator simplifiesto Q™.

Exercise 1. UseaTaylor’s expansion of thefirst-order-conditions for minimization of Q,(6) to
show that when W,, converges to a matrix W other than Q, the resulting GMM estimator T,, is
asymptotically normal with covariance matrix (G'WG)'G’'WQWG(G'WG)™. Show that aquadratic
formin this matrix is minimized when W = Q. (Hint: Consider aregression with m observations
and k parameters, y = G + v, that has Evv’ = Q. Then OLS applied to the transformed data Q™%
= Q™GB + Qv isBLUE, and OLS applied to any other transformation W%y = W*2Gp + W%y
yields estimates of 3 that have alarger covariance matrix.)

2. THENULL HYPOTHESISAND THE CONSTRAINED GMM ESTIMATOR
Suppose there is an r-dimensional null hypothesis on the data generation process,
H..a(6,) =0,

where a(*) isarx1 vector of continuously differentiable functions. Assume that the rxk matrix A
= V,a(0,) hasrank r. We will consider aternatives to the null of the form

H;: a®,) # 0,
or asymptotically local aternatives of the form
H,,: a(0,) = én"? = 0.

Thesealternativesareof interest becauseinlarge sampl esalternative hypotheses of interest are often
sufficiently "local" so that the asymptotic approximation will give good estimates of the power of
tests. The null hypothesis may be linear or nonlinear. A particularly simple caseisH,: 6 = 6° or
a(0) = 0 - 6°, so the parameter vector 6 is completely specified under the null. Other examples are
a(8,) =0,,, alinear hypothesis, and a(6,) = (6,5/0,, - 05//0,,,), anon-linear hypothesis. In general there
will be k-r parameters to be estimated when one imposes the null. One can define a constrained
GMM estimator by optimizing the GMM criterion subject to the null hypothesis:
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T,, = argmin,,Q,(0) subjectto a(0)=0.

Newey and McFadden (1994, Theorem 9.1) establish that T, is consistent under the regularity
conditions above when either the null hypothesis or an asymptotically local alternative to the null
holds.

DefineaLagrangian for T,: L(0,y) = Q,(6) + a(0)'y. Inthisexpression, y istherx1 vector of
undetermined Lagrangian multipliers; thesewill be non-zero when the constraintsare binding. The
first-order conditions for solution of this problem are

0 n1/2 VeQn(Tan) * Vea(Tan) l n1/2 Yan

0

n“2a(T,)

The Lagrangian multipliers v,, are random variables with an asymptotic distribution: The
consistency of T, implies V,Q(T,,) ~, G'Q*Eg(z,6,) = 0. Further, V,a(T,) =, A, implying A'y,, =
VoQi(Ta) + 0, -, 0,and since A is of full rank, v,, -, 0. The following paragraph outlines the
argument for asymptotic normality, and relates the asymptotic distributions of T,, T,,,, andy,,. The
asymptotic normality argument parallel sthat already givenin (1)-(3) for theunconstrained estimator.
Using the mean value theorem and then approximating G, by G and Q,, by Q, one has

n"2g,(T) = n*2g,(6,) + G, n"4(T,-6,) = -G'Q*?U, + G n"A(T,,-6,) + 0,
and

n*?a(T,,) = n“?a(8,) + A n""A(T,-6,) + 0, = & + A n"X(T,-6,) + 0,
Substituting these in the first-order conditions yields

0 n”z(Tan -0,

0

B A
A O

GQy,
-8

+0,

(4)

12
n Yan

From the formulafor partitioned inverses,

-1

B A
A O

BflIZMBf]JZ BflA/(AB flA’)fl
(ABIA)IAB ! (ABIA)!

where M =1 - B¥2A’'(AB?A’)*AB™? is a kxk idempotent matrix of rank k-r. Applying thisto (4)
yields

©)

nl/Z(Tan B e0)

nY2y_

B {IJZM B -1/2
(AB 'A)) AB 1

_B*lA/(AB flA/)fl
o+

6
© -(AB A1

G'Q™U, +0,
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Then, the asymptotic distribution of n¥*(T,-0,) under alocal alternative, or the null when§ =0, is
N(-B'A’(AB'A')5,BY2MBY?).
Writing out M =1 - B™A’(ABA")*AB? yields

©) n“Y(T,-0,) =BG'Q YU, - B'A'(ABA")ABIG'QM2U,
-B'A’(AB'A)% + 0,

The first term on the right-hand-side of (7) and the right-hand-side of (3) areidentical, to order o,..
Then, they can be combined to conclude that

8 nY(T.-T,) = B*A'(AB?A’ '1AB'1G’Q'”2Un +B*A(AB*A)% + 0,
n 'an p

so that nY(T.-T,) is asymptotically norma with mean B*A’(ABA’)™§ and covariance matrix
BY4(1-M)B™? = B'A’(AB'A’)'AB™. Note that the asymptotic covariance matrices satisfy
acov(T,-T,) = acov(T,) - acov(T,,), or the variance of the difference equals the difference of the
variances. Thisproposition isfamiliar in amaximum likelihood context where the variance in the
deviation between an efficient estimator and any other estimator equals the difference of the
variances. We see herethat it al'so appliesto relatively efficient GMM estimatorsthat use available
moments and constraints optimally.

The results above and some of their implications are summarized in Table 1. Each statisticis
distributed asalinear transformation of acommon random vector U, that isasymptotically standard
normal. Recall that B = G'Q'G isapositive definite kxk matrix, and let B* = acov(T,). Recall that
M =1 -B"A’(AB*A’)'AB?is akxk idempotent matrix of rank k-r.

Tablel
Statistic Formula Asymptotic
Covariance Matrix

nYA(T -0,) B'G'Q™U, + o Bt
n“Y(T,-0,) -B*'A'(ABTA")™S + BYMBG'Q"U, + 0, BY2MB Y2
n“Y(T.-T,) B'A’(AB*A")*S + B*A’(AB*A')*AB'G'Q YU, + 0, | B'A’(AB*A")'AB*
nYzy,. (AB'A")'5 + (AB'A)'AB'G'Q™U, + 0, (AB'A")?
n"Za(T,) § +AB'G'Q"U, + 0, AB?A’
nV,Q.(T..) A'(AB*A)%5 + A’(AB'A')AB'G'Q YU, + o, A'(ABA")'A

3. THETEST STATISTICS

The test statistics for the null hypothesis fall into three major classes, sometimes called the
trinity. Wald statisticsarebased on deviationsof the unconstrained estimatesfrom val ues consi stent
with the null. Lagrange Multiplier (LM) or Score statistics are based on deviations of the
constrained estimates from val ues sol ving the unconstrained problem. Distance metric statisticsare
based on differencesin the GMM criterion between the unconstrained and constrained estimators.
In the case of maximum likelihood estimation, the distance metric statistic is asymptotically
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equivalent to the likelihood ratio statistic. There are several variants for Wald statisticsin the case
of the general non-linear hypothesis; these reduce to the same expression in the smple case where
the parameter vector iscompletely determined under the null. The sameistruefor the LM statistic.
There are often significant computational advantages to using one member or variant of the trinity
rather than another. On the other hand, they are all asymptotically equivalent. Thus, at least to
first-order asymptotic approximation, there is no statistical reason to choose between them. This
pattern of first-order asymptotic equivalencefor GMM estimatesisexactly the sameasfor maximum
likelihood estimates.

Figure 1 illustrates the rel ationship between distance metric (DM), Wald (W), and Score (LM)
tests. In the case of maximum likelihood estimation, this figure is inverted, the criterion is log
likelihood rather than the distance metric, and the DM test is replaced by the likelihood ratio test.

FIGURE 1. )
GMM TESTS GMM Criterion Function
Quadrati
Approximation i
15 through Null e /
roug u Approximation
/ hrough-Optimum /
\ / /
/ /
N\ /
X
/
/ N
a c /
— j’
0.5 b /
Optimum J/ d Null
7
0 _—— Ll
0.1 0.2 0.3 0.4 0.5

The “Optimum” and “Null” points on the 6 axis give the unconstrained (T,,) and constrained (T,,)
estimators, respectively. The GMM criterion function is plotted, along with quadratic
approximationsto thisfunction through therespectivearguments T, and T,,,. TheWald statistic (W)
can beinterpreted as twice the differencein the height at T, and T, of the quadratic approximation
through the optimum; the height d in the figure. The Lagrange Multiplier (LM) statistic can be
interpreted astwicethe differenceinthe height at T, and T, of the quadratic approximation through
the null; the differencea- b inthefigure The Distance Metric (DM) statistic istwice the difference
intheheight at T, and T, of the GMM criterion, the height c in thefigure. Notethat if the criterion
function were exactly quadratic, then the three statistics would be identical.
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Thetest statisticswe consider for the general non-linear hypothesisa(6,) = 0 aregivenin Table
2. Inthistable, recall that acov(T,) = B and acov(T,)) = B**MB™2 In Section 7, we consider the
important special cases, including maximum likelihood and nonlinear least squares. In particular,
when the hypothesisisthat a subset of the parameters are constants, there are some simplifications
of the statistics, and some versions are indistinguishable.

Table2. Test Statistics
Wald Satistics
Wi, na(T,) [AB AT a(T,)
W2n n(Tn'Tan) ’{ aCOV(Tn) - aCOV(TAn)} _(Tn 'Tan)
=Nn(T,-T,)'A"(AB*A')'A(T,- T,)
WSn n(Tn'Tan) ' B(Tn'Tan)
Lagrange Multiplier Satistics
LM, Ny, AB*A’y,,
LM, NV, Qu(Ta) {A'(AB*A')'A '} V,Q(Ts)
= NV,Qu(Ta) B A'(AB A" *ABV,Q (T,
LM 3n nveQn(Tan) ' B_lveQn(Tan)
Distance Metric Statistic
DMn 2n[Qn(Tan) - Qn(Tn)]

Newey and M cFadden (1994, Theorem 9.2) establish that under the regularity conditions (i) to (vii),
the statistics are all asymptotically equivalent under the null hypothesis or under alocal alternative,
converging in distribution to a chi-square with r degrees of freedom under the null, and converging
in distribution to anon-central chi-square with r degrees of freedom and a non-centrality parameter
8'(AB'A’)§ under local alternatives to the null. These results are obtained by combining the
expressionsin Table 1. Supposeqisan expression fromthetablewith asymptotic covariance matrix
R and an asymptotic mean A under local alternatives to the null with the property that A liesin the
subspace spanned by R. The Appendix to this chapter shows that the matrix R can be writtenin the
form R = SY>TS"?, where Sis symmetric and positive definite and T isidempotent with rank equal
to the rank of R, that the Moore-Penrose generalized inverse of Ris R~ = SY?TS™?, and that the
condition imposed on the mean implies that T SY2, = SY2.. The transformation S¥?q is then
asymptotically normal with mean S¥?. and covariancematrix T, and consequently thestatisticq’ S™q
Is asymptotically distributed noncentral chi-square with r degrees of freedom, and noncentrality
parameter ’S™\ under local alternativesto the null. The transformation TSY?qhas mean T S¥2,
= S2 and the asymptotic covariance of (I - T)SY%q is zero, so that S*?q and TS"*q are
asymptotically equivalent.

Toillustrate the argument, consider W,,. Under the local alternative a(8,) = 3™, row five of
Table 1 givesq =35 + AB*G'QY2U normal with mean § and anonsingular rxr covariance matrix R
= AB?A’. Thenthenoncentrality parameter isé’'R™ = 5'(AB?A’)*5. Similarly, the statistics W,
and W, are obtained by noting that q= -B*A’(AB*A")% + B*A’(ABA")'AB*G'Q U isnormal
with covariance matrix R = B*A’(AB?A")*AB™* = B™[BY?A’'(AB*A")*ABY21B*2, where the
matrix in brackets isidempotent of rank r. Then, both q’R~q and q’S'q are noncentral chi-square
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with degrees of freedom r and noncentrality parameter ' (AB™A’) 5. Thefirst of these expressions
Is asymptotically equivalent to W,,,, and the second to W,,. Similar arguments establish the
properties of the LM statistics.

To demonstrate the asymptotic equivalence of DM, to the earlier statistics, make a Taylor’'s
expansion of the sample momentsfor T, about T, n**g,(T,,) = n"g,(T,) + G, n"(T,,- T,) + 0,, and
substitute this in the expression for DM, to obtain

DMn = 2n{ Qn(Tan) - Qn(Tn)}
=2 r-]]JZ(Tan - Tn)’(;nlgln_1 nﬂzgn(Tn) + nﬂz(Tan - Tn)/Gn’Qn_lGn nﬂz(Tan - Tn) + Op
= n(Tan'Tn)/B(Tan'Tn) + Op = W3n + Op’

with the last equality holding since G,'Q,* n¥?g,(T,) = O.

The Wald statistic W, asks how close are the unconstrained estimators to satisfying the
constraints; i.e., how closeto zeroisa(T,)? Thisvariety of the test is particularly useful when the
unconstrained estimator is available and the matrix A is easy to compute. For example, when the
null isthat a subvector of parameters equal constants, then A isaselection matrix that picks out the
corresponding rowsand columns of B, and thistest reducesto aquadratic form with the deviations
of the estimators from their hypothesized values in the wings, and the inverse of their asymptotic
covariance matrix in the center. In the specia case H,: 6 = 6°, onehasA = 1.

TheWald test W,, isuseful if both the unconstrained and constrained estimators are available.
Its first version requires only the readily available asymptotic covariance matrices of the two
estimators, but for r < k requires calculation of a generalized inverse. Algorithms for this are
available, but are often not as numerically stable as classical inversion agorithms because near zero
and exact zero characteristic roots are treated very differently. The second version involves only
ordinary inverses, and is potentially quite useful for computation in applications.

The Wald statistic W, treats the constrained estimators as if they were constants with a zero
asymptotic covariance matrix. This statistic is particularly simple to compute when the
unconstrained and constrained estimators are available, as no matrix differences or generalized
inversesareinvolved, and the matrix A need not be computed. The statistic W,,, isin general larger
than W, in finite samples, since the center of the second quadratic formisacov(T,)™* and the center
of thefirst quadratic formis{acov(T,) - acov(T,,)} ~, whilethetailsarethe same. Nevertheless, the
two statistics are asymptotically equivalent.

The approach of Lagrange multiplier or scoretestsisto calculate the constrained estimator T,
and then to base a statistic on the discrepancy from zero at this argument of a condition that would
be zero if the constraint were not binding. The statistic LM,,, asks how close the Lagrangian
multipliersy,,, measuring the degree to which the hypothesized constraints are binding, are to zero.
This statistic is easy to compute if the constrained estimation problem is actually solved by
Lagrangian methods, and the multipliers are obtained as part of the calculation. The statistic LM,
askshow closeto zeroisthegradient of the distancecriterion, eval uated at the constrained estimator.
This statistic is useful when the constrained estimator is available and it is easy to compute the
gradient of the distance criterion, say using the algorithm to seek minimum distance estimates. The
second version of the statistic avoids computation of a generalized inverse.
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The statistic LM, bearsthe samerelationship to LM, that W, bearsto W,,,. Thisflavor of the
test statistic isparticularly convenient to cal cul ate, asit can be obtained by two auxiliary regressions
starting from the constrained estimator T,

a RegressVyl(z,T,)' ong(z,T,,), and retrieve fitted values V|* (z,T,,) .

b. Regress1onV,l*(z,T,,), and retrieve fitted values y,. Then LM, = 92,

S|
M:

Il
[

t

For MLE, g =V, and the first regression is redundant, so that this procedure reducesto OLS.
Another form of the auxiliary regression for computing LM, arises in the case of non-linear
instrumental variableregression. Consider themodel y, = h(x,,0,) + €, with E(e,|w,) = 0and E(e;*| w,)
= o, where w, is a vector of instruments. Define z, = (y,x,w,) and g(z,0) = w]y,-h(x,,0)]. Then
Eg(z,0,) = O and Eg(z,0,)9(z,0,)’ = c’Eww’. The GMM criterion Q,(0) for thismodel is

n

XH: ww,) 1( - Z Wt(yt-h(Xt,O))/Zoz;

t=1 t=1

(1 > Wy~ hox,0) ¢

>
Sk

the scalar o® does not affect the optimization of thisfunction. Consider the hypothesisa(6,) = O, and
let T,, be the GMM estimator obtained subject to this hypothesis. One can compute LM, by the
following method:

a. RegressV,h(x,,T,) onw,, and retrieve the fitted values V;h,.
b. Regresstheresidual u, =Yy, - h(x,,T,) on V,h,, and retrieve the fitted values (.

n
ThenLM,=n Y 0%/ u? = nR?, with R? the uncentered multiple correlation coefficient.
t=1 t=1

Note that thisis not in general the same as the standard R? produced by OL S programs, since the
denominator of that definition isthe sum of squared deviations of the dependent variable about its
mean. When the dependent variable has mean zero, the centered and uncentered definitions
coincide.

The approach of the distance metric test is based on the discrepancy between the value of the
distancemetric, evaluated at the constrai ned estimate, to the minimum attai ned by the unconstrained
estimate. This estimator is particularly convenient when both the unconstrained and constrained
estimators can be computed, and the estimation al gorithm returns the goodness-of -fit statistics. In
the case of linear or non-linear least squares, thisis the familiar test statistic based on the sum of
sguared residual s from the constrained and unconstrained regressions.

4. TWO-STAGE GMM ESTIMATION
A common econometric problem isto do estimation when some parameters have already been
estimated from a previous stage, often on the same data. One common case is where the problem

contains constructed variables whose construction depended on parameters estimated in aprevious
round. In general, the use of consistent estimates from a previous round will not cause a problem
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with consistency in later stages, but it will add noise to the problem that appears in the asymptotic
covariance matrix of the later-stage estimators.

There are afew cases, such asfeasible GLS with normal disturbances, where no correction of
the asymptotic covariance matrix isneeded. Thisisdueinthe GLS caseto ablock diagonality in
the information matrix between regression coefficients and parameters in the covariance matrix.
Thereisasimplerule, due to Whitney Newey, for determining whether previous stage estimation
will add something to the asymptotic covariance matrix in the current stage: There will be a
contribution if and only if consistency in the first stage is necessary for consistency in the second
stage.

When acorrection isrequired, thefollowing generic GMM framework can be used to establish
theform of thiscorrection. Suppose one observesvariables(x,y,z), wherex isexogenous, and (y,z)
are variables whose behavior is being modeled. Let f(y,z|x,a,B) be the joint density of the
observations, conditioned on x, with parameter vectorsa and 3. Assume that it can be written

fly.z|x,0.B) = f4(z|xy,0)f"(y [ X, )

fly.z|x,0.B) = f(z|xy,0.B)f"(y[ X,0).

This is the standard decomposition of ajoint density into a conditional density times a marginal
density, and the only restriction we areimposing isthat we can parameterize (or reparameterize) the
problem so that either the conditional density or the marginal density does not depend on the
parameter . This corresponds to the usual situation in two-stage methods, where at the first stage
one looks at limited information that involves a subset of the full parameter vector.

One concrete example of this setup is sequential estimation of the parameters in a two-level
nested logit model, in which € isthe likelihood of choice at the lower level, conditioned on choice
of aupper level branch, and f™ is the likelihood of choice among the upper level branches. Inthis
application, the model can be parameterized so that upper branch parameters do not appear inf°. A
second concrete example is two-step estimation of the Tobit model, in which y is an indicator for
whether theresponseiszero or positive, zisthe quantitativelevel of theresponse, f°isthelikelihood
of the quantitative response conditioned on whether it is zero or not, and f™ isthe likelihood of the
indicator. In this example, the problem can be parameterized so that parameters that enter the
quantitative response likelihood do not enter the likelihood for the indicator.

Supposein the first stage one estimates the parameter vector o using moments

0=Eh(a,x.y.2),
where E,, denotes empirical expectation (or sampleaverage). A necessary condition for consistency
Is Eh(a;x,y,z) = 0if and only if a = a,. Limited information maximum likelihood: h(a;x,y,z) =

V. Iz|x,y,a), where ¢ = log f% or h(a;X,y,2) = V I"(y|X,a), where ™ = log f™, is an important case.
Suppose in the second stage one estimates a parameter vector 3 using moments

0= Eng(bman;x’yiz)’
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where a, is inserted from the previous stage. Again, important cases are maximum likelihood:
a(B,0;x,y,2) = VgI™(y| x,a,B) or g(B,a:X,y,2) = V,l“(y|z,x,a,B), with o treated asif it were known. In
thefirst of these cases, the moments g do not depend on z. Whether or not g depends on z turns out
to make asubstantial differencein thefinal covariance formula. The case of constructed variables
Is handled by writing them as functions of the parameters o that enter their construction. The
original parametersof the problem may be estimated, perhapsin combination with other parameters,
in both the first and second stages. The classification into o and § may require reparameterization.
The following rules may help: If first-stage estimates of origina parameters are used solely as
starting values for second-stage estimation of the same parameters, then classify these as B
parameters, as these first-stage estimates are only a computational device and have no influence on
the final solution of the second-stage moments. If first stage estimates of original parameters are
used for other purposes, such as construction of estimated variables, and are then reestimated in the
second stage, then they should appear in both o and B as separate parameters. Of course, origina
parameters estimated only at the first stage go into o, and original parameters estimated only at the
second stage go into f.

Make a Taylor’'s expansion of both the first-stage and the second-stage moment conditions
around the true B, and o, and suppress the x,y,z arguments to simplify notation:

E h(a,)
E 9(By,)

0
0

A
B

— 12

nﬂz(an - 0'o) -

0 ]sz +
C n (n'Bo) Op’

where A = -plim E,V,h(a,), B = -plim E,V,9(B,,a,), and C = -plim E,V,9(B,,a,)-

E.h(o,)
Theterm n*? " is asymptotically normal, by acentral limit theorem, with a covariance
Eng(ﬁo’ao)
[ Qg . . . :
matrix ol Solvethefirst block of equations and substitute them into the second block to
gh »
obtain

0= n]JZ{ Eng(Bmao) + BA-lEnh(ao)} - Cnuz(bn - ﬁo) + Op'
The term in braces on the right-hand-side of this expression has an asymptotic covariance matrix
Qy - BA'lﬂhg - QghA"lB’ +BA'Q,A''B’.
Then, solving for n*?(b, - B,), one obtains the result that its asymptotic covariance matrix is

CY{Q, - BA'Q, - Q,A"'B’' + BA'Q, A"'B'}C"?
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All the terms of this covariance matrix could be estimated from sample analogs, computed at the
consistent estimates. The following table summarizes consistent estimators for the various
covariance terms; recall that E,, denotes empirical expectation (sample average):

Matrix Estimator

C 'Envﬁg(bn’an)

B 'Envag(bn’an)

A -EV.h(a)
Qi E.h(a)h(a,)’
Qgh Eng(bman) h(an) '
Qy E.0(b,2)9(0,8,)’

ThetermsQ, and Q,,, add to the asymptotic covariance matrix, relative to the case of a,, known. If
B = 0, there is no correction; this is the "block diagonality" case where § can be estimated
consistently even if the estimator of o isnot consistent. If a isestimated from an independent data
set, then Q, = 0, but onewill still need acorrection dueto the contribution from Q.. Also, if gdoes
not depend on z, then Qy, = E, {g°'E, , ,h} = 0. Thisistrue, in particular, inthe case that the second
stage estimator ismarginal maximum likelihood in which z doesnot appear and o istreated asgiven.

The identities 0 = [ [h exp(l)dzdy and O = [ [g exp(l)dzdy can be differentiated to obtain the
conditions

A =-EV,h=EhV/|,B=-EV,g=EgV/|,C=-EV,g=EgVl.

If g does not depend on z, then Eg'V,I° = E, (g'E,,V,I°) = 0, implying B = Eg:(V,™)". Sample
averages of these outer products estimate the corresponding matrices consistently.

Simplification occurs when the first stage is conditional maximum likelihood that does not
depend on B, and the second stage is marginal maximum likelihood that treats the first stage
parameter estimates asfixed. Then, A =EV (VI =Q,, B=EVI™(V,I")’, C=EV,I™(V,")’
= Qg and Q,; = EV,I%(V,I™)’ = 0, so that the covariance matrix isC* + C'BA*B'C™.

Similarly, when thefirst stage is marginal maximum likelihood that does not depend on f3, and
the second stage is conditional maximum likelihood treating o asfixed, one has A = EV I™(V ™)’
= Qp,, B=EVyI*(V,I9), C=EVy*(Vl°) = Qg, and Q,, = EV,I(V4I™)" = 0, and the covariance
matrix C* + C'BA'B'C™

The terms in these covariance matrix expressions involve sample averages of squares and
cross-products of scores (gradients) of first and second stage log likelihoods. These should all be
obtai nable as intermediate output from amaximum likelihood program, except for termsinvolving
the gradient of the second-stage likelihood with respect to a. The latter would be simple to obtain
in a program like TSP, which does automatic analytic differentiation, or could be obtained by
numerical differentiation.

99’

EXERCISE: Consider the problem of Heckman two-stage estimation of a Tobit model, y = x0 +
op(x6/0)/D(x6/c) + C fory > 0, where E((|y > 0 & x) = 0, and where the inverse Millsratio is
calculated from afirst-stage probit on the same data. Reparameterize o = 6/c and B = (0,6). In
this case, h in the generic notation isthe score of the marginal log likelihood for the probit, which
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isinfluenced only by a, and g isthe set of OLS orthogonality conditions, which depend on both
a and B through the condition y = x6 + oco(xa)/®(xa). Work out the corrected asymptotic
covariance matrix for 6 and c.

EXERCISE: Consider the two-level nested multinomial logit model, with first stage estimation
applied to the lower level of the choice tree, and used to compute summary variables ("inclusive
values") that are then treated as variables in the second stage estimation.

5. ONE-STEP THEOREMS

Under standard regularity conditions, GMM estimators are locally linear, which means that
within a suitable neighborhood of the estimator, the first-order conditions for these estimators are
inlargesamplesapproximately linear, with higher-order termsbeing asymptotically negligible. This
has an important practical implication: if onecan get aninitia estimator t,, that iswithin the suitable
neighborhood, then one can get to the full GMM estimator, or at |east an asyptotically equivalent
flavor of it, in onelinear step. This has the computational advantage that at this stage no iterative
computationisrequired, and the step can usually be carried out by asimpleleast squaresregression.
This aso has a useful statistical advantage: the asymptotic covariance matrix of the one-step
estimator will be the same as that of the GMM estimator, with its attendant efficiency properties,
rather than the possi bly much more compl ex covariance matrix of theinitial estimator. For example,
the initial estimator might be the result of multiple-stage estimation, as described in the previous
section, with acovariance matrix of theform given in that section. However, onelinear step starting
from that estimator gives aresult that is asymptotically equivalent to solving the full joint GMM
problem. Alternately, one might start from initial GMM estimators, and in one step obtain aresult
that is asymptotically equivalent to full maximum likelihood estimation. Within the context of
hypothesis testing with GMM estimates, it is possible to go in one linear step from any suitable
initially consistent estimator to estimators that are asymptotically equivalent to either the
unconstrained or constrained GMM estimators.

Thefirst result based on these ideas is estimation of an expectation that depends on estimated
parameters. Suppose one wishesto estimate E,m(z,6,), where misavector of functions of random
variables z and a parameter vector 60 that hastruevalue6,. If T, isany consistent estimator of 6., the
sample average of m(z,0) converges in probability to E,m(z,0) uniformly in 6, and E,m(z,0) is
continuousin 6, then

Y. Mz -, Em(ze,).

t=1

S|

This works because

zn: m(zﬂrn) - Ezm(z’rn)‘ > 8)

t=1

Prob(|

Sl
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zn: Prob(sup,| m(z.0) - E,m(z,0)| >€) - 0

t=1

<

S|

and E,m(z,t,) - E,m(z,8,). Suppose one strengthens the requirement on t,, to the condition that it
be n*2-consistent, meaning that n"%(t, - 8,) is stochastically bounded, or for each € > 0 there exists
M > 0 such that

Prob(|n"¥(t, - 6,)| > M) < ¢ for al n.

Supposethat m(z,0) satisfiesaLipschitz conditionat 6,; i.e., thereexistsafunction L(z) with afinite
expectation such that |m(z,0) - m(z,8,)| < L(2):|6 - 6,|. Then the result holds without requiring
uniform convergence in probability for sample averages of m(z,0).

The preceding result is useful for calculation of Wald or Lagrange Multiplier test statistics,
which require estimation of G(6,), Q(6,), and/or A(8,). The arrays G,(60), ,(8), and A (0) are
uniformly convergent, and the result establishes for any initial consistent estimator t, that G(t,) -,
G(0,), Qq(t,) », Q(0,), and A (t,) ~, A(6,). Then, using these estimates preserves the asymptotic
equivalence of the tests under the null and local alternatives. In particular, one can evaluate terms
entering the definitions of these arraysat T,, T,,, Or any other consistent estimator of 6,. In sample
analogsthat converge to these arrays by the law of large numbers, one can freely substitute sample
and population terms that leave the probability limits unchanged. For example, if z, = (y,,x,) and 1,
is any consistent estimator of 6,, then O can be estimated by (1) an anaytic expression for

zn: g(zt’rn)g(zt’rn)/1 or (3) a Sample

t=1

Eg(z,0)g(z,0)’, evaluated at 1, (2) a sample average

Sl

n
Y. E, 9(yx.0)a(yx.0) evaluatedat 6 =1, Itshould

t=1

average of conditional expectations

Sl

be noted however that these first-order equivalences do not hold in finite samples, or even to higher
ordersof n¥2. Thus, there may be clear choices between these when higher orders of approximation
are taken into account.

The second result, called the one-step theorem, considers the first-order condition associated
with a GMM criterion function, 0 = G,'Q, ™ g,(0). Suppose one has an initial nY?-consistent
estimator t,, for 6,. A Taylor's expansion of the first-order condition about t,, yields

Gn’Qn * gn(e) = Gn/Qn_lgn(Tn) + Gn’Qn_lGn(e - Tn) + O((e - Tn)z)'
Then, a one-step approximation to the unconstrained GMM estimator is
Ton =Ty~ (Gn/Qn_lGn)_lGn/Qn_lgn(Tn)'

A Taylor’s expansion around 6, of the GMM first-order condition, evaluated at t,, yields
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NG, Q" 'gy(T) = n*?G,'Q,"9,(6,) + G, Q"G (x, - 0,) + 0,
Combine this with the condition -G,'Q, g,(t,) = G,'Q,*G,n"(T,, - 7,) to conclude that
NG, Q,9,(6,) = G, Q"G nH(Ty, - 6,) + 0,
and the condition
-N2G,'Q,70,(8,) = G, Q" Gn"A(T, - 8,) + o
to conclude that
0=G,'Q,'"Gn"*(T,-T,) +0,
so that T, and T, are asymptotically equivalent.
The one-step theorem can al so be applied to the constrained GMM estimator.  Supposethe null

hypothesis, or alocal aternative, a(0,) = 5-n?, istrue. Define one-step constrained estimatorsfrom
the Lagrangian first-order conditions:

T

oan

-1

VoQn(Ty)

-a(t,)

B A
A O

n

0

yoan

Noteinthisdefinitionthat y = 0isatrivia initially consistent estimator of the Lagrangian multipliers
under the null or local aternatives, and that the arrays B and A can be estimated at t,. The one-step
theorem again applies, yielding n™*4(T,,-T,) ~, 0 and N"**(y,,Ya) ~, 0. Then, these one-step
equivalents can be substituted in any of the test statistics of the trinity without changing their
asymptotic distribution.

A regression procedurefor cal culating the one-step expressionsis often useful for computation.
Theadjustment fromt,, yiel ding the one-step unconstrai ned estimator isobtained by atwo-stage| east
sguares regression of the constant one on V,l(z,t,), with g(z,t,) asinstruments; i.e.,

a. Regress each component of V,l(z,t,) on g(z,t,) in the samplet = 1,...,n, and retrieve fitted
values V,l'(z,t,);
b. Regress1onV,l’(z,t,); and adjust t, by the amounts of the fitted coefficients.

Step (a) yields VI (z,1,)' = 9(z,1,)Q, T, and step (b) yields coefficients
-1

Z Vel)k(z'(’ﬁcn)

t=1

A= g [Vol "z )]Vl " (Z,)l”
= (rnIQnrn)-lrlengn(Tn)'

Thisisthe adjustment indicated by the one-step theorem.
Computation of one-step constrained estimators is conveniently done using the formulas
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Tom = Ton- B'A'(ABA)'&(T,,) = 7, + A - B'A'(AB*A") [a(t,) + AA]
Yo = -(ABTAY'A(T,) = -(ABA)[a(x;) + AA]

with A and B evaluated at t,. To derive these formulas from the first-order conditions for the
Lagrangian problem, replace V,Q,(t,,) by the expression -(I',, 'Q,* T, ' )(T,, - T,,) from the one-step
definition of the unconstrained estimator, replace a(t,)) by a(T,,) + A(T,, - t,), ahd use the formula
for a partitioned inverse.

6. SPECIAL CASES

Maximum Likelihood. We have noted that maximum likelihood estimation can be treated as
GMM estimation with moments equal to the score, g = V,l. The statistics in Table 2 remain the
same, withthesimplificationthat B=Q (=G =TI"). Thelikelihood ratio statistic 2n[L (T,) - L(T,)],

n

where L(0) = 1 Z 1(z.,0), is shown by a Taylor's expansion about T, to be asymptotically
n =1

equivalent to the Wald statistic W, and henceto al the statisticsin Table 2. Notethat LR and DM
occupy comparable placesin thetrinity for maximum likelihood and GMM estimation respectively.

Suppose one sets up an estimation problem in terms of amaximum likelihood criterion, but that
onedoesnot in fact have thetruelikelihood function. Supposethat in spite of this misspecification,
optimization of the selected criterion yields consistent estimates. One place this commonly arises
iIswhen panel dataobservationsare serially correlated, but onewritesdown the marginal likelihoods
of the observations ignoring serial correlation. These are sometimes called pseudo- likelihood
criteria. The resulting estimators can be interpreted as GMM estimators, so that hypotheses can be
tested using the statistics in Table 2. Note however that now G = Q, so that B = G'Q'G must be
estimated in full, and one cannot do tests using alikelihood ratio of the pseudo-likelihood function.

Least Squares. Consider the nonlinear regression model y = h(x,0) + ¢, and suppose E(y|X) =

n

h(x,0) and E((y-h(x,0))?|x) = ¢° The least squares criterion Q,(0) = Zi Y (v - h(z.0))?is

t=1
asymptotically equivalent to GMM estimation with g(z,0) = (y-h(x,0))V,h(x,0) and adistance metric
2 n
n= ;— Z [Veh(X,0)1[Voh(x,0,)]’. For thisproblem, B=Q =G. If h(z,0) =z'6 islinear, one
n 1
n

Y zz.

t=1

has g(z,0) = u(0)z, where u,(0) =y, - z'0 isthe regression residual, and Q,, =

Sl

Instrumental Variables. Consider the regression model y, = h(z,0,) + &, where e, may be
correlated with Vgh(z,0,). Supposethereareinstrumentsw such that E(e,|w,) =0. For thisproblem,
one has the moment conditions g(y,,z,w,,0) = (Y, - h(z,0))f(w,) satisfying Eg(y,,z,w,,0,) = 0 for any
vector of functions f(w) of the instruments, so the GMM criterion becomes
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‘[1 Y (y, - hz0)f(w)| .
n 1

Supposethat it werefeasibleto construct the conditional expectation of thegradient of theregression
function conditioned on w, g, = E(V,h(z,0,)|w,). This is the optimal vector of functions of the
instruments, in the sense that the GMM estimator based on f(w) = q will yield estimators with an
asymptotic covariance matrix that is smaller in the positive definite sense than any other distinct
vector of functions of w. A feasible GMM estimator with good efficiency properties may then be
obtained by first obtai ning apreliminary consi stent estimator t, employing asimplepractical distance
metric, second regressing Vyh(z,t,) on a flexible family of functions of w,, such as low-order
polynomialsin w, and third using fitted values from this regression as the vector of functions f(w,)
inafinal GMM estimation. Simplifications of this problem result when h(z,0) =z'6 islinear in 6;
in this case, the feasible procedure above is simply 2SLS, and no iteration is needed.

Smple hypotheses. Animportant practical case of the general nonlinear hypothesisa(6,) =0is
that a subset of the parameters are zero. (A hypothesis that parameters equal constants other than
zero can bereduced to thiscase by reparameterization.) Assumed’ = (a',f’) wheref isof dimension
rand o isof dimensionk-r, and H,: B = 0. Thefirst-order conditionsfor solution of thisproblem are
0=V, Q(Ta), 0=V, Q(Ta) + Yan, IMPlYing v, = -V, Qy(Ty), and A = [01] isarxk matrix whosefirst
k-r columns are zero. Let C = B™ be the asymptotic covariance matrix of n**(T, - 6,), and AB*A’
= Cg, the submatrix of C for B. Taylor's expansions about T, of the first-order conditions imply
NY2(Ty - Tya) = -BuoBos T, + 0, and N2y, = [By-Bg By, "Byl YT, + 0, = Bl Cpp ' Ton + 0, Then

a0 —off a0

the Wald statistics are

L3 sw )’
n -1

Q,(0) = % > 0, - iz, B)f(w)

W =nT. 'CoAT. W. =n Tl,n_Tl,an Ba[} C. [B B } Tl,n_Tl,an
In ™ 2n ~pg T2m 2n BB B BB )
T2,n BBB ¢ T2,n
Tl,n_Tl,an Tl,n_Tl,an
W, ,=n
T2,n T2,n

You can check the asymptotic equivalence of these statistics by substituting the expression for
N“Y(T,-T..). TheLM statistic, inany version, becomesLM = NV Qn(Tan)'Cpp Vs Qn(Tar)- Recall that
B, hence C, can be evaluated at any consistent estimator of 6,. In particular, the constrained
estimator is consistent under the null or under local alternatives. The LM testing procedure for this
caseisthen to (a) compute the constrained estimator T, ,, subject to the condition 3 = 0, (b) calculate
the gradient and hessian of Q, with respect to the full parameter vector, evaluated at T, ,, and B =0,
and (c) form the quadratic form above for LM, from the  part of the gradient and the 3 submatrix
of theinverse of the hessian. Notethat thisdoesnot require any iteration of the GMM criterion with
respect to the full parameter vector.

Itisalso possibleto carry out the cal culation of the LM , test stati stic using auxiliary regressions.
This could be done using the auxiliary regression technique introduced earlier for the cal culation of
LM, in the case of any nonlinear hypothesis, but avariant is available for this case that reducesthe
size of the regressions required. The steps are as follows:
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a. RegressV,|(z,T,)" and Vil(z,T,)" on g(z,T,,), and retrieve the fitted values v (z,T,) and
Vil (2, T

b. RegressV;l'(z,T,) onV,l'(z,T,,), and retrieve the residual u(z,T,).

c. Regressthe constant 1 on theresidual u(z,T,,), and calculate the sum of squares of the fitted
valuesof 1. Thisquantity iSLM,.

In the case of maximum likelihood estimation, Step (a) is redundant and can be omitted.
7. TESTSFOR OVERIDENTIFYING RESTRICTIONS

Consider the GMM estimator based on moments g(z,,0), wheregismx1, 6 iskx1, and m >k,
so there are over-identifying moments. The criterion

Qi(6) = (1/2)g,(6)' 2, 9,(6),

evaluated at its minimizing argument T, for any Q, -, Q, has the property that 2nQ, = 2nQ,(T,)) ~4
v*(m-k) under the null hypothesisthat Eg(z,0,) = 0. This statistic then provides a specification test
for the over-identifying moments in g. It can aso be used as an indicator for convergence in
numerical search for T,..

To demonstrate this result, recall that -Q Y2 n*?g.(6,) = U, -4 U ~ N(O,]) and n"¥(T, - 0,) =
B'G'Q™U, + 0,. Then, aTaylor'sexpansion yields

QY2 n'%g(T,) =-U, + Q*GB'G'Q"U, + 0,=-R .U, + 0,
whereR, = | - QY?G(G'Q*'G)*'G'Q Y2 isidempotent of rank m - k. Then
2nQn(Tn) = Un’RnUn + Op ~d Xz(m'k) .

Suppose that instead of estimating 6 using the full list of moments, one uses a linear combination
Lg(z,0), whereL isrxmwith k < r <m. Inparticular, L may select asubset of the moments. Let T,,
denotethe GM M estimator obtai ned from these moment combinations, and assumetheidentification
conditions are satisfied so T, is n*?-consistent. Then the statistic S = ng,(T,.)'Q,*R.Q,?g.(T.)
-4 x(m-K) under H,, and this statistic is asymptotically equivalent to the statistic 2nQ.(T,). This
result holdsfor any n'?-consistent estimator ,, of 8, not necessarily the optimal GMM estimator for
the moments Lg(z,0), or even an initialy consistent estimator based on only these moments. The
distance metric in the center of the quadratic form S does not depend on L, so that the formulafor
the statistic isinvariant with respect to the choice of theinitially consistent estimator. Thisimplies
in particular that the test statistics S for over-identifying restrictions, starting from different subsets
of the moment conditions, are all asymptotically equivalent. However, the presence of the
idempotent matrix R, in the center of the quadratic form Siscritical toitsstatistical properties. Only
the GMM distance metric criterion using all moments, evaluated at T,, isasymptotically equivalent
to S. Substitution of another consistent estimator t,,in placeof T, yieldsan asymptotically equivalent
version of S, but 2nQ,(z,) is not asymptotically chi-square distributed.
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Thetest for overidentifying restrictions can berecast asalLM test by artificially embedding the
origina model in aricher model. Partition the moments

9'(z6)
9%(z0)]

where g*iskx1 with G, = EV,g%(z,0,) of rank k, and ¢?is (m-k)x1 with G, = EV,g*(z,0,). Embed this
in the model

9(z,0) =

9'(z0)
9%(z.0)+y

where y isa(m-k) vector of additional parameters. Thefirst-order-condition for GMM estimation
of this expanded model is

g(zoy) =

Q 0

n

0 1

Gln GZn
0 1

9,(Ta)
9.(Ty) — v,

The second block of conditions are satisfied by v, = g,(T,,), ho matter what T, so T, isdetermined
by O = G,Q.0,(T,)- Thisissimply the estimator obtained from the first block of moments, and
coincides with the earlier definition of T,,. Thus, unconstrained estimation of the expanded model
coincides with restricted estimation of the original model. Next consider GMM estimation of the
expanded model subject to H,:y = O. This constrained estimation obviously coincides with GMM
estimation using al momentsin the original model, and yields T,. Thus, constrained estimation of
the expanded model coincides with unrestricted estimation of the original model.

The Distance Metric test statistic for the constraint y = 0 in the expanded model is DM, =
2n[Q,(T,,,0) - Q.(T,,wy] = 2nQ,(T,), where Q, denotes the criterion as a function of the expanded
parameter list. One hasQ,(T,,0) = Q,(T,) from the coincidence of the constrained expanded model
estimator and the unrestricted original model estimator, and one has Q,(T,,.v,) = 0 since the number
of moments equals the number of parameters. Then, the test statistic 2nQ,(T,) for overidentifying
restrictions is identical to a distance metric test in the expanded model, and hence asymptotically
equivalent to any of the trinity of testsfor H,: v = O in the expanded model.

We give four examples of econometric problems that can be formulated as tests for
over-identifying restrictions:

0
0

m-k m-k

Example 1. If y = xB+e with E(g[x) = 0, E(e?x) = 62, then the moments
X(y-xB)
(y-xB)* - o

can be used to estimate B and 62 If € isnormal, then these GMM estimatorsare MLE. Normality
can be tested via the additional moments that give skewness and kurtosis,

g'(zp) =
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(y-xp)’c®

P = (y-xp)*o* - 3

Example 2. In the linear model y = xb+e with E(e|x) = 0 and E(e,e x) = O for t=s, but with
possi ble heteroskedasticity of unknown form, one getsthe OL Sestimatesb of B and V (b) = (X' X)™*
under the null hypothesis of homoskedasticity. A test for homoskedasticity can be based on the
population moments 0 = E vecu[x'x(e* )], where "vecu" means the vector formed from the upper
triangle of the array. The sample value of this moment vector is

vecu

%g XX{yxPy -7

the difference between the White robust estimator and the standard OL S estimator of vecu[ X' QX].

Example 3. If 1(z,0) is the log likelihood of an observation, and T, is the MLE, then an
additional moment condition that should hold if the model is specified correctly isthe information
matrix equality

0=EVyl(z,0,) + EV,l(z,0,)V,l(z,0,) "

The sample analog is White'sinformation matrix test, which then can beinterpreted asa GMM test
for over-identifying restrictions.

Example 4. In the nonlinear model y = h(x,0) + € with E(e[x) = 0, and T,, a GMM estimator
based on moments w(x)(y-h(x,0)), where w(x) is some vector of functions of x, suppose one is
interested in testing the stronger assumption that € isindependent of X. A necessary and sufficient
condition for independence is E[w(x) - Ew(X)]f(y- h(x,0,)) = O for every function f and vector of
functions w for which the moments exist. A specification test can be based on a selection of such
moments.

8. SPECIFICATION TESTSIN LINEAR MODEL S"

GMM testsfor over-identifying restrictionshave particul arly convenient formsin linear models.
Three standard specification testswill be shown to have thisinterpretation. Wewill use projections
and afew of their propertiesin the following discussion; a more detailed discussion of projections
isgiven inthe Appendix to this chapter. Let P, = X(X’'X)~X denote the projection matrix from R"
onto the linear subspace X spanned by a nxp array X; note that it is idempotent. (We use a
Moore-Penrose generalized inversein the definition of Py to handlethe possibility that X islessthan
full rank; seethe Appendix.) Let Q, =1 - P, denote the projection matrix onto the linear subspace

1 paul Ruud contributed substantially to this section.
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orthogonal to X. If X is asubspace generated by an array X and W is a subspace generated by an
array W =[X Z] that contains X, then P, P,, = P,,Py = P, and Q,P,, = P,, - Px.

Omitted Variables Test: Consider the regression model y = X3 + €, wherey isnx1, X is nxk,
E(e|X) = 0, and E(ee’ |X) = o°l. Suppose one has the hypothesis H,: B, = 0, where B, is a px1
subvector of B, and let X* denote the nx(k-p) array of variables whose coefficients are not
constrained under the null hypothesis. Define u =y - Xb to be the residual associated with an
estimator b of B. The GMM criterionisthen 2nQ = u’ X (X'X)*X'u/lc? The projection matrix P, =
X(X'X)™*X" that appearsin the center of this criterion can obviously be decomposed as P, = P. +
(P - Py+). Under H,, u=y - X,b, and X'u can beinterpreted ask = p + q over-identifying moments
for theqparametersf3,. Then, the GMM test statistic for over-identifying restrictionsistheminimum

value 2nQ.* in b, of u'P,u/c? But Pyu = Py. u+ (P, - Py.)y and minbz u’ P.u=0 (at the OLS

estimator under H, that makes u orthogonal to X,). Then 2nQ, =y’ (Py - Py.)y/c®. The unknown
variance c? in thisformulacan be replaced by any consi stent estimator s?, in particul ar, the estimated
variance of the disturbance from either the restricted or the unrestricted regression, without altering
the asymptotic distribution, which is () under the null hypothesis.
The statistic 2nQ, has three aternative interpretations. First,
SR, - SR
2nQ, =y'Pylo?-y' P ylo’= — 2 =

(52

which is the difference of the sum of squared residuals from the restricted regression under H, and
from the unrestricted regression, normalized by 6. This is a large-sample version of the usual
finite-sample F-test for H,. Second, note that the fitted value of the dependent variable from the
restricted regressionis y, = Py y, and from the unrestricted regression isy, = P,y, so that

2nQn = (}70/5’0 - }A,ulyu)/ﬁz = (yo - }A,u)l(yo - }A’u)/c2 = Hyo _yuHZ/GZ-

Then, the statistic is cal culated from the distance between the fitted val ues of the dependent variable
with and without H, imposed. Note that it can be computed from fitted values without any
covariance matrix calculation. Third, let b, denotethe GMM estimator restricted by H, and b, denote
theunrestricted GMM estimator. Then, b, consists of the OL S estimator for 3, and the hypothesized
value O for B,, while b, isthe OLS estimator for the full parameter vector. Note that y, = Xb, and
y,=Xb,, sothat y, - y,= X(b, - b,). Then

2nQ, = (b, - b)) (X"X/c?)(b, - by) = (b, - b))V (b,)*(b, - by).
Thisisthe Wald statistic W,,,. From the equivaent form W, of the Wald statistic, this can aso be

written as a quadratic form 2nQ, = b, ,'V(b,)*b,,, where b, , is the subvector of unrestricted
estimates for the parameters that are zero under the null hypothesis.
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Two other important cases of specification testsin linear models are discussed in the following
chapters. Endogeneity testsarediscussed in the chapter oninstrumental variables, and testsfor over-
Identifying restrictions are discussed in the chapter on simultaneous equations.

APPENDI X

Projections: Consider a Euclidean space R" of dimension n, and suppose X isanxp array with
columns that are vectors in this space. Let X denote the linear subspace of R" that is spanned or
generated by X.; and i.e., the space formed by all linear combinations of the vectorsin X. Every
linear subspace can beidentified with an array such as X. The dimension of the subspaceisthe rank
of X. (The array X need not be of full rank, although if it is not, then a subarray of linearly
independent columns also generates X.) A given X determines a unique subspace, so that X
characterizesthe subspace. However, any set of vectors contained in the subspacethat form an array
with therank of the subspace, in particular any array XA with rank equal to the dimension of X, aso
generates X. Then, X isnot a unique characterization of the subspace it generates.

The projection of avector y in R" into the subspace X is defined asthe point v in X that isthe
minimum Euclidean distance from y. Since each vector v in X can be represented as a linear
combination Xo of an array X that generates X, the projection is characterized by the value of o that
minimizes (y-Xa)'(y-Xa). Thesolution to this problem isthe OLS estimator & = (X'X) X'y and v
= Xa& = X(X'X)"X'y. Intheseformulas, we use (X'X)~ rather than (X’X)™; the former denotes the
Moore-Penrose generalized inverse, and is defined even if X isnot of full rank (see below). The
array Py = X(X'X)™X’ is termed the projection matrix for the subspace X; it is the linear
transformation in R" that maps any vector in the space into its projection v in X. The matrix Py is
idempotent (i.e., PP, = P, and P, = P,’), and every idempotent matrix can be interpreted as a
projection matrix. These observations have two important implications: First, the projection matrix
isuniquely determined by X, so that starting from a different array that generates X, say an array S
= XA, implies P, = P. (One could use the notation Py rather than Py to emphasize that the
projection matrix depends only on the subspace, and not on any particul ar set of vectorsthat generate
X.) Second, if avectory iscontained in X, then the projection into X leavesit unchanged, P,y = .

Define Q, =1 - P, =1 - X(X'X)X"; it is the projection to the subspace orthogonal to that
spanned by X. Every vector y in R"isuniquely decomposed into the sum of its projection Pyy onto
X and its projection Q,y onto the subspace orthogonal to X. Note that P,Q, = 0, a property that
holds in general for two projections onto orthogonal subspaces.

If X isasubspace generated by an array X and W is a subspace generated by an array W = [X
Z] that contains X, then X ¢ W. Thisimplies that P,P,, = PPy = Py; i.e., a projection onto a
subspace isleft invariant by afurther projection onto alarger subspace, and a two-stage projection
onto alarge subspace followed by a projection onto asmaller oneisthe same as projecting directly
onto thesmaller one. The subspace of W that isorthogonal to X is generated by Q,W; i.e., itisthe
set of linear combinations of the residuals, orthogonal to X, obtained by regressing W on X. Note
that any y in R" has a unique decomposition P,y + Q,P,,y + Q,,y into the sum of projections onto
three mutually orthogonal subspaces, X, the subspace of W orthogonal to X, and the subspace
orthogonal to W. The projection Q,P,, can be rewritten Q,P,, = Py, - Py = P,,Qx = QxP,,Qy, Or
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sinceQW=Q,[X Z]=[0 QZ], QuPw= Py = Py, =QZ(Z'Q2)Z'Qy. Thisestablishes

that P,, and Q, commute. This condition is necessary and sufficient for the product of two
projectionsto be aprojection; equivaently, it impliesthat Q,P,, isidempotent since (Q,P,,)(QxPw)
= Qu(PwQx)Pw = Qx(QxPw)Pw = QyPy.

Generalized Inverses. Sometest statisticsare conveniently defined using generalized inverses.
This section gives aconstructive definition of ageneralized inverse, and lists some of its properties.
A kxm matrix A~ is a Moore-Penrose generalized inverse of a mxk matrix A if it has three
properties:

(Y AA"A=A,

(i) AAA"=A"

(iii) AA~ and A~A are symmetric
There are other generalized inverse definitions that have some, but not all, of these properties; in
particular A* will denote any matrix that satisfies (i), or AA*A = A.

First, a method for constructing the generalized inverse is described, and then some of the
implications of the definition are developed. The construction is called the singular value
decomposition (SVD) of amatrix, and isof independent interest asatool for finding the eigenvalues
and eigenvectors of asymmetric matrix, and for calculation of inverses of moment matrices of data
with high multicollinearity; see Press et al (1986) for computational algorithms and programs.

Lemma 1. Every real mxk matrix A of rank r can be decomposed into a product A = UDV’
whereD isarxr diagonal matrix with positive non-increasing el ements down the diagonal, and U
and V are column-orthonormal matrices of respectivedimension mxr and kxr; i.e, U'U=1,=V'V.

Proof: The mxm matrix AA’ is symmetric and positive semidefinite. Then, there exists a mxm
orthonormal matrix W, partitioned W =[W, W,] with W, of dimension mxr, such that W,'(AA")W,
= G is diagonal with positive, non-increasing diagona elements, and W,'(AA")W, = 0, implying
A'W, =0. Define D from G by replacing the diagonal elements of G by their positive square roots.
Notethat W'W =1=WW' = W, W," + W,W,’. DefineU =W, andV’'=D"U’'A. Then,U'U=1I,
and V'V = D'U'AA’UD* = D'GD* =I,. Further, A = (I,-W,W,)A = UU’A = UDV'. This
establishes the decomposition. [

Note that if A is symmetric, then U is the array of eigenvectors of A corresponding to the
non-zero roots, so that A’'U = UD,, with D, the rxr diagonal matrix with the non-zero eigenvalues
in descending magnitude downthediagonal. Inthiscase, V =A’UD*=UD,D™. Sincetheelements
of D, and D are identical except possibly for sign, the columns of U and V are either equal (for
positive roots) or reversed in sign (for negative roots).

Lemma 2. The Moore-Penrose generalized inverse of amxk matrix A (whichhasa SVD A =
UDV ) isthematrix A" =VD™U, whereV iskxr, D isrxr, and U isrxm. Let A* denote any matrix,
including A, that satisfiesAA™A = A. These matrices satisfy:

(1) A*=Atif A issquare and non-singular.
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(2) The system of equations Ax =y has a solution if and only if y = AA'y, and the linear
subspace of all solutionsisthe set of vectorsx = A'y + [I - A*A]z for all z € R¥,

(3) AA" and A*A are idempotent.

(4) If A isidempotent, then A = A .

(5) If A = BCD with B and D nonsingular, then A~ = D CB™, and any matrix A* = D''C'B*
satisfies AA'A = A.

®)(A) =(A)

(M (AA)y=A(A)

B)(A)y=A=AA'(A) =(A)A'A.

@ IfA= ) AwithA’A;=0andAA/' =0fori=+j thenA = } A
| |

Lemma 3. If A issguare, symmetric, and positive semidefinite of rank r, then
(1) There exist Q positive definite and R idempotent of rank r such that A = QRQ and
A~ =Q'RQ™
(2) Thereexistsakxr column-orthonormal matrix U suchthat U’AU =D isnon-singular
diagonal and A" = U(U’AU)*U".
(3) A hasa symmetric squareroot B=AY2, and A" =B B.

Proof: Let W = [U W,] be an orthogonal matrix diagonalizing A. Then, U'AU = D, adiagond
D2 0
matrix of positive eigenvalues, and AW, =0. DefineQ =W | W', R=WW’' andB =

m-r

ub*J’. O

Lemma 4. Supposey ~N(L,A), with A of rank r, and let A = SY>TS"? be a decomposition of A
interms of a positive definite matrix Sand an idempotent matrix T of rank r. Suppose A is contained
in the space spanned by A; i.e, TSY? 1 = S¥2 ., Then y’'S’y and y’'A'y are identical, and are
distributed noncentral chi-square with r degrees of freedom and noncentrality parameter L'A A.

Proof: Let W = [U W,] be an orthonormal matrix that diagonalizes A, asin the proof of Lemma 3,
with U’AU = D, a positive diagonal rxr matrix, and W'AW, = 0, implying AW, = 0. Then, the

D -1/2 D 71/2U /A?\.

nonsingular transformation z = W'y has mean and covariance matrix

I 0 e : :
[O 0] , so that z, = D¥2U’y is distributed N(D™2U’AM,l,), z, = W,y = 0, implying W'y = [D¥?z,

0]. Itisstandard that z'z has a noncentral chi-square distribution with r degrees of freedom and
noncentraity parameter A’AUD'U’AL = XMAL.  The condition A = AA*A implies
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U’AU = U'AWW'A*WW'AU, or D = [D|0]W’A*W[D 0]’ = D(U'A*U)D. Hence, U'A*U = D™,
Then
y/A+y - y/WW/A+ley - [leD]JZ O] (W/A+W)[D]J2 leo]/
=z,'DYYU’'A*U)DY*z,= 2,2z, O
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Econ. 240B D. McFadden, © 1999

CHAPTER 4. INSTRUMENTAL VARIABLES

1. INTRODUCTION

Consider thelinear model y = X3 + &, whereyisnxl1, X isnxk, piskx1, and e isnx1. Suppose
that contamination of X, where some of the X variablesare correlated with €, issuspected. Thiscan
occur, for example, if € contains omitted variables that are correlated with the included variables,
if X contains measurement errors, or if X contains endogenous variablesthat are determined jointly
withy.

OLSRevisited: Premultiply the regression equation by X’ to get
Q) X'y=X'XB + X'e.

Onecan interpret the OL S estimate b, ¢ asthe solution obtained from (1) by first approximating X ‘e
by zero, and then solving the resulting k equations in k unknowns,

¥ X'y =X'Xbgss
for the unknown coefficients. Subtracting (1) from (2), one obtains the condition
©) X' X(bors - B) =X,

and the error in estimating f is linear in the error caused by approximating X'e by zero. If X'X/n
-, A positive definite and X'e/n -, 0, (3) implies the result that by s ~, B. What makes OLS
consistent when X ’e/n - Oisthat approximating X ‘e by zeroisreasonably accurateinlargesamples.
On the other hand, if one hasinstead X'e/n -, C = 0, then b, s is not consistent for B, and instead
bovs “p Bt A*C.

Instrumental Variables. Suppose there is a nxj array of variables W, called instruments, that
have two properties. (i) These variables are uncorrelated with €; we say in this case that these
instruments are clean. (ii) The matrix of correlations between the variablesin X and the variables
in W is of maximum possible rank (= k); we say in this case that these instruments are fully
correlated. Call the instruments proper if they satisfy (i) and (ii). The W array should include any
variablesfrom X that arethemselvesclean. To befully correlated, W must include at |east as many
variables as are in X, so that j > k. Another way of stating this necessary condition is that the
number of instruments in W that are excluded from X must be at least as large as the number of
contaminated variables that are included in X.

Instead of premultiplying the regression equation by X’ as we did for OLS, premultiply it by
R'W’, where R is a jxk weighting matrix that we get to choose. (For example, R might select a
subset of k from thej instrumental variables, or might form k linear combinations of these variables.
The only restriction isthat R must have rank k.) This gives
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(4) R'W’y = R'W’'XB + R'W'e.

Theideaof aninstrumental variables (V) estimator of 3 isto approximate R"W'e by zero, and solve
(5) R'W'y = R'W’X b,

for b, = [R'W’'X]'R'W'y. Subtract (4) from (5) to get the IV analog of the OLS relationship (3),
(6) R'W'X(b,, - B) = R'W'e.

If R"W’X/n convergesin probability to anonsingular matrix and R"W’e/n - 0, then b, -, . Thus,
in problems where OLS breaks down due to correlation of right-hand-side variables and the
disturbances, you can use IV to get consistent estimates, provided you can find proper instruments.

The idea behind (5) isthat W and & are orthogonal in the population, a generalized moment
condition. Then, (5) can beinterpreted asthe sol ution of ageneralized method of moments problem,
based on the sample moments W' (y - Xp). The properties of the IV estimator could be deduced as
aspecial case of the general theory of GMM estimators. However, because the linear IV model is
such animportant applicationin economics, wewill givelV estimatorsan elementary self-contained
treatment, and only at the end make connections back to the general GMM theory.

2. OPTIMAL IV ESTIMATORS

If there are exactly as many instruments as there are explanatory variables, j = k, then the IV
estimator is uniquely determined, b,, = (W’'X)*W'y, and Risirrelevant. However, if j >k, each R
determines a different 1V estimator. What is the best way to choose R? An analogy to the
generalized least squares problem provides an answer: Premultiplying the regression equation by
W' yields a system of | > k equationsin k unknown f’s, W'y = W'Xp + W'e. Sincethere are more
equationsthan unknowns, we cannot simply approximate all the W'e terms by zero simultaneously,
but will have to accommodate at least j-k non-zero residuals. But thisis just like a regression
problem, with j observations, k explanatory variables, and disturbances v = W'e. Suppose the
disturbances ¢ have a covariance matrix ¢°C2, and hence the disturbancesv = W’e have anon-scalar
covariance matrix c®W’'QW. If thiswere a conventional regression satisfying E(v|W’X) = 0, then
we would know that the generalized least squares (GLS) estimator of p would be BLUE; this
estimator is

©) beigy = [X W(W/ QW)W X]EX " WW' QW) W'y,

This corresponds to using the weighting matrix R = (W'QW)*W’X. In truth, the conditional
expectation of v given W’ X isnot necessarily zero, but clean instrumentswill havethe property that
(W'X)’e/n -, 0 because W and ¢ are uncorrelated in the population. This is enough to make the
analogy work, so that (7) givesthe IV estimator that has the smallest asymptotic variance among
those that could be formed from the instruments W and a weighting matrix R.

If one makesthe usual assumption that the disturbances e have ascalar covariancematrix, Q =1,
then the best 1V estimator reduces to
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) B s = [X/W(W/ W)W/ X] X 'W(W' W) W'y

Thiscorrespondsto usingtheweighting matrix R= (W’'W)™*W’X. But thisformulaprovidesanother
interpretation of (8). If you regress each variable in X on the instruments, the resulting OLS
coefficientsare (W'W)*W'’X, thesame asR. Then, the best linear combination of instruments WR
equals the fitted value X" = W(W'W)*W'X of the explanatory variables from a OLS regression of
X onW. Further, you have X'W(W'W)?*W'X =X’'X" = X" X" and X'"W(W'W)*W'y = X'y, so that
the IV estimator (8) can aso be written

9) bys s = (XX) Xy = (XX)'Xy.

This provides a two-stage |least squares (2SLS) interpretation of the IV estimator: First, a OLS
regression of the explanatory variables X on theinstrumentsW isused to obtainfitted values X", and
second a OL S regression of y on X” is used to obtain the IV estimator b,y . Note that in the first
stage, any variablein X that isalsoin W will achieve aperfect fit, so that thisvariableiscarried over
without modification in the second stage.

The 2SLS estimator (8) or (9) will no longer be best when the scalar covariance matrix
assumption Eee’ = ol fails, but under fairly general conditionsit will remain consistent. The best
IV estimator (7) when Eee’ = 6?Q can be reinterpreted as a conventional 2SL S estimator applied to
thetransformed regression Ly = LX +n using theinstruments (L) *W, where L isaCholesky array
that satisfiesLQL" =1. When Q depends on unknown parameters, it is often possible to use a
feasible generalized 2SL S procedure (FG2SLS): First estimate § using (8) and retrievetheresiduals
u=y - Xb,ys Nextusethese residualsto obtain an estimate Q" of Q. Then find a Cholesky
transformation L satisfying LQ'L’ = |, make the transformationsy = Ly, X = LX, and W= (L')*W,
and do a2SL S regression of y on X using W asinstruments. This procedure gives afeasible form
of (7), and is also called three-stage least squares (3SLS).

3. STATISTICAL PROPERTIESOF IV ESTIMATORS

IV estimators can behave badly in finite samples. In particular, they may fail to have moments.
Their appeal relies on their behavior in large samples, although an important question is when
samples are large enough so that the asymptotic approximation is reliable. We first discuss
asymptotic properties, and then return to the issue of finite-sample properties.

We aready made an argument that 1V estimators are consistent, provided some limiting
conditions are met. We did not show that IV estimators are unbiased, and in fact they usually are
not. An exception where b,, is unbiased is if the original regression equation actualy satisfies
Gauss-Markov assumptions. Then, no contamination is present, IV is not really needed, and if IV
is used, its mean and variance can be calculated in the same way this was done for OLS, by first
taking the conditional expectation withrespecttoe, given X and W. Inthiscase, OLSisBLUE, and
since IV isanother linear (iny) estimator, its variance will be at |east as large as the OL S variance.

We show next that IV estimators are asymptotically normal under some regularity conditions,
and establish their asymptotic covariance matrix. This gives arelatively complete large-sample
theory for IV estimators. Let 6°Q bethe covariance matrix of e, given W, and assumethat it isfinite
and of full rank. Make the assumptions:
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[1] rank(W) =] > k

[2a] W'W/n -~ H, apositive definite matrix
[2b] W' QWI/n - F, apositive definite matrix
[3] X'W/n -, G, amatrix of rank k

[4] We/n-,0

[5] nY2W'e~, N(0,6%F)

Assumption [1] can always be met by dropping linearly dependent instruments, and should be
thought of as true by construction. Assumption [1] impliesthat W'W/n and W’'QW/n are positive
definite; Assumption [2] strengthens theseto hold inthelimit. Proper instruments have X"W/n of
rank k from thefully correlated condition and E(W'e/n) = 0 by the clean condition. Assumption [3]
strengthens the fully correlated condition to hold in the limit. Assumption [4] will usually follow
from the condition that the instruments are clean by applying aweak law of large numbers. For
example, if the e are independent and identically distributed with mean zero and finite variance,
given W, then Assumption [2a] plus the Kolmogorov WLLN imply Assumption [4]. Assumption
[5] will usually follow from Assumption [2b] by applying a central limit theorem. Continuing the
I.1.d. example, the Lindeberg-Levy CLT implies Assumption [5]. Thereare WLLN and CLT that
hold under much weaker conditions on the €s, requiring only that their variances and correlations
satisfy some bounds, and these can also be applied to derive Assumptions [4] and [5]. Thus, the
statistical propertiesof 1V can be establishedinthe presence of many formsof heteroskedasticity and
serial correlation.

Theorem: Assumethat [1], [2b], [3] hold, and that an IV estimator is defined with aweighting
matrix R, that may depend on the sample n, but which convergesto amatrix R of rank k. If [4]
holds, then b, -, B. If both [4] and [5] hold, then

(20) n“?(lo, - B) =4 N(O, 6*(R'G')*R'FR(GR)Y).

Suppose R, = (W'W)*W'X and [1]-[5] hold. Then the IV estimator specializes to the 2SLS
estimator b, s given by (8) which satisfies b,g s -, f and

(11) N"2(b,g s - B) ~4 N(O, 6¥(GH'G')(GHFH'G')(GH'G") ™).

Suppose R, = (W’'QW)*W'X and [1]-[5] hold. ThenthelV estimator specializestothe GLSIV
estimator b, 5y given by (7) which satisfies by g, ~, p and

(12) nﬂz(bel_sw -B) ~a N(O, 6*(GF*G") ).
Further, the GLSIV estimator is the minimum asymptotic variance estimator; i.e.,
o’ (R'G')'R'FR(GR)™ - ¥ GF'G’) *ispositive semidefinite. If Q =1, thenthe2SLSand GLSIV

estimators are the same, and the 2SLS estimator has limiting distribution (12) and is
asymptotically best among all IV estimators that use instruments W.
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Thefirst part of thistheorem is proved by dividing (6) by n and using assumptions|[2], [3], and
[4], and then dividing (6) by n*? and applying assumptions [2], [3], and [5]. Substituting the
definitions of R for the 2SLS and GLSIV versions then gives the asymptotic properties of these
estimators. Finaly, alittlematrix algebrashowsthat the GLSIV estimator has minimum asymptotic
variance among all IV estimators: Start with the matrix | - F¥>G’(GF'G’)*GFY2 which equalsiits
ownsquare, sothat itisidempotent, and therefore positive semidefinite. Premultiply thisidempotent
matrix by (R'G’)*R’'F*?, and postmultiply it by the transpose of this matrix; the result remains
positive semidefinite, and equals (R'G’')*R'FR(GR)™ - (GF'G’)™. This establishes the resuilt.

In order to use the large-sample properties of b,, for hypothesis testing, it is necessary to find
aconsistent estimator for o2. The following estimator works: Define IV residuals

u=y-Xby = [ - X(R'W'X)R'Wy = [I - X(R'W'X)R'W]e,

the Sum of Squared Residuals SSR = u'u, and s* = u’u/(n-k). If €’e/n - o then s’ is consistent for
o® To show this, simply write out the expression for u’u/n, and take the probability limit:

(23) plimu'u/n = plime’e/n - 2 plim [¢’"W/N]R([X'W/N]R)[X"&/n]
+ [&'WIN]R([X'W/N]R)[ X' X/ (R'[W’'X/n]) 'R’ [W’e/n]
= ¢’ - 20R(GR)'C + O-R(GR)'A(R'G')'R"-0 = ¢°.

We could have used n-k instead of n in the denominator of thislimit, asit makes no difference in
large enough samples. The consistency of the estimator s* defined above holdsfor any IV estimator,
and so holdsin particular for the 2SLS or GLSIV estimators. Note that this consistent estimator of
o? substitutes the IV estimates of the coefficients into the original equation, and uses the original
values of the X variables to form the residuals. When working with the 2SLS estimator, and
calculating it by running the two OL S regression stages, you might be tempted to estimate 2 using
aregression program printed values of SSR or the variance of the second stage regression, whichis
based ontheresiduals 1=y - X'b,q .. It tunsout that this estimator is not consistent for % A few
lines of matrix manipulation shows that 0'0/n -, o + B'[A - GF'G’]B. Thesecond termis positive
semidefinite, so this estimator is asymptotically biased upward.

Suppose Eee’ = 6%, so that 2SLSis best among IV estimators using instruments W. The sum
of squared residuals SSR = u'u, whereu =y - Xb, 5, can be used in hypothesistesting in the same
way as in OLS estimation. For example, consider the hypothesis that 8, = O, where 8, isarx1
subvector of 3. Let SSR, be the sum of squared residualsfrom the 2SL S regression of y on X with
B, = 0imposed, and SSR, be the sum of squared residuals from the unrestricted 2SL S regression of
yonX. Then, [(SSR,- SSR,)/m]/[SSR,/(n-k)] hasan approximate F-distribution under the null with
m and n-k degrees of freedom. There are several cautionsto keep in mind when considering use of
thistest statistic. Thisisalarge sample approximation, rather than an exact distribution, because
it is derived from the asymptotic normality of the 2SLS estimator. Itsactual size in small samples
could differ substantially from its nominal (asymptotic) size. Also, the large sample distribution of
the statistic assumed that the disturbances ¢ have a scalar covariance matrix. Otherwise, it is
mandatory to do a FGL S transformation before computing the test statistic above. For example, if
y = X + & represents a stacked system of equations such as structural equations in a simultaneous
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equations system, or if € exhibits serial correlation, as may be the case in time-series or panel data,
then one should estimate 3 consistently using 2SL S, retrievetheresidualsu =y - Xb,q sand usethem
to make an estimate Q" of Q = Eee’, make the transformationsy = Ly, X = LX, v = Le, and W=
(L")*W where L is a Cholesky matrix such that LQ'L’ is proportional to an identity matrix, and
finally apply 2SLSto theregressiony = X + v with W as instruments and carry out the hypothesis
testing using thismodel. The reason for the particular transformation of W is that one has W'v =
W'e, so that the original property that the instruments were uncorrelated with the disturbances is
preserved. The 3SLS procedure just described correspondsto estimating p using afeasible version
of the GLSIV estimator.

What are the finite sample properties of IV estimators? Because you do not have the condition
E(e|X) = 0 holding in applications where IV is needed, you cannot get sSimple expressions for the
moments of b, = [R'W'X]'R'W'y = B + [R'W’'X]'R'W’e by first taking expectations of ¢
conditioned on X and W. In particular, you cannot conclude that b,, is unbiased, or that it has a
covariance matrix corresponding to its asymptotic covariance matrix. Infact, b, can havevery bad
small-sampleproperties. Toillustrate, consider the case where the number of instrumentsequal sthe
number of observations, j = n. (Thiscan actually arise in dynamic models, where often all lagged
values of the exogenous variables are legitimate instruments. It can also arise when the candidate
instruments are not only uncorrelated with e, but satisfy the stronger property that E(e|w) = 0. In
thiscase, al functions of w are aso legitimate instruments.) Inthiscase, W isasquare matrix, and

B s = [ X WW W)W/ XX W(W W) W'y
= X WW AW AW XX WWAW AWy = [X/X] Xy = by o

We know OLS isinconsistent when E(e|X) = 0 fails, so clearly the 2SLS estimator is also biased
if we let the number of instruments grow linearly with sample size. This shows that for the IV
asymptotic theory to be agood approximation, n must be much larger thanj. Onerule-of-thumb for
IV isthat n - j should exceed 40, and should grow linearly with nin order to have the large-sample
approximations to the IV distribution work well.

Considerable technical analysisisrequired to characterize the finite-sample distributions of IV
estimators analytically; the names associated with this problem are Nagar, Phillips, and Mariano.
However, simple numerical examples provide apicture of the situation. Consider first aregression
y = Xp + € where thereis asingle right-hand-side variable, and a single instrument w, and assume
X, w, and ¢ have the simple joint distribution given in the table below, where A is the correl ation of
x andw, pisthecorrelation of x ande, and 0 < A, pand A + 2p < 1:

X | w € Prob

1] 1| 1 (1+)0)/8
-1 1 1 (2-0)/8

1| -1] 1 (1-A+2p)/8
Al 1| 1 (1+A-2p)/8
1] 1| 1 (1+)0)/8
-1 1] -1 (1-1)/8

1] -1 1 (1-1-2p)/8
1) -1 -1 (1+)+2p)/8
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These random variables then satisfy Ex = Ew = Ee =0, Exe = p, Exw =}, and Ewe = 0, and their

products have the joint distribution

Xw| we| Xe Prob
1 1 1 (1+1+p)/4
-1 -1 1 (1-A+p)/4
1 1| -1 (1-)-p)/4
11 -1| -1 (1+A-p)/4

Least squaresis biased if p # 0, and IV is consistent if L # 0. Suppose n = 2. Then the exact
distribution of the relevant random variablesis

Yxw]| Ywe| Yxe b, B b, -B Prob
2 2 2 1 1 (1+\+p)¥16
0 0 2 1 0 ((1+p)>)2)/8
0 2 0 0 +oo (1-(\+p)?)/8
2 0 0 0 0 ((1+))%-p?)/8
21 2| 2 1 1 (1-\+p)Y16
-2 0 0 0 0 ((1-0)%-pd)/8
0 2| 0 0 o0 (1-(A-p)))/8
-2 2 | -2 -1 -1 (1-A-p)%16
0 0| -2 -1 0 ((1-p)*-2d)/8
2 2| -2 -1 -1 (1+)-p)¥/16

Notefirst that thereisapositive probability that b,, isnot defined; hence, technically it hasnofinite
moments. Collecting terms from this table, the exact CDF of by, 5- p and b,, - B satisfy

C Prob(b <€) Prob(b,,-B<C)
-0 0 (1-(A-p)?)/8
-1 (1-p)%4 (1-M1-p))/4
0 (1-p)(3+p)/4 (3-M1-p))/4

1 1 (M+p)%2
+00 1 1

Also, Prob(|b-B| > by sB|) = (1-A*p?/4. Then for this small sample there is a substantial
probability that the IV estimator will be further away from the true value than the OLS estimator.
Asan exercise, carry through thisexamplefor n = 3, and show that in thiscase b, will alwaysexist,
but there continues to be a large probability that b,  is closer to 3 than b,,. As n increases, the
probability that b, s iscloser than by, shrinkstoward zero, but thereis always a positive probability
that the IV estimator is worse than the OL S estimator, and for n odd a positive probability that the
IV estimator isinfinite, so it never has any finite moments.

The second exampleisthe one-variable model y = x3 + &€ with one instrument w where (X,w,g)
are jointly normal with zero means, unit variances, Ewx = A, Exe = p, and Ewe = 0. A difficult
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technical analysis can be used to derive the exact distribution of the IV estimator in terms of a
non-central Wishart distribution. However, for purposes of getting an idea of how 1V performs, it
iIsmuch simpler to do asmall computer ssmulation. For thevaluesp =.2 and A = .8, thetable below
gives the results of estimating atrue value § = 1 in 1000 samples of sizesn = 5, 10, 20, or 40.
Because the denominator inthe IV estimator is small with some probability, the IV estimator tends
to produce large deviations that lead to a large mean square error (MSE). In this example, the
probability that the IV estimator is closer to 3 than the OL S estimator exceeds 0.5 only for samples
of size 20 or greater, and the IV estimator has asmaller MSE only for samples of size 40 or larger.
The smaller p or ), the larger the sample size needed to make IV better than OLS in terms of M SE.

Sample| MeanBias | MeanBias MSE MSE Frequency of
Size inbg s inb,, of by, 5 of b, b, asgood as by, 5
(1000 samples)| (1000 samples)| (1000 samples)| (1000 samples) (1000 samples)
5 0.18 -0.15 0.25 63.5 39.6%
10 0.19 -0.04 0.15 0.70 45.7%
20 0.20 -0.02 0.09 0.10 54.6%
40 0.20 -0.00 0.07 0.04 69.2%

In practice, in problems where sample size minus the number of instruments exceeds 40, the
asymptotic approximation to thedistribution of theV estimator isreasonably good, and one can use
it to comparethe OLS and IV estimates. To illustrate, continue the example of aregression in one
variable,y = xp +&. Suppose asbeforethat x and € have acorrelation coefficient p # 0, sothat OLS
is biased, and suppose that thereis asingle proper instrument w that is uncorrelated with € and has
acorrelation A # Owith x. Then, the OLS estimator isasymptotically normal with mean 8 + pc./o,
and variance ¢,%/nc,”. The 2SLS estimator is asymptotically normal with mean B and variance
o0,’Inc, 2\ The mean squares of the two estimators are then, approximately,

MSE,, < = (p* + 1/n)c /c,?
MSE,q s = 6,%/nc,2)\2.

Then, 2SLS has alower M SE than OLS when
1< p?2ni(1-1%) = (D,5.6bo )/ (V (D,5.9-V (b 9),

or approximately n> (1-13)/p%% When) = 0.8 and p = 0.2, thisasymptoti c approximation suggests
that a sample size of about 14 is the tip point where b,,, should be better than b in terms of M SE.
However, theasymptotic formulaunderestimatesthe probability of very largedeviationsarisingfrom
a denominator in by, that is near zero, and as a consequence is too quick to reject b, 5. The
right-hand-side of this approximation to the ratio of the MSE is the Hausman test statistic for
exogeneity, discussed below; for this one-variable case, one should reject the null hypothesis of
exogeneity when the statistic exceedsone. Under the null, the statistic is approximately chi-square
with one degree of freedom, so that this criterion corresponds to atype | error probability of 0.317.
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4. RELATION OF IV TO OTHER ESTIMATORS

The 2SLS estimator can be interpreted as a member of the family of Generalized Method of
Moments (GMM) estimators. Y ou can verify by differentiating to get the first-order condition that
the 2SL S estimator of the equation Ly = LX + Le using theinstruments (L')*W, where Eee’ = 6°Q
and L isa Cholesky matrix satisfying LQL’ = |, solves

(14 Ming (y-XB) "W(W'QW) W' (y-XB).

In this quadratic form objective function, W’ (y-Xp) isthe moment that has expectation zero in the
population when B is the true parameter vector, and (W'QW)™ is a"distance metric" in the center
of thequadratic form. DefineP = (L")*W(W’'QW)*W’(L)*, and notethat P isidempotent, and thus
Isaprojection matrix. Then, the GMM criterion chooses § to minimizethelength of the vector L (y-
XP) projected onto the subspace spanned by P. The properties of GMM hypothesis testing
proceduresfollow readily from the observation that L (y-X) has mean zero and ascalar covariance
matrix. In particular, Min, (y-XB)'W(W’'QW)*W'(y-Xp)/c* is asymptotically chi-squared
distributed with degrees of freedom equal to the rank of P.

It is possible to give the 2SLS estimator a pseudo-MLE interpretation. Premultiply the
regression equation by W’L™ to obtain W'y = W'XB + W’e. Now treat W'e asif it were normally
distributed with mean zero and j xj covariance matrix A2W'QW, conditioned on W’X. Then, thelog
likelihood of the sample would be

L =-(j/2) log 27 - (/2) (¥4) log A2 - () log det(W’' QW)
- (U22)(W'y-W'XB)" (W'QW)H(W'y-W'XB).

The first-order condition for maximization of this pseudo-likelihood is the same as the condition
defining the 2SLS estimator.

5. TESTING EXOGENEITY

Sometimes one is unsure whether some potential instruments are clean. If they are, then there
is an asymptotic efficiency gain from including them as instruments. However, if they are not,
estimates will beinconsistent. Because of thistradeoff, it is useful to have a specification test that
permits one to judge whether suspect instruments are clean or not. To set the problem, consider a
regressiony = Xf3 + ¢, an array of proper instruments Z, and an array of instruments W that includes
Z plus other variables that may be either clean or contaminated.

Severa superficialy different problems can be recast in this framework:

(1) The regression may be one in which some right-hand-side variables are known to be
exogenous and othersare suspect, Z isan array that containsthe known exogenous variablesand
other clean instruments, and W contains Z and the variablesin X that were excluded from Z
because of the possibility that they might be dirty. Inthiscase, 2SLS using W reducesto OLS,
and the problem is to test whether the regression can be estimated consistently by OLS.
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(2) Theregression may contain known endogenousand known exogenousvariables, Zisan array
that contai nsthe known exogenous variables and other clean instruments, and W isan array that
contains Z and additional suspect instruments from outside the equation. In this case, one has
aconsistent 2SL Sestimator usinginstrumentsZ, and a2SL S estimator using instruments W that
Is more efficient under the hypothesis that W is exogenous, but inconsistent otherwise. The
question is whether to use the more inclusive array of instruments.
(3) The regresson may contain known endogenous, known exogenous, and suspect
right-hand-side variables, Z is an array that contains the known exogenous variables plus other
instruments from outside the equation, and W is an array that contains Z plus the suspect
variablesfrom theequation. The questioniswhether it isnecessary toinstrument for the suspect
variables, or whether they are clean and can themselves be used as instruments.
Intheregressiony = X + ¢, you can play it safe and use only the Z instruments. Thisgivesh,
= (X'QX)*X'Qy, where Q = (L')*2(2'QZ)*Z'(L)™". Alternately, you use W, including the suspect
instruments, taking a chance with inconsistency to gain efficiency. Thisgives

be = (X'PX)™X'Py, where P = (L") *W(W'QW)*W'(L)™

If the suspect instruments are clean and both estimators are consistent, then b, and b, should be close
together, asthey are estimates of the same B; further, b, is efficient relative to b, implying that the
covariance matrix of (b, - by) equals the covariance matrix of b, minusthe covariance matrix of by.
However, if the suspect instruments are contaminated, b, isinconsistent, and (b, - bp) hasanonzero
probability limit. This suggests atest statistic of the form

(15) (bg - Bp) [V (bg) - V(0e)]™(Bg - be),

where []~ denotes a generalized inverse, could be used to test if W is clean. This form is the
exogeneity test originally proposed by Hausman. Under the null hypothesis that W is clean, this
statistic will be asymptotically chi-square with degrees of freedom equal to the rank of the
covariance matrix in the center of the quadratic form.

Another formulation of an exogeneity test ismore convenient to compute, and can be shown (in
one manifestation) to be equivalent to the Hausman test statistic. This alternative formulation has
theform of an omitted variabletest, with appropriately constructed auxiliary variables. Wedescribe
the test in the case Eee’ = 6°l and leave as an exercise the extension to the case .Eee’ = Q.

First do an OLSregression of X onZ and retrievefitted values X = QX, where Q=2Z(2'2)*z".
(Thisisnecessary only for variablesin X that are not in Z, since otherwise this step just returns the
original variable.) Second, using W asinstruments, do a2SL Sregression of y on X, and retrievethe
sum of squared residuals SSR,. Third, do a2SLSregression of y on X and a subset of m columns
of X" that are linearly independent of X, and retrieve the sum of squared residuals SSR,. Finaly,
form the statistic [(SSR; - SSR,)/m]/[SSR,/(n-K)]. Under the null hypothesis that W is clean, this
stati stic has an approximate F-di stribution with m and n-k degrees of freedom, and can beinterpreted
asatest for whether the m auxiliary variablesfrom X" should be omitted from the regression. When
a subset of X" of maximum possible rank is chosen, this statistic turns out to be asymptotically
equivalent to the Hausman test statistic. Notethat if W contains X, then the 2SL S in the second and
third steps reducesto OLS.
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We next show that this test isindeed an exogeneity test. Consider the 2SL S regression
y:XB +X1*Y+ﬂ1

where X, is a subset of X" = QX such that [X,X,] is of full rank. The 2SLS estimates of the
parameters in thismodel, using W as instruments, satisfy
1 X'Pe
X,'Qe

b X'PX  X'QX; X'Py B
X,/QX X/'QX,| [X/'Qy 0
But X'Qe/n -, plim(X'Z/n)-(plim(Z’' Z/n))*plim(Z'¢/n) = 0 by assumptions[1]-[4] when Z isclean.
Similarly, X'Pe/n -, GH™-plim(W'e/n) = 0 when W is clean, but X'Pe/n -, GH™-plim(W’e/n) # 0
when W is contaminated. Define
X'PX/In X'QX,/n

X,'QX/n X,'QX,/n

-1

X'PX  X'QX,
X,/QX X,'QX,

P

= +

Cp

. An A

Ay Ayl

From the formulafor a partitioned inverse,
Ay = (X'TP - QX (X' QX)X ' QIX/n)*
A, = (X 'Q[I - X(X'PX)X'1QX,/n)*
Ay = -(X QX)X QXA = -Au(X QX)X PX)t=A,,
Hence,
(16) Co = A, { X,/ Qe/n - (X, QX)(X'PX) X 'Pe/n}.

If W is clean and satisfies assumptions[4] and [5], then ¢, ~,0and n"?c, is asymptotically normal.
On the other hand, if W is contaminated, then c, has a non-zero probability limit. Then, atest for
v =0using ¢, is atest of exogeneity.

Thetest above can bereinterpreted asaHausmantest involving differences of b, and b,. Recall
that by = B + (X'QX)™X'Qe and b, = B + (X'PX)*X'Pe. Then

a7 (X"QX)(bg - bp) = {X'Qe/n - (X"QX)(X'PX)™X'Pe/n} .
Then in particular for alinearly independent subvector X, of X,

A,(X,'QX)(bg - bp) = A{ X,'Qe/n - (X' QX)(X'PX)™X"Pe/n} = cp.

Thus, c,isalinear transformation of (b, - by). Then, testing whether ¢, isnear zeroisequivalent to
testing whether alinear transformation of (b, - by) isnear zero. When X, isof maximum rank, this
equivalence establishes that the Hausman test in its original form is the same as the test for c.

6. EXOGENICITY TESTSARE GMM TESTSFOR OVERIDENTIFICATION
The Hausman Exogeneity Test. Consider the regression model y = X + €, and suppose one

wantsto test the exogeneity of p variables X, in X. Suppose R isan array of instruments, including
X,; then Z = PgX, areinstrumentsfor X,. Let W =[Z X] be al the variablesthat are orthogonal to
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e in the population under the null hypothesis that X and € are uncorrelated. As in the omitted
variables problem, consider the test statistic for over-identifying restrictions, 2nQ, = min,u’'P,,u/c?,
where u =y - Xb. Decompose P, = P, + (P, - Py). Thenu'(RP, - PJu=Yy'(P, - Py)y and the

minimizing b setsu’P,u =0, so that 2nQ, =Yy'(P,, - Py)y/c>. SinceP,,-P,= P, onealso has

QW
2nQ, =Y’ PQXW y. This statistic is the same as the test statistic for the hypothesis that the

coefficients of Z are zero in a regression of y on X and Z; thus the test for over-identifying
restrictions is an omitted variables test. One can also write 2nQ, = [y, - ¥x|%/c? so that a
computationally convenient equivalent test is based on the difference between the fitted val ues of
y from aregression on X and Z and aregression on X aone. Finally, wewill show that the statistic
can be written

2nQn = (bl,ZSLS - bl,OLS)[V(bl,ZSLS) - V(bl,OLS)]-l(bl,ZSLS - bl,OLS)'

Inthisform, the statistic isthe Hausman test for exogenicity in theform devel oped by Hausman and
Taylor, and the result establishes that the Hausman test for exogeneity is equivalent to aGMM test
for over-identifying restrictions.
Several steps are needed to demonstrate this equivalence. Note that b,g s = (X'PyX)™X'P,y,
whereM =[Z X,]. Write

Bog s - Bors = (X' PuX) X' Pyy - (X'X)*X'y
= (X'PX)[X'P, - X P,X(X'X)™ Xy
= (X' PyX)™™ X PyQyy.

. .. . . XlIPMQX -XlIPMQX XllPMQx
Since X, isin M, P, X, = X,, implying X'P,,Qyx = , = , =
X, PuQx I X,'Qy 0

X 'PuX, X.'P,X X PuX, X'X -X’PQy
Alg),X'PMX: ll M1 1, M7 2 - 1 IM 1 1, 2 , Then 1" M=X :(X,PMX)(bZSLS

X2 PMxl XZ PMXZ X2 Xl XZ XZ

X/'PyX, XX, |b -b
-bg o) = h ,M ' 1’ PSSO Erom the second block of equations, one obtains
XK X% bz,zs_s - b2,0LS

theresult that the second subvector isalinear combination of thefirst subvector. Thisimpliesthat
atest statistic that isafunction of thefull vector of differencesof 2SL S and OL S estimates can be
written equivalently as a function of the first subvector of differences. From the first block of
equations, substituting in the solution for the second subvector of differences expressed in terms
of thefirst, one obtains

[XlIPMXl - xllxz(lexz)-llexﬂ(bl,zsLs - bl,OLS) = XllpMQXy
The matrix on the left-hand-side can be rewritten as X,'P,, sz PyX;, so that
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bl,ZSLS - bl,OLS =(X,'Py sz PMxl)_lxllpMQXy'

Next, we calculate the covariance matrix of b,y s - by s, @and show that it is equa to the
difference of V(b,g o) = 6?(X'PyX)™ and V(by.s) = *(X'X)™. From the formula b,y s - by s =
(X'PyX)™X'PyQyy, one has V(b,g < - b, o) = 6* (X' Py X)X P, QyPuX (X' Py X)™.

On the other hand,

V(b,g o) - V(bgs) = ?(X Py X)X 'PyX - X' Py X (X' X)X Py, X} (X Py X)*
= 6 (X'PyX){ X'Py[l - X(X' X)X 1P, X} (X' P,X)*
= 6°(X'PyX) X' Py QyPuX (X'Py,X) ™.

Thus, V(b,g s - bo ) = V(bg o) - V(bys). Thisis a consequence of the fact that under the null
hypothesis OLS is efficient among the class of linear estimators including 2SLS. Expanding the
center of this expression, and using the results P, X, = X, and hence Q,P,,X, = 0, one has

X,'PyQPyX, O

X' PyQyPuX =
0 0

Hence, V(b,g o) - V(bo, o) isof rank p; thisalso follows by noting that b, ,q < - b, o, s could bewritten
asalinear transformation of by ,g s - by o s
Next, use the formula for partitioned inverses to show for N =M or N = | that the northwest

Xl,PNXl XlIXZ B
XZIXl x2lx2

corner of is (Xl’P,\IQXZP,\le)*l . Then,

V(bl,ZSLS'bl,OLS):GZ(XllpM sz PMX1)_1X1’PMQXPMX1(X1/PM sz PMxl)_l'

Using the expressions above, the quadratic form can be written

(bl,ZSLS - bl,OLS)V(bl,ZSLS - bl,OLS)-l(bl,ZSLS - bl,OLS)
=y’ QuPuX1(Xy'PyQyPyX )X, PyQyyla?.
Finally, one has, from the test for over-identifying restrictions,
2nQ, =Y'(Ry - Poylo®= y'Py Y Io°

= Y QuPuX (X, PyQyPyuX )X, Py Quylo?,
so that the two statistics coincide.

A Generalized Exogenicity Test: Consider the regressiony = X3, + X,3, + X;B; + €, and the
null hypothesis that X, is exogenous, where X, is known to be exogenous, and X, is known to be
endogenous. Suppose N is an array of instruments, including X,, that are sufficient to identify the
coefficients when the hypothesisisfalse. Let W =[N X,] be the full set of instruments available
when the null hypothesisistrue. Then the best instruments under the null hypothesisare X, = R, X
= [X; X, X5*], and the best instruments under the alternative are X, = P X = [X* X, X;*]. The
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test statisticfor over-identifyingrestrictionsis2nQ,=y’( P, - P, )ylo® asinthepreviouscases.

This can bewritten 2nQ, = ( SSR, - SSR, )/o’, with the numerator the difference in sum of

squared residuals from a OL S regression of y on X, and a OLS regression of y on X,. Also, 2nQ,
= K - K I%/6?, the difference between the fitted values of y from aregression on X, and a

regression on X,. Finaly,
2nQ, = (bzsLsO ) bzs_su )I[V(bzsLsJ )- V(bzs_so ™ (bzsLsO } bzs_su ),

an extension of the Hausman-Tayl or exogeneity test to the problem where somevariablesare suspect
and others are known to be exogenous. One can show that the quadratic form in the center of this
quadratic form hasrank equal to therank of X, and that the test statistic can bewritten equivalently
asaquadratic formin the subvector of differencesof the 2SL S estimatesfor the X, coefficients, with
the ordinary inverse of the corresponding submatrix of differences of variancesin the center of the
quadratic form.

7.INSTRUMENTAL VARIABLESIN TIME-SERIESMODELS

Thetreatment of IV estimation up to this point appliesin principle to observations made either
In cross section or over time. For example, if the observations correspond to time periods and
E(ee’|W) = 6°Q with Q either known or estimated, the 2SL S estimator (2) or the two-stage feasible
generalized least squares estimator (10) with Q estimated using residual s obtained by application of
(2), can be applied to problemswherethe structure of QQ comesfrom serial correlation. However, for
timeseriesapplicationsitisuseful to examinein moredetail the structure of W and the orthogonality
conditions used in forming IV estimators. In particular, one should ask how conventional sources
of contamination in explanatory variables such as omitted variables or measurement error and
conventional sources of serial correlation such as behavioral lagsin adjustment are likely to affect
the serial correlation structure of disturbances and the correlation of contemporaneous disturbances
with explanatory variables for various transformations of the model.

Start with the example of alinear model with measurement error in explanatory variables, and
supposethat in the absence of thismeasurement error problem the disturbancein the equation would
follow an AR1 process. Let z, denote the ideal variables without measurement error, and x, = z, +
n, denote the observed explanatory variables. Then, the model can be written

Y. =z + ¢ withe = pg,; +v,
or

(18) Ye=XB+v-nP +pv + pZVt-z * ..,

where thev, arei.i.d. innovations and p? < 1. This model can also be written

(19) Vi = YeaP + XB - XaBp + (v - P + neaBp).
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The form (19) removes the serial correlation in the ideal equation disturbance, but in doing so
introduces a moving average of the measurement errors. Only in the unlikely case that all
components of 1, follow an AR1 process with the same p asthe €, process will serial correlation be
fully removed.* Application of OLSto either (18) or (19) will thenin general result ininconsistent
estimates. Theissue for application of 1V methods iswhether proper instruments can be found. In
(18), the variables in x, that are measured with error would require instrumenting. If the z, are
serialy correlated, and then, arenot, then x, , X,.,,... are potential clean instrumentsfor x,. However,
if thereis seria correlation in the measurement errors, one would need to find proper instruments
from outside the model. In (19), all of the explanatory variablesy, ,, X,, and X, , are contaminated,
butif thez, arecorrelated with asufficiently long lag and then, are uncorrelated, then X, ,, X;.3, X;.4,---
arepotential cleaninstruments. Itisimportant to not introduce x’swith too high lagsasinstruments,
because this requires truncating the sample in order to observe the instruments for each date used
in the estimation, and the good statistical properties of the IV method begins to break down as the
number of instruments ceases to be small relative to the remaining sample size.

Omitted variablesleadsto modelssimilar to (18) and (19). Inthiscase, interpret the disturbance
inthemodel y=x + €, asincluding the omitted variables. If these omitted variablesarethemselves
serially correlated, then they will induce serial correlation in g,, perhaps adding to serial correlation
In a disturbance component that arises for reasons other than omitted variables. A transformation
of the model in this case may be able to remove serial correlation in the disturbance, but does not
remove the contamination. The issue will be to find proper instruments. If the included x’s are
themselves serially correlated and the final disturbance is AR1, then the equationy, =y, ,p + X3 -
X.1Pp + € - pe., obtained by partia differencing will have y,,, X.;, X.,... @ potential clean
instruments. For thisto work, the AR1 specification for e, must be correct, and x, must not have the
same AR1 process.

The preceding examples illustrate several important points about the use of 1V methods in
time-seriesmodels. First, thereislikely to beaninteraction between the source of the contamination
andthenature of theserial correlationinthemodel. Second, the processfollowed by the explanatory
variables will determine what variables are clean (i.e., uncorrelated with the contemporaneous
disturbance) and what variables might be available asinstruments. Third, choice of instrumentsis
not clear-cut, and may invol vethe question of what variablesare potential cleaninstrumentsand how
many potential instruments to introduce given the fairly poor small sample propertiesof 1V. The
use of lags of y, or x, as instruments exacerbates the sample size problem, since it decreases the
operating sample size as the number of instrumentsrises. Further, lagged variables may fail to be
proper instruments, either because assumptions of zero correlation are not robust and fail dueto a
more complex pattern of serial correlation than the econometrician assumes, or becausetheselagged
variables are not correlated with the variablesthey are instrumenting. Together, these observations
suggest that careful consideration of the nature of contamination and serial correlation isneeded in
time-series applications of 1V, and that this method be used with caution.

12The situation in which al the variablesin amodel follow the same AR process does has some chance of arising in
stationary state equilibria, because equilibrium pressures may force al variables to move nearly in lock-step along a dynamic
path determined by the largest root of the system.
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8. INSTRUMENTAL VARIABLESIN NONLINEAR MODELS

The method of instrumental variables in its most commonly used 2SLS form is applied to
models linear in variables and in parameters, y = X3 + &. If there are proper instruments W for X
and if E(e|W) = 6°l, then the 2SLS estimator (2) is consistent for B and efficient among all 1V
estimators using these instruments; see the theorem in Section 3. However, the orthogonality
conditionsinvoked tojustify thelV method do not necessarily extend to nonlinear transformations,
because expectations are not preserved. For example, economic applications may postulate azero
correlation between variables for behavioral reasons, such as the rational expectations hypothesis
that intertemporally optimized consumption is arandom walk whose innovations are uncorrel ated
with history. Thisis not sufficient to guarantee that innovations in a nonlinear transformation of
consumption areuncorrelated with history. Toinvestigate what happenswithout linearity, consider
three cases of nonlinearity:

(a) Models nonlinear in parametersonly: y = xp(0) + ¢
(b) Models nonlinear in variablesonly: y =f(x)p + ¢
(c) Models nonlinear in both variables and parameters: y = h(x,0) + ¢

A case such as (a) might arise for example when partial differencing is done to handle AR1 seria
correlation. Inthiscase, y = Xo + 1 andn = pn,, + v withvi.i.d., and transformation yieldsy = py ;
+ Xa - X,0p + v, amodel that has i.i.d. disturbances, but the parameters o and p appearing in
nonlinear combination. Suppose in the model (a) that one first does an OLS regression of x on
proper instruments w, and retrieves fitted values x*, and second does a nonlinear least squares
regression for the model y = x"B(0) + ¢". Examinethefirst-order conditionsfor thelast regression,
and show as an exercise that orthogonality of the instruments and the disturbances in the origind
regression implies consistency, just asin the fully linear case.”®, It isthe linearity of the first-order
condition in the instruments and in ¢ that guarantees that the initial condition that the instruments
be uncorrelated with € continues to suffice.

Next consider the casey = f(x) + € with nonlinear transformation of the explanatory variables
but linearity in parameters. If instruments w are available that are uncorrelated with e and fully
correlated with f(x), then GMM estimation using the criterion function

N -1

Y AT

i=1

(20)

N N

'21: Wi(yi - f()ﬂ)B)] ) 2; Wi(yi - f(XI)B)] )

i= i=

will be consistent; see Chapter 3. Solution of this GMM problem can be given a 2SLS
interpretation: First do an OLSregression of f(x,) onw;, and retrievefitted valuesf’, thendoan OLS
regression of y, on f". Then, the form and computation of the IV estimator are not affected by
nonlinearity in variables. However, there are substantial issues regarding specification of the
instruments. In particular, givenaninitial set of "raw" instruments z, should they be given nonlinear
transformationsto improvetheefficiency of thelV estimator? Aninitial issueis whether postul ated
orthogonality of z and & will be preserved for nonlinear transformations of z. Thiswill depend on
the economic application and the nature of z. If the application can guarantee only that z is

Brhe usual limiti ng regularity conditions are assumed to hold, asin Section 3, and the parameter 0 is assumed to be
identified in the sense the mapping from 6 to B is one-to-one for B in itsrange.
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uncorrelated with e, this property will not in general be preserved under nonlinear transformation,
and the only clean instruments w will be the untransformed z. However, if the application can
guarantee that z is statistically independent of €, then any nonlinear transformation of z will be
uncorrelated with €, and isapotential clean instrument. For the remainder of this section, assume
that z and ¢ are statistically independent.

What transformations of z make good instruments? In some cases it is feasible to apply the
nonlinear transformation f to z,, and tempting to use f(z) to instrument f(x;). For example, if x; is
a variable measured with error, and z; is an independent measurement of the same variable, then
provided one is persuaded that the error in z is statistically independent of ¢, f(z;) seemsto be a
reasonable instrument for f(x;); €.g., log(z) seemsto be anatural instrument for log(x;). Thisisa
practical thing to do, and will often give amore precise |V estimator than one that just uses the raw
instruments. However, it will not in general yield the most efficient possible IV estimator. The
reason for thisisthe propositionthat expectationsare not preserved under nonlinear transformations.

The best instruments are given by the conditional expectation of f(x.) givenz: W = o(z) =
E(f(x;)|z). Toseethis, first observethat the asymptotic covariance matrix for thelV estimator using
instruments w; that are any specified transformations of z, is

o[ (Ew'f(x))'(Ew'w)*(Ew'f(x))] *. But Ew'f(x) = EW'E, f(x) =Ew'W.
The asymptotic covariance matrix of this |V estimator can be written
o (Ew'W)’ (Ew'w) (Ew'w)]™

If w=w’, this covariance matrix reducesto o*(Ew"'w’)™. Itisastandard exercise to show that w
=W’ minimizes the asymptotic variance. Let F=Ew"'w’, G=Ew'W’, and H = Ew’'w. Then the
quadratic form

i

[l -G'HY- I -G'HY' =F-G'H'G

ispositivesemidefinite, whichimpliesthat [G'HG] * - F*ispositive semidefinite. Fromthisresult,
the IV estimator using the instruments w’ is called the best nonlinear 2SLS estimator (BN2SLS).

In general, the BN2SL S estimator is not practical in applications because computation of the
conditional expectation E,f(x) is intractable. Obviously, in any application where direct
computation of E, f(x) is tractable, it should be used. In the remaining cases, it is possible to
approximate E,,f(x). A method proposed by Kelgjian (1971) and Amemiya (1974) isto make an
approximation in terms of low-order polynomialsin the raw instruments z; i.e., regress f(x;) on z,
squares and cross-products of components of z, third-order interactions, and so forth. One
interpretation of thisprocedureisthat oneismaking aseries approximation using the leading terms
inaTaylor'sexpansion of E, ,f(x), or in other words the low order conditional moments of x given
w. Thismethod can beimplemented in the LSQ procedurein TSP by expanding thelist of specified
instruments in the command to include the desired low-order polynomialsin the raw instruments.
Viewed more generally, the expression E, ,f(x) can be written as

(21) E,.f(x) = fx f(x)-g(x|2)-dx = y(2),
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where g(x,z) is the joint density of x and z, and g(x|z) is the conditional density of x given z. If
9(x|z) isknown (or can beestimated consi stently asaparametric function), but analytic computation
of the integral is intractable, it may be possible to use simulation methods, drawing a
"pseudo-sample” x; from g(x|z) for j = 1,...,J and estimating E, ,f(x) as the mean of f(x;) in this
pseudo-sample. If the pseudo-sample size J grows at a sufficient rate with sample size (typically,
faster than NY?), then IV using this approximation will have the same asymptotic covariance matrix
asBN2SLS. If the conditional density isitself not known or tractable, it may be possibleto estimate
it nonparametrically, say using a kernel estimator; see Chapter 7. Alternately, viewing y(z) as a
nonparametric function of z, the problem can be approached as a nonparametric regression f(x;) =
y(z) + ¢, and y estimated by a variety of nonparametric procedures; again see Chapter 7. In
particular, one approach to nonparametric regression is series approximation, where y(z) is
approximated by alinear combination of initial termsin a series approximation. In particular, the
Kelgiian-Amemiya method fallswithin this class, and nonparametric estimation theory provides a
guide to choice of the truncation level as a function of sample size. The bottom line is that by
simulation or nonparametric procedures, one may be able to "adaptively" achieve the asymptotic
covariance matrix of the BN2SLS estimator without having to solve an intractable problem of
determining E, f(x) analyticaly. Existing software may not be sufficiently "adaptive" to
automatically achieve the BN2SL S asymptotic efficiency level, sothat it isup to the user to specify
instrumentsin aform that achievesthisadaptation. In practice, theissue of adaptivenesshasno real
bite in determining a good set of instruments in a given finite data set, and the properties of the
asymptotic approximation may not tell you much about the actual finite-sample distribution of your
estimators. Bootstrap methods, discussed in Chapter 7, may be one useful way to give a better
approximation to finite-sampl e di stributions and guide choice among estimators using different sets
of instruments.

Finally, consider models that are nonlinear in both variables and parameters, y = h(x,0) + €.
First observethat if there are proper raw instruments z, then minimizing the GMM criterion

N

D 27’

i=1

" -1,

(22)

N N
> 7y, - h(x.0)) >3y, ~h(x,0))
i=1 i-1

in 6 will produce a consistent initial estimator 0, for 6. Thereisan iterative procedure that can be
used to calculate 6,. From starting values 6, suppose one has reached 6©. Linearize the model
about 6©, obtaining

(23) i - h(x;,6%) = f90x)-(0 - 67) + v,

where fO(x,) = V,h(x;,6") and v, is a disturbance that includes the remainder from the linear
approximation. Apply conventional 2SLS to this model, with the instruments z,. The estimated
coefficients providethe adjustmentsthat producethe next iterate 6%, For asuitably chosen starting
point, the iterates 6 will converge to a limit at 0,. It may be necessary to consider alternative
starting values to obtain convergence to the minimand of the GMM criterion.

Start from the consistent initial estimator 6, and thelinearized model (23) evaluated at 6, with
fu(X) = Vyh(x;,0y). Treating 6, asavector of constants, (23) now hasthe sameform asthe model that
isnonlinear in variables but linear in parametersthat was discussed above. Asin the previous case,
estimate this model using 2SL S and an approximation to the best instruments E, ,f(x); this will
approximate the BN2SL S estimator. This procedure, with the best instruments approximated by
user-specified combinations of theraw instrumental variables, isused by the LSQ command in TSP.
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It is possible to iterate the procedure described in this paragraph, but the first application of the
procedure is aready asymptoticaly equivalent to the BN2SLS estimator (provided the
approximation to the best instruments is adaptive), and there is no further gain in (first-order)

asymptotic efficiency from iteration.
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Economics 240B Daniel M cFadden, ©1999

CHAPTER 5. SYSTEMS OF REGRESSION EQUATIONS

1. MULTIPLE EQUATIONS

Consider the regression model setup

Yot = Xpef3n + Ungs

wheren=1,...,.N,t=1,..,T, X, is 1xk, and 3, iskx1. Thisisaversion of the standard regression
model where the observations are indexed by the two indices n and t rather than by a single index.
Applications where this setup occurs are

® n indexes equations, with different dependent variables, and t indexes observation units.
Example: yy,....Y; ae the input demands of firm t. In this example, there are likely to be
parameters in common across equations.
® n indexes observation units, t indexes time, and the data come from a time-series of
cross-sections. Example: y,, istheincome of household nin the Census Public Use Samplein
year t.
® n indexes observation units, t indexes time, and the data come from a longitudinal panel of
time series observations on each observation unit. Examples: y,, ishours supplied by the head
of household nin year t in the Panel Study of Income Dynamics; or y,, is the excess return on
stock market asset n on day t in the CRISP financial database.
These problems may contain the usual litany of econometric problems: (1) anon-scalar covariance
matrix dueto heteroskedasticity across observation units, serial correlation over time, or covariance
across equations within an observation unit; and (2) the potential for correlation of explanatory
variables and disturbances when x includes lagged dependent variables. They also provide an
opportunity for aricher analysis of covariance patterns, since observations across units can be used
to identify covariance patterns over time, and observations across time can be used to identify
heteroskedasticities across units.

2. STACKING THE DATA

For analysis (and computation), it is useful to organize the observationsin vectorsin which all
the observationsfor n =1 are stacked on top of all the observationsfor n =2, etc. Usethe notation:

ynl an unl

Yy u
yn: n2 ,Xn: Xn2 ,Un: n2 ’

YnT_ _XnT_ _unT_

Page 85, Chapter 5-1



yll -Xll 0 -
il | x,0.0] |7 B[]
y Yir ;Xz 0 X7 o 0 B U
y= [ = |:|x= R R ISR I 2 u= | ?
. ™ Do — .
A . 100 - %] . By] Uy,
_yNT_ _0 XNT_

Then, the system can be written

Yo=XBntU,,n=1,...,N
or in stacked form,
(1) y=XB+u.

The vector y,, is of dimension Tx1, the array X, is of dimension Txk, the vector y is of dimension
NTx1, the array X is of dimension NTxNKk. We wrote down the system assuming the number of
parameters k was the same in each equation, but this is not necessary. One could have X, of
dimension Txk, and X of dimension NTx(k,+..+k,). If there are parameters in common across
different equations, thenthe corresponding explanatory variableswill be stacked inthe samecolumn
rather than placed in different columns, and theoverall number of columnsin X reduced accordingly.
Suppose the observations are independent and identically distributed for different t, but the
covariances E(u,,u,,) = 6,,,, are not necessarily zero. Let X = (c,,,,) bethe NxN array of covariances
of the observations for each t. The covariance matrix of the stacked disturbance vector u isthen

6l ol ol

6..l- 6.l 6.
21l Oxl1 ..o OpNIT
E(uu’) = ,

Ol T Ol T ol |
where | ; denotes a TxT identity matrix.

Define the Kronecker Product A®B of anxm matrix A and a pxq matrix B:

B aB | ay,B]
B B B

AeB = aﬂ a” az”‘
8B a,B - a,B|

Then, A@B is (np)x(mq). Kronecker products have the following properties:
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(AeB)(CeD) = (AC)®(BD) when the matrices are commensurate
(AeB)* = (AY)e(B™) when A and B are square and nonsingular
(AeB)’ = (A")e(B)

trace(A®B) = (trace(A))-(trace(B)) when A and B are square
det(A®B) = (det(A))?(det(B))" when A isnxn and B is pxp

Applying the Kronecker product notation to the covariance matrix of u, E(uu’) = Xel;.
3. ESTIMATION

The problem of estimating the stacked model y = X3 + u when the covariance matrix of the
disturbances is Xl ; and X is known is a straightforward GLS problem, provided there are no
additional complicationsof correlation of explanatory variablesand disturbances. Usingtherulefor
inverses of Kronecker products, the GL S estimator is

b= (X' (el )X) X' (X el,)y .

Computationally, the most practical way to do thisregression is to calculate atriangular Cholesky
matrix L suchthat L'L =X Then, the transformed model

) (Lel)y = (Lel)Xp + (Lelu

satisfies Gauss-Markov conditions (Verify), and the BLUE estimator of 3 is OLS applied to this
equation. The data transformations can be carried out separately for each t, and recursively for n =
1,...N.

When X is unknown, one can do FGLS estimation: First apply OLS to (1) and retrieve fitted
residuals G. Then, estimate the elements o,,,, of X from the average (over T) of the squares and
cross-products of the fitted residuals,

T
Y Ol

t=1

Finally, apply OLSto (2), with L a Cholesky factor of the estimated ™.

The problem of estimating 3 in (1) when there are no cross-equation restrictions on the 3, is
caled the seemingly unrelated regressions problem. Summarizing, the 3, can be estimated
consi stently equati on-by-equation using OL S; in most cases, thisisinefficient comparedto GLS; and
FGLSisasymptotically fully efficient. Thereis one casein which thereis no efficiency gain from
use of GLS rather than OLS: Suppose no cross-equation restrictions on parameters and common
explanatory variables across equations; i.e.,, X; = X, = ... =X,. Then, X =1 &X,, and the GLS
estimator is

Sn=

==

b=((l N®Xll)(2-l®| 7 N®Xl))-1(| N®Xll)(2-l®| 7Y -

As an exercise, use the Kronecker product rules to show that this formula reduces to the OLS
estimator b, = (X,'X,)*X,'y, for each n. Intuitively, the reason OLS is efficient in this case is that
the OLSresidualsin, say, thefirst equation areautomatically orthogonal to the (common) exogenous
variables in each of the other equations, so that there is no additiona information on the first
equation parameters to be distilled from the cross-equation orthogonality conditions. Put another
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way, GLS can beinterpreted as OL S applied to linear combinations of the origina equations, with
the linear combinations obtained from the Cholesky factorization of the covariance matrix of the
disturbances. But these linear combinations of the common exogenous variables |eaves one with
the same exogenous variables, and the orthogonality conditions satisfied by the GLS estimates are
the sameasthe orthogonality conditions satisfied by OLSonthefirst equationintheoriginal system.

4. AN EXAMPLE

Suppose afirm t utilizes N = 3 inputs, and has a Diewert unit cost function,

N N
Ct: — 2; aij Vpitpjt ’
i= j=

wherep, isinputi price, and the a’s are nonnegative parameters with o;; = o;;. By Shephard’'slemma,
the unit input demand functions are given by the derivatives of the unit cost function with respect
to the input prices.

Zn = Z Orj 4/ pjt/ Pt

N
j=1

Written in stacked form, these equations become

a

Z, L (pfP)r (/PP Op Or O alz Uy
13

Z,| = [0; (MT 0; 1. (/pd/p); O . + U,
22

Z3 Or Or (m)T Or (\/psz T L o s
23

where 1, denotes a Tx1 vector of 1's and (\/pl/p2 )T denotes a Tx1 vector with components

/P/P,, . Notethat the parameter restrictionsacrossequations|ead to variabl es appearing stacked

in the same column. The disturbances can be interpreted as coming from random variations across
firms around the respective "average” parametersa,;, o,,, 0.3. Theinteresting econometric feature
of this setup isthat even if there is considerable multicollinearity in prices so that OLS equation by
equationisimprecise, thismulticollinearity isbroken when the dataare stacked. Then, thereislikely
to be a substantial efficiency gain from estimating the equations in stacked form with the
cross-equation restrictionsimposed, even at thefirst OL S stage before the additional efficiency gain
from the second-stage FGL S is achieved.
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5. PANEL DATA

The application of systems of regressions equationsto panel data, where nindexes observation
units that are followed over time periodst, is very important in economics. A typical model for
panel datais

Y =Xp ta,+u, foon=1.. Nandt=1,..T.

Inthismodel, the B parameters are not subscripted by n or t; thisimpliesthey are the samefor every
unit and every time period. (This is not as restrictive as it might appear, because variation in
parameters over time or with some characteristics of the units can be reintroduced by including in
the x’sinteractions with time dummies or with unit dummies.) The a,, are termed individual effects.
They may be treated as intercept termsthat vary across units. The model with thisinterpretationis
called a fixed effects (FE) model. Alternately, the o, may be interpreted as components of the
disturbance that vary randomly across units. The model with the second interpretation is called a
random effects (RE) model. Often, the assumption is made that once the individual effects are
isolated, the remaining disturbances u,,, are independent and identically distributed across n aswell
ast. Alternately, the u,, could be serially correlated; this requires another layer of calculation for
GLS.

The questions that arise in analysis of the panel data model are (a) under what conditions the
model parameters can be estimated consistently, in either the fixed effects or the random effects
Interpretation; (b) what istheform of consistent or efficient estimators; and (c) whether the random
effects or the fixed effects model is "better” in applications. | first analyze the fixed effects case,
then the random effects case, and after this return to these questions to see what can be said.

6. FIXED EFFECTS
The fixed effects model can be rewritten by stacking the T observations on unit n,
(3) yn = XnB + 1T0'n + un ’

where 1, isaTx1 vector of ones. Equation (3) isaspecia case of ageneral system of regression
equations, and can be approached in the same way. Stacking the unit data, first unit followed by
second unit, etc., gives the stacked model

4 y=XB +Da +u,

whereD =[d, d, ... dy] isaNTxN array whose columns are dummy variables such that d, is one
for observations from unit m, and zero otherwise, and o is a Nx1 vector with components a,,
(Exercise: Verify that this setup follows from the general stacking pattern shown in Section 2.)

In (4), note first that any column of X that does not change over t, within the observations for
aunit, islinearly dependent on the columns of D. Then, when there are fixed effects, thereis no
possibility of identifying the separate effects of X variables that are time-invariant. Suppose we
remove any such columns from X, so that only time-varying variables are left. For good measure,
we can aso remove from X the within-unit means of the X variables, so that X now denotes
deviations from within-unit means. The model (3) can be rewritten as arelationship in unit means
plus relationships in deviations from within unit means:
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(5) yn = a'n + Un
(6) Yn = an + ﬁn!

wherey, and 4, are unit means, Y, isavector of deviations of the unit n observations from the unit
mean, and X, isan array of deviationsthat has zero unit means by construction. Stack these models
further, with the unit one data followed by the unit two data, etc., to obtain

Yl Xl ﬁl
Y. X 17
2 2 2
@) 2= | pe
YN XN ﬁN

The deviations in (7) eliminate the fixed effects. Then, (7) can be estimated by OLS, which is
consistent for B asN - +« or T -~ + or both. (Notethat (7) has one redundant observation for each
observation unit, since the within group deviations must sumto zero. One can eliminate any one of
the observationsin each unit, or alternately leave it in the regression and remember that the number
of observationsisreally N(T-1) rather than NT.) Theregression (7) is called the within regression.
One can estimate thefixed effect for each unit n using theformula e, =y, thisis called the between
regression. The fixed effects are estimated consistently only if T - +oo,

The particularly simple formula above for the fixed effects estimates came from normalizing
the x’s to have zero within-unit means. In the general case where the x’s can have non-zero unit
means, the fixed effect estimators become &, =y, - X,b, where b isthe vector of estimates from (7).

Exercise 1: Using the projection notation Q, = | - D(D’D)™*D’, note that the OLS estimator of
Bin(4)isb=(X'QxX)*X'Qpy. Show that thisisthe same as the within estimator of p.

7. RANDOM EFFECTS

Supposethea’sin (3) aretreated as components of the disturbance, so that (3) can be rewritten
asy=Xp +v,wherev, =a,+ U,. Then, an OLSregression of y on X yields aconsistent estimator
of B asNT - +eo, provided the x’s and the disturbances are uncorrelated. The covariance matrix of
the stacked disturbances is now E(vwv’) = 1,@Q, where Q isthe TXT matrix of covariances of the
disturbances a,, + u,, for given n, with the form

2. 2 2 2
G, +Gu G, . G,
6° o¢j°+6’.. ¢/ oy o ,
(8 Q= _ =0, 1,1, + o,
2 2 g 24q 2
G(l Gﬂ G(l +GU
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Efficiency of estimation canbeimproved by GLS. Verify asanexercisethat L = 1 (Iy- A1),

GU
with, = %(1-%/ o2+To’ ), satisfiesLOL’ =1,. Then, GLSisthe same as OLS applied to

the transformed data (I y®L)y = (I ®L)XpB + (Iy®L)v. In practice, Q isunknown and FGLS must be
used. Intuition for how to estimate ¢,? and o,* can be obtained from an analogy to population
moments. Letv, denote the unit mean of v,,. Weknow that Ev,?>=06,/+c,?andthat Ev,*=c2/T
+¢,2 Solve these two equations for 6, and 6,

©) 67 = % (Evo?- Ev,?) and 6,2 = (T Ev,2 - Ev,d)/(T-1).

Then, substituting sample moments of fitted OL S disturbancesin place of the population moments
will give consistent estimates of the variance components. The steps to do FGLS are then to first
regress y on X and retrieve the fitted residuals v,,, and second, estimate Ev,> and Ev,? by the
respective formulas

Lt 1835

1
NT 3 3 N -1 -1

Third, substitute these expressions in (9) to estimate the variance components and substitute the
results into the L matrix, carry out the data transformations unit by unit, and run OLS on the
transformed stacked data to get the FGL S estimates. The variance component estimates above are
the same asin Greene except for degrees of freedom adjustments. (Since only consistency of the
estimates of 6,2 and 6,2 matter for the efficiency of the FGL S estimator, unbiasednessisno particular
virtue. Finite sample monte carlo results on the value of degrees of freedom adjustments are not
compelling. Thus, in most cases, it isprobably not worth making these adjustments.) The estimator
of ¢,2 can go negative in finite samples. The usua recommendation in this case is to set the
estimator to zero and assume there are no individual effects. Show as a (difficult) exercise that if
the a’s and u's are normal and uncorrelated with each other, then the estimators above are the
maximum likelihood estimators for the variances.

Suppose that instead of starting from the original stacked data, we had started from the within
regression model
(20) Y = XB +v*,

which contains the stacked deviations from unit means, and constitutes N(T-1) observations if
redundant observations are excluded; and the between regression model

(1) y=XB+v,
which containstheN stacked unit means. Provided the coefficientsareidentified (e.g., eachvariable

istime-varying so that no columns of X are identically zero), one could estimate 3 consistently by
applying OLS to either (10) or (11) separately. Greene shows that the OLS estimator can be
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interpreted as aweighted combination of the within and between OL S estimators, and that the GLS
estimator can be interpreted as a different weighted combination that gives less weight to the
between model. For comparison, thefixed effects estimator of 3 was given by thewithin regression
only.

8. FIXED EFFECTSVERSUS RANDOM EFFECTS

In the (unusual) case that you need estimates of the individual effects, you have no choice but
to estimate thefixed effectsmodel; eventhen, youneed T -~ + to estimate thea’sconsistently. The
fixed effects model has the advantage that the estimates of 3 are consistent even if X is correlated
withtheindividual effects, provided of coursethat X and theindividual effectsare uncorrelated with
u. Its major drawbacks are that it uses up quite afew degrees of freedom, and makesit impossible
toidentify theeffectsof time-invariant explanatory variables. Therandom effectsmodel economizes
on degrees of freedom, and permits consistent estimation of the effects of all explanatory variables,
including onesthat aretime-invariant, provided that all these explanatory variablesare uncorrel ated
with the disturbances. (This is an advantage only if you have a convincing story to support the
identifying assumption that there is zero correlation of these variables and the o’s.)

As T - +=, the FE and RE estimators merge, and the FE estimator can be interpreted as
estimation of the RE model by conditioning on therealized values of thea’s. From this, one can see
how to test the RE model specification by examining the correlation of o. and X. Oneway to do this
IS to regress the fitted o on X, and carry out a conventional F test that the coefficients in this
regression are al zero. Unless T is very large, or the assumption that o is uncorrelated with X
particularly implausible, it is usualy better to work with the RE model.

9. SPECIFICATION TESTING

Standard regression model hypothesistesting of linear hypotheses on model coefficients, using
wald, LR, or SSR test statistics, carries over to the case of systems of regressions. Thisis most
transparent when the FGL S estimators are given by OL S applied to datathat istransformed to give
a(asymptotically) scalar covariance matrix. Thissetup allowsoneto test not only hypotheses about
coefficientsin one equation, but also hypotheses connecting coefficients across equations, or inthe
panel context, across time.

For tests on covariance parameters, such as a test for homoskedasticity across equations, or a
test for serial correlation, two useful waysto get suitabletest statisticsareto proceed by analogy with
single-indexed regression problems, and to derive LM statistics under the assumption that
disturbances are normal. One example is a Durbin-Watson like test for serial correlation in panel
data, using the estimated coefficient from aregression of v, onv, , forn=1,..Nandt=2,...T.

Exercise 22 Consider the panel data model in which T - +e. If the disturbances are
uncorrelated with the right-hand-side variables, then both the FE and RE model estimates will be
consistent and the RE estimateswill be efficient. On the other hand, if there is correlation between
the disturbances and the right-hand-side variables, only the FE estimates will be consistent. From
these observations, suggest a simple specification test for the hypothesis that the disturbances are
uncorrelated with theright-hand-sidevariables. Use(10) and (11) to show that thistest isequivalent
to atest for over-identifying restrictions.
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Exercise 3: One of the ways a panel datamodel might come about isfrom aregression model
Yoo = XYt T Uy, Where the ynt are random coefficientsthat vary with n (or t). When does this model
reduce to the standard panel datamodel with random n effects? What are the generalizations of the
standard RE and FE estimators when y,, = 8 + «, + A,?

10. VECTOR AUTOREGRESSI ON

The generic systems of equationsmodel (1) with nindexing dependent variablesand t indexing
time, and with theright-hand-sidevariablesvariouslagsof the dependent variables, iscalled avector
autoregression (VAR) model. The model may include current and lagged exogenous variables, but
Is often applied to macroeconomic data where all the variables in the analysis are treated as
dependent variables. To write out the lag structure, form the date-t vectors

Yit Xyt 0 - 0 Uy,
_ Yar _ 0 Xp 0 _ Uyt
Yi = B Xy = _ _ _ y U = B
_VNt_ _0 0 - XNt_ _uNt_
and then
(12) Vi=XB+AY t . FAY U,

where the A; are NxN arrays of lag coefficients. The VAR assumption is that with inclusion of
sufficient lags, the disturbances in (12) arei.i.d. innovations that are statistically independent of
XoYi1: Y- - INthiscase, the variables X,y 1,Y..-.. &€ said to be strongly predetermined in (12).
The X, are often assumed, further, to be strongly exogenous; i.e., u, is statistically independent of
X, and al leads and lags of X..

The dynamics of the system (12) are most easily analyzed by defining

Yi -Al A Ay A
Y, I, 0, -~ 0, O
yt: t-1 and A= J J J J '
Yt-g.1] _OJ 0, -~ 1 OJ_
and rewriting the system in the form
Xp U
0 0
Yo = _ + Ayt
0 0

The system (12) with the strongly exogenous forcing variables X, and the disturbances u, omitted,
Isastable difference equation if all the characteristic roots of A arelessthan onein modulus. The
long-run dynamics of a stable system will be dominated by the largest (in modulus) characteristic
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root of A, and will have the feature that the impact ony, of a shock in the disturbancein a specified
period eventually damps out. Further, the most slowly decaying component in each variablein'y,
will damp out at thesamerate. (Thereisan exception if the characteristic vector associated with the
largest characteristic root liesin asubspace spanned by asubset of the variables.) Inthestable case,
I.1.d. innovations, combined with strongly exogenous variables that have a stationary distribution,
will producey, with astationary distribution. In particular, the covariance matrix of y, will not vary
witht, sothat they, are homoskedastic. The estimation and hypothesistesting procedures discussed
in Section 3 will then apply, with the predetermined and strongly exogenous variables treated the
same. There will in general be contemporaneous correlation, so that (12) has the structure of a
seemingly unrelated regressions problem for which GLS can be used to obtain BLUE estimates of
the coefficients. If the strictly exogenous variables are the same in every equation, there are no
exclusion restrictions in the lag coefficients, and no restrictions on coefficients across equations,
GL S estimation reduces to OL S applied to each equation separately, as before.

If A has one or more roots of modulus one or greater, then the impact of past disturbances does
not damp out, the system (12) is unstable, and the variance of y, riseswith t. The occurrence of
modulus one (unit) roots seems to be fairly common in macroeonomic time series. Statistical
inferencein such systemsisquitedifferent than in stable systems. In particul ar, detection and testing
for unit roots, and the corresponding characteristic roots that determine cointegrating relationships
among the variables, require a special statistical analysis. The topic of testing for unit roots and
cointegrating relationships is discussed extensively by Stock "Unit Roots, Structural Breaks, and
Trends," and Watson "Vector Autoregression and Cointegration,” both in R. Engle and D.
McFadden, eds., Handbook of Econometrics 1V, 1994.

11. SYSTEMS OF NONLINEAR EQUATIONS

The systems of equations linear in variables and parameters, with additive disturbances, that
were introduced at the beginning of this chapter, can be extended easily to systems that retain the
assumption of additive disturbances, but are nonlinear in variables and/or parameters:

(13) ynt = hn(xnt’Bn) + unt’

wheren = 1,...,N, t = 1,...,T, and B, is k,x1. Assume for the following discussion that the
disturbances u,, are independent for different t. If the x,, are strongly predetermined, implying that
E(u,|X,) = 0, then each equation in (13) can be estimated by nonlinear least squares. This can be
interpreted as a "limited information” or "marginal" GMM estimation procedure in which
information from the equations for the remaining variables is not used. Chapter 3 discusses the
statistical properties of nonlinear least squares estimators.

In general, there will be an efficiency gain from taking into account the covariance structure of
the disturbancesu,, for different n. Thiscan be done practically in TSP by using the LSQ command
appliedto al theequationsinthemodel. Thisprocedurethen appliesnonlinear |east squaresto each
equation separately, retrievesfitted residuals, uses these residual s to estimate the covariance matrix
of the disturbances at each t, and then does feasible generalized nonlinear |east squares employing
the estimated covariance matrix.
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CHAPTER 6. SIMULTANEOUS EQUATIONS

1. INTRODUCTION

Economic systems are usually described in terms of the behavior of various economic agents,
and the equilibriumthat results when these behaviors are reconciled. For example, the operation of
the market for Ph.D. economists might be described in terms of demand behavior, supply behavior,
and equilibriumlevels of employment and wages. The market clearing process feeds back wages
into the behavioral equations for demand and supply, creating simultaneous or joint determination
of theequilibrium quantities. This causeseconometric problemsof correlation between explanatory
variables and disturbances in estimation of behaviora equations.

Example 1. Inthe market for Ph.D. economists, let g = number employed, w = wage rate, S=
college enrollment, and m = the median income of lawyers. Assumethat all these variablesarein
logs. The behavioral, or structural, equation for demand in year t is

1 G = Buy + BioS + PraWy + &y ;

this equation states that the demand for economistsis determined by college enrollments and by the
wage rate for economists. The behavioral equation for supply is

2 G = Bog + BooMy + BoaWy + PogCy + € ;

this equation states that the supply of economists is determined by the wage rate, the income of
lawyers, which represents the opportunity cost for students entering graduate school, and lagged
quantity supplied, which reflectsthe fact that the pool of available economistsisastock that adjusts
sowly to market innovations. Equations (1) and (2) together define a structural simultaneous
equations system. The disturbances €,, and ¢,, reflect the impact of various unmeasured factors on
demand and supply. For this example, assume that they are uncorrelated over time. Assume that
college enrollments s and lawyer salaries m, are exogenous; meaning that they are determined
outsidethissystem, or functionally, that they are uncorrel ated with the disturbancese,, and e,,. Then,
(1) and (2) are a complete system for the determination of the two endogenous or dependent
variables g, and w,.

Suppose you are interested in the parameters of the demand equation, and have data on the
variables appearing in (1) and (2). How could you obtain good statistical estimates of the demand
equation parameters? It is useful to think in terms of the “experiment” run by Nature, and the
experiment that you would ideally like to carry out to form the estimates.

Figure 1 shows the demand and supply curves corresponding to (1) and (2), with w and q
determined by market equilibrium. Two years are shown, with solid curves in the first year and
dashed curvesin the second. The equilibrium wage and quantity are of course determined by the
condition that the market clear. If both the demand and supply curves shift between periods due to
random disturbances, then the locus of equilibriawill be ascatter of points(in this case, two) which
will not in general lie along either the demand curve or the supply curve. Inthe caseillustrated, the
dotted line which passes through the two observed equilibriahas aslope substantially different than
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the demand curve. If the disturbances mostly shift the demand curve and leave the supply curve
unchanged, thentheequilibriawill tend to map out the supply curve. Only if the disturbances mostly
shift the supply curve and | eave the demand curve unchanged will the equilibriatend to map out the
demand curve. These observations have several consequences. First, an ordinary least squares fit
of equation (1) will produce a line like the dotted line in the figure that is a poor estimate of the
demand curve. Only when most of the shifts over time are coming in the supply curve so that the
equilibrialiealong the demand curvewill least squares give satisfactory results. Second, exogenous
variables shift the demand and supply curvein waysthat can be estimated. In particular, thevariable
m that appearsin the supply curve but not the demand curve shiftsthe supply curve, so that thelocus
of w,q pairs swept out when only m changes lies aong the demand curve. Then, the ideal
experiment you would like to run in order to estimate the slope of the demand curveisto vary m,
holding all other things constant. Put another way, you need to find astatistical analysisthat mimics
the ideal experiment by isolating the partial impact of the variable m on both g and w.

Fig. 1. Demand & Supply of Economists

L

0 20 40 60 80 100
Quantity

The structural system (1) and (2) can be solved for g, and w, as functions of the remaining variables

{(Bll_le) *BoS ~ BooM ~ Boglh g + (elt_82t)}

©) W, =
st - Bl3

{(311B23_leﬁ13) * BogB1o§ ~ BiaPooM ~ BiaPoaly s * (B2381t_B1382t)}
Bas — Bys

Equations (3) and (4) are called the reduced form. For this solution to exist, we need f,; - B3
non-zero. This will certainly be the case when the elasticity of supply B,; is positive and the
elasticity of demand 3, isnegative. Hereafter, assumethat thetrue B, - B3> 0. Equations(3) and
(4) constitute a system of regression equations, which could be rewritten in the stacked form

(4) G =

Page 96, Chapter 6-2



W, 1smgg 0 00 O 1 [Mu V11
W, 1smg 0000 T12 V1o
' A 13
(5) o - Lsmoa,0 00 0 m, + T ,ory=Zn+v,

Oy Opo 01 5 M % 21 Va1
q, 000 015%™ %G| o, v,
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where the n's are the combinations of behavioral coefficients, and the v’s are the combinations of
disturbances, that appear in (3) and (4). The system (5) can be estimated by GLS. In general, the
disturbancesin (5) are correlated and heteroskedastic across the two equations. However, exactly
the same explanatory variables appear in each of the two equations. If the correlation pattern isthe
samein each equation, sothat Ev,v;;=6;,p,,, Or Evv' = ReZ, then GLSusing this covariance structure
collapses to GL S applied separately to each equation. When there is no correlation acrosst, GLS
collapsesto OLS.

Suppose you are interested in estimating the parameters of the behavioral demand equation (1).
For OLS applied to (1) to be consistent, it is necessary that the disturbance €, be uncorrelated with
theright-hand-side variables, which are s and w,. Thisconditionismet for s, provided it isindeed
exogenous. However, from (3), an increase in g,, increases w,, other things being equal, and in (1)
thisresultsin a positive correlation of the RHS variable w, and the disturbance €.

Instrumental variables estimation is one alternative for the estimation of (1). In this case, one
needstointroduceat | east asmany instrumental variablesasthereare RHSvariablesin (1), andthese
variables need to be uncorrelated with €,, and fully correlated with the RHS variables. Thelist of
instruments should include the exogenous variablesin (1), which are the constant, 1, and s.. Other
candidate instruments are the exogenous and predetermined variables elsewhere in the system, m,
and q;.

Will 1V work? In genera, to have enough instruments, there must be at least as many
predetermined variables excluded from (1) and appearing elsewhere in the system as there are
endogenous variablesonthe RHS of (1). Whenthisistrue, (1) issaid to satisfy the order condition
for identification. In the example, there is one RHS endogenous variable, w,, and two excluded
exogenous and predetermined variables, m, and g, ;, So the order condition is satisfied. If there are
enough instruments, then from the general theory of 1V estimation, the most efficient IV estimator
is obtained by first projecting the RHS variables on the space spanned by the instruments, and then
using these projections as instruments. In other words, the best combinations of instruments are
obtained by regressing each RHS variablein (1) on theinstruments 1, s, m,, and g, ;, and then using
thefitted valuesfrom these regressions asinstruments. But the reduced form equation (3) isexactly
thisregression. Therefore, the best IV estimator is obtained by first estimating the reduced form
equations (3) and (4) by OLS and retrieving fitted values, and then estimating (1) by OLS after
replacing RHS endogenous variables by their fitted values from the reduced form. For thisto yield
instruments that are fully correlated with the RHS variables, it must be true that at |east one of the
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variables m, and q,, truly enters the reduced form, which will happen if at least one of the
coefficients ,, or B,, isnonzero. Thisis called the rank condition for identification.

2. STRUCTURAL AND REDUCED FORMS
In general abehavioral or structural simultaneous equations system can be written
(6) y'B+zT=¢/,

wherey,’ = (Y4, -»Ya) i1S@1%N vector of the endogenous variables, B isaNxN array of coefficients,
z,' = (Zyy, -Zyy) 1IS@1XM vector of predetermined variables, I'isaMxN array of coefficients, and €,’
iIsa1xN vector of disturbances. Let X denotethe NxN covariance matrix of €. The reduced form
for thissystemis

(7 Y. =z I +v/,

wherell =-I'B*andv,’ =¢,/B™, so that the covariance matrix of v,isQ = B’*2B™. Obviously, for
(6) to be awell-defined system that determinesy,, it is necessary that B be non-singular.

3. IDENTIFICATION

It should be clear that some restrictions must be imposed on the coefficient arrays B and I, and
possibly on the covariance matrix X, if the remaining coefficients are to be estimated consistently.
First, post-multiplying (6) by a nonsingular diagonal matrix leaves the reduced form solution (7)
unchanged, so that all versions of (6) that are rescaled in this way are observationally equivalent.
Then, for estimation of (6) it isnecessary to have ascaling normalization for each equation. Second,
counting parameters, B, I', and X contain N(N-1) + NM + N(N+1)/2 parameters, excluding the N
parameters determined by the scaling normalizations and taking into account the symmetry of x.
However, IT and Q contain only NM + N(N+1)/2 parameters. Therefore, an additional N(N-1)
restrictions on parameters are necessary to determine the remaining structural parameters from the
reduced form parameters.

It is traditional in econometrics texts to work out detailed order and rank conditions for
identification. These come from the structure of the B and I" matrices and the condition that [1B +
I = O relating the reduced form coefficients to the structural parameters. However, it is much
simpler to think of identification in terms of the possibility for IV estimation: An equation (with
associated restrictions) is identified if and only if there exists a consistent 1V estimator for the
parametersintheequation; i.e., if therearesufficient instrumentsfor the RHSendogenousvariables
that are fully correlated with these variables. Even covariance matrix restrictions can be used in
constructing instruments. For example, if you know that the disturbance in an equation you are
trying to estimate is uncorrelated with the disturbance in another equation, then you can use a
consistently estimated residual from the second equation as an instrument. If you are not
embarrassed to let a computer do your thinking, you can even leave identification to be checked
numerically: an equationisidentifiedif and only if you canfind an IV estimator for the equation that
empirically has finite variances.

Exercisel. Show that the condition aboverequiring N(N-1) restrictionson parameterswill hold
if the order condition, introduced in the example of the market for economists, holds for each
equation. Inthegenera case, the order condition for an equation statesthat the number of excluded
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predetermined (including strictly exogenous) variablesisat |east as great asthe number of included
RHS endogenous variables. Add the number of excluded RHS endogenous variables to each side
of thisinequality, and sum over equations to get the result.

4.28LS
For discussions of estimators for simultaneous equations systems, it is convenient to have

available the systems (6) and (7) stacked two different ways. First, one can stack (6) and (7)
vertically by observation to get

(8 YB+Z[ =¢
and
9 Y =ZI1+v,

where Y, ¢, and v are TxN and Z is TxK. With this stacking, one has Ee'e/T = ¥ and
Ev'viT = B'2B'". Note that post-multiplying (8) by a non-singular diagonal matrix leaves the
reduced form unchanged; hence this modification is observationally equivalent. Then, we can
choose any convenient diagonal matrix as a normalization. In particular, we can renumber the
equations and rescal e them so that the dependent variabley,, appearswith acoefficient of oneinthe
n-th equation. Thisis equivaent to saying that we can write B =1 - A, where A isamatrix with
zeros down the diagonal, and that the behavioral system (8) can be written

(10) Y=YA-Z[ +e=[Y|Z] = XC +e.

Inthissetup, Y and e are TXN, X isTx(N+K), and C is(N+K)xN. Restrictions that exclude some
variables from some equations will force some of the parametersin C to be zero. Rewrite the n-th
equation from (10), taking these restrictions into account, as

(11) Yn= Yn'A‘n - ann + €, = XnCn + €ny

wherethis equation includes M, endogenous variables and K , predetermined variables on the RHS.
Then, y,isTx1, Y, isTxM, and Z,isTxK,, and X, is Tx(M+K).

A second method of stacking which is more convenient for empirical work isto write down al
the observationsfor thefirst equation, followed by all the observationsfor the second equation, etc.
Thisamountsto starting from (11), and stacking the T observations for the first equation, followed
by the T observationsfor the second equation, etc. Sincethe C, differ across equations, the stacked
system looks like

O .. 0 1 e €
.. 0 C €
% o I+ [ =Xc+e

Y1 -Xl
0

(12) Sk

yN _O 0o .. XN_ C

Note that X in (12) isnot the sameas X in (10); X iSNTxJ, whereJ=J, +. + Jyand J, =M, + K,
isthenumber of RHSvariablesinthe n-th equation. The system (12) hasthe appearance of asystem
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of regression equations. Because of RHS endogenous variables, OLSwill not be consistent, so that
we have to turn to IV methods. In addition, there are GLS issues due to the correlation of
disturbances across equations.

Supposeyou areinterested in estimating asingle equation from thesystem, sayy, = Y,A,-Z,I';
+¢, = X,C, +&;. ThelV method statesthat if you can find instruments W that are uncorrelated with
e, and fully correlated with X,, then the best IV estimator, ¢, =
[ X, W(W'W) WX X, 'W(W'W) W'y, is consistent. But the potential instruments for this
problemareZ =[Z,|Z,], where Z , denotes the predetermined variablesthat arein Z, but not in Z,.
Theorder condition for identification of thisequation isthat the number of variablesinZ , beat | east
aslargeasthe number of variablesin Y ,, or the number of excluded predetermined must beaslarge
asthe number of included RHSendogenous. Therank conditionisthat X," W be of maximum rank.
For consistency, you need to have X,"W/T converging in probability to a matrix of maximum rank.

Exercise2. Show that the rank condition impliesthe order condition. Show in the example of
the supply and demand for economists that the order condition can be satisfied, but the rank
condition can fail, so that the order condition is necessary but not sufficient for the rank condition.

Thebest IV estimator can be written ¢, = [X,,' X, X ,.'y;, Where X, = W(W'W)*W'X, isthe
array of fitted valuesfrom an OLSregression of X, ontheinstrumentsW = Z; i.e., thereduced form
regression. Then, the estimator has a two-stage OLS (2SLS) interpretation:

(2) Estimatethereduced formby OLS, and retrievethefitted val ues of theendogenousvariables.

(2) Replace endogenousvariablesin abehavioral equation by their fitted valuesfrom thereduced

form, and apply OLS.

Recall from the general 1V method that the procedure above done by conventional OLS programs
will not produce consistent standard errors. Correct standard errors can be obtained by first
calculating residuals from the 2SL S estimators in the original behavioral model, u, =y, - X,¢,9 s
estimating 62 = u,’u,/(T-K,), and then estimating V (¢, ) = 67X, X,]™

5.3SLS

The2SL Smethod doesnot exploit the correl ation of thedisturbancesacrossequations. Y ou saw
in the case of systems of regression equations that using FGLS to account for such correlations
improved efficiency. Thiswill also betruehere. To motivate an estimator, writeout al the moment
conditions available for estimation of each equation of the system:

-Z'yl- -Z’Xl O .. 0 1 e Z'e,
Zy. o ZX,... 0 C Z'e

(13) 2| = xz. _ |+ | 7] = [0ez)XIe+ (1yeZ)e.
Z'y, 0 0 2K e Z'g,

The disturbancesin the NKx1 system (13) have the covariance matrix X&(Z'Z). Then, by analogy
to GLS, the best estimator for the parameters should be
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(14) Cas= {X'(1,ED)E(Z'2) Y1 Z)X} X (Iye2)(Ee(Z'2))(1@Z')y

= {X(E1@@2) 2)X} " X (@222 .

This estimator can be obtained in three OL S stages, hence its name:
(1-2) Do 2SL S on each equation of the system, and retrieve the residuals calculated at the 2SLS
estimators and the original (not the fitted) RHS variables.
(3) Estimate X from the residualsjust calculated, and then do FGL S regression of y on X using
the GLS weighting matrix X 'e(Z(Z2'2)%)Z’).
Thelarge-sampl e approximation to the covariance matrix for (14) is, from theusua GLStheory,

(15) Ve = (X(E 2z Z)x} " .

The FGLS third stage for the 3SLS estimator can be done conveniently by a OLS on transformed
data. Let L bealower triangular Cholesky factor of X' and Q be alower triangular Cholesky factor
of (Z(2'2)Y)Z'. Then (LeQ)(LeQ)’ =X '(Z(Z2'2)Y)Z’). Transform (LeQ)y = (L&Q)Xc+n and
apply OLSto this system to get the 3SLS estimators.

The main advantage of 3SLS over 2SLS is a gain in asymptotic efficiency. The main
disadvantage is that the estimators for a single equation are potentially less robust, since they will
beinconsistent if thelV assumptionsthat Z ispredetermined fail in any equation, not just aparticular
one of interest.

6. TESTING FOR OVER-IDENTIFYING RESTRICTIONS

Consider an equationy = X3 + ufrom asystem of simultaneous equations, and let W denote the
array of instruments (exogenous and predetermined variables) in the system. Let X" = P, X denote
thefitted values of X obtained from OL S estimation of thereduced form; where P, = W(W’' W)~ W’
is the projection operator onto the space spanned by W. The equation is over-identified if the
number of instruments W exceeds the number of right-hand-side variables X. From Chapter 3, the
GMM test statistic for over-identification isthe minimum in  of

2nQ,(B) = u'P,, Ulc? = U'Py. U/6® + U’ (P, - Py.)u/c?,

whereu =y - Xp. Onehasu’(P, - Py, )u=Y'(P, - P)y, and a the minimum in §, u'P,.u =0, so
that 2nQ, = y'(P,, - Px-)Y/c% Under H,, this statistic is asymptotically chi-squared distributed with
degrees of freedom equal to the difference in ranks of W and X". This statistic can be interpreted
as the difference in the sum of squared residuals from the 2SLS regression of y on X and the sum
of squared residuals from the reduced form regression of y on W, normalized by ¢%. A
computationally convenient equivalent form is 2nQ, = |[J - Ix-*/c? the sum of squares of the
difference between the reduced form fitted values and the 2SL Sfitted values of y, normalized by 2.
Finaly, 2nQ, = y'Q,.P,,Qx.Y/c* = nR?c? where R? is the multiple correlation coefficient from
regressing the 2SL Sresidualson all theinstruments; thisresult followsfrom the equiva ent formulas
for the projection onto the subspace of W orthogonal to the subspace spanned by X™. This test
statistic does not have a version that can be written as a quadratic form with the wings containing
adifference of coefficient estimates from the 2SL S and reduced form regressions. Note that if the
equationisjust identified, with the number of proper instruments excluded from the equation exactly
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equal to the number of right-hand-side included endogenous variables, then there are no over-
identifying restrictions and thetest hasno power. However, when the number of proper instruments
exceeds the minimum for just identification, this test amountsto atest that all the exclusions of the
instruments from the structural equation are valid.

7. TIME-SERIESAPPLICATIONS OF SMULTANEOUS EQUATIONS MODELS

The example of the market for economiststhat introduced this chapter was atime- series model
that involved lagged dependent variables. In the example, we assumed away serial correlation, but
ingeneral seria correlationwill beasissueto bedealt within applicationsof simultaneous equations
modelsto time series. The setup (6) for alinear simultaneous equations model can be expanded to
make dependence on lagged dependent variables explicit:

(16) YZYB+y,'A +z'T=¢/.

Recall that the variablesy, , and z, in thismodel are predetermined if they are uncorrelated with the
disturbance g,, and strongly predetermined if e, is statistically independent of y,; and z. In this
model, the strictly exogenous variables z, may include lags (and, if it makes economic sense, leads).
It is not restrictive to write the model as a first-order lag in vy, as higher-order lags can be
incorporated by including lagged values of the dependent variables as additional components of y,,
withidentitiesadded to the system of equationsto link thevariablesat different lags. (Thiswasdone
in Chapter 5 in discussing the stability of vector autoregressions.)
The reduced form for the system (16), also caled the final formin time series applications, is

(17) Vi =V © +ZTT + v/,

where ® =- AB*, I1 =-T'B*, andv,’ = ¢/B™, so that the covariance matrix of v, is Q = B"'XB™.
Identification of the model requires that B be nonsingular, and that there be exclusion and/or
covariance restrictions that satisfy a rank condition. Stability of the model requires that the
characteristic roots of ® all belessthan onein modulus. If one started with astable structural model
that had disturbancesthat were serially correlated with an autoregressive structure, then with suitable
partial differencing the model could be rewritten in the form (17), the disturbances v, would be
innovations that are independent acrosst, and the explanatory variables in (17) would be strongly
predetermined. Further, the dynamics of the system would be dominated by the largest modulus
characteristic root of ®. In this stable case, estimation of the model can proceed in the manner
already discussed: Estimate the reduced form, use fitted values of y, (along with z, and vy, ;) as
instruments to obtain 2SLS estimates of each equation in (17), and finally use fitted covariances
from these equations (calculated at the 2SL S estimates) to carry out 3SLS.

If the final form (17) is not stable, and in particular A has one or more unit roots, then the
statistical properties of 2SL.S or 3SL S estimates are quite different: some estimates may converge
in asymptotic distribution at rate T rather than the customary T2, and the asymptotic distribution
may not be normal. Consequently, one must be careful in conducting statistical inference using
theseestimates. Thereisan extensiveliterature on analysisof systems containing unit roots; seethe
chapter by Jim Stock in the Handbook of Econometrics V. When a system is known to contain a
unit root, then it may be possible to transform to a stable system by appropriate differencing.
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8. NONLINEAR SIMULTANEOUS EQUATIONSMODELS

In principle, dependent variables may be simultaneously determined within a system of
equationsthat isnonlinear in variables and parameters. One might, for example, consider a system

(18) Fi(ylt’yzn'"!yNt;Zit’e) = 8it’ I = 1’""N

for the determination of (y,,,Y..---Yay) that depends on a Kx1 vector of parameters 6, vectors of
exogenous variables z,, and disturbances g,. Such systems might arise naturally out of economic
theory. For example, consumer or firm optimization may be characterized by first-order conditions
that arefunctions of dependent decision variables and exogenous variables describing the economic
environment of choice, with the g, appearing due to errorsin optimization by the economic agents,
arising perhaps because ex post redlizations differ from ex ante expectations, or due to
approximation errors by the analyst. For many plausible economic models, linearity of the system
(18) invariables and parameterswoul d be the exception rather than the rule, with the common linear
specification justifiable only as an approximation. The nonlinear system (18) iswell-determined if
it has aunique solution for the dependent variables, for every possible configuration of the z's and
e's, and for al 0'sin aspecified domain. If it iswell-determined, then it has areduced form

(29) Vit = fi(Z10,Zopse -1 Znps €10 € 20+ s D), 1 = 1,0 N
This reduced form can aso be written
(20) Y. = hi(zy 20 Z00) + U, 1= 1,.N
where
h(ZyZots -1 Zne0) = E{Fi(Z11,Zo0s 1 Znps€100E 210+ €N 0) | 21}

and uj, is the disturbance with conditional mean zero that makes (20) hold. Inthisform, (20) isa
system of nonlinear equationsin the form considered in Chapter 5, and the treatment there can also
be applied to estimate the structural parameters from this reduced form. (The specification (20)
guaranteesthat the reduced form disturbances have conditional expectation zero; but the additional
assumption that u's are statistically independent of z's, or even that they are homoskedastic, is rarely
justifiable from economic theory. Then statistical analysisbased on thisassumption may beinvalid
and misleading for many application.)

Recall that in Chapter 4, estimation of a nonlinear equation with contaminated explanatory
variables was discussed, a best nonlinear 2SLS (BN2SLS) estimator was defined, and practical
approximations to the BN2SL S were discussed. The equationsin (18) would correspond directly
to this structureif in equation i, one had

(21) Fi(ylt’yzn'"!yNt;Zit’e) = yit - h(y1t1'"1yi—1,t1yi+1,t’""yNt’Zit’e)’

Absent this normalization, some other normalization is needed for identification in F, either on the
scale of the dependence of F, on onevariable, or in the scale of ;.. Thisisno different in spirit than
the normalizations needed in alinear simultaneous equations specification. Given an identifying
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normalization, it is possible to proceed in essentially the same way as in Chapter 4. Make a
first-order Taylor's expansion of (18) about an initial parameter vector 6, to obtain

=~ ORYaeYa i Zebo)

* 9 'e + 8, .
vt aek ( k ok) t

(22) Fi(Y1oYoure-oYnoZinBo) = -

Treat theexpressionsXy, = -0F (Y1, You- - Yan Zin0,)/00, ascontami nated explanatory variables, and the
expectations of x;,, given z,,,...,z,, astheideal best instruments. Approximatethese best instruments
by regressing the x;,, on suitable functions of the z's, asin Chapter 4, and then estimate (22) by this
approximation to best 2SLS. Starting from an initial guess for the parameters, iterate this process
to convergence, using the estimated coefficients from (22) to update the parameter estimates. The
left-hand-side of (22) is the dependent variable in these 2SLS regressions, with the imposed
normalization guaranteeing that the system isidentified. This procedure can be carried out for the
entire system (22) at one time, rather than equation by equation. Thiswill provide nonlinear 2SLS
estimates of all the parameters of the system. These will not in general be best system estimates
because they do not take into account the covariances of the e’s across equations. Then, afinal step
IS to apply 3SLS to (22), using the previous 2SLS estimates to obtain the feasible GLS
transformation. The procedurejust described iswhat the LSQ command in TSP does when applied
to asystem of nonlinear equations without normalization, with instrumental variables specified.

When the nonlinear reduced form (20) can be obtained as an analytic or computable model, it
Is possible to apply nonlinear least squares methods directly, either equation by equation asN2SLS
or for the system as N3SLS. This estimation procedure is described in Chapter 5. One caution is
that while the disturbances u, in (20) have conditional mean zero by construction, economic theory
will rarely imply that they are, in addition, homoskedastic, and the large sample statistical theory
needsto be reworked when heteroskedasticity of unknown formispresent. Just asinlinear models,
consistency isgenerally not at issue, but standard errorswill typically not be estimated consistently.
At minimum, one should be cautious and use robust standard error estimates that are consistent
under heteroskedasticity of unknown form.
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CHAPTER 7. ROBUST METHODSIN ECONOMETRICS
1. THE PARAMETERS OF ECONOMETRICS

Econometrics deals with complex multivariate relationships and employs non-experimental or
"field" data that are influenced by many factors. Occasionally econometricians have data from
designed experimentsin which treatments are randomized, and/or other factorsare held constant, to
assure that there can be no confounding of the measured effects of treatments. Almost as good are
“natural experiments’, also called “quasi-experiments’, in field datawhere afactor of direct interest
(or an instrument correlated with a factor of interest) has clearly operated in a manner that is
independent of confounding effects. The scientific value of such quasi-experiments is high, and
econometricians should actively seek designed or natural experimentsthat can illuminate economic
Issues. That said, there remain important problems in economic theory and policy for which
experimental data are not available within the time frame in which answers are needed. It is
imperative that econometricians deal with these problems using the best tools available, rather than
reverting to an orthodoxy that they are too "messy" for econometric treatment.

Econometricians must make educated guesses about the structure of the data generation
processesin non-experimental data. The studiesthat result rely on these structural assumptions can
be misleading if the assumptions are not realistic. This hasimportant implications for the conduct
of econometric analysis. Firgt, it isdesirableto have large data setsin which the"signal” contained
In systematic relationships is strong relative to the "statistical noise". Second, it is important to
"proof" econometric models, testing the plausibility of the specification both internally and against
other data and other studies, and avoiding complex or highly parametric formulations whose
plausibility isdifficult to check. Fourth, itisdesirableto use statistical methods that are "robust” in
the sense that they do not force conclusions that are inconsistent with the data, or rely too heavily
on small parts of the data.

Most of classical econometric analysis, from linear regression models to maximum likelihood
estimation of non-linear models, lays out the assumptions under which the procedureswill produce
good statistical results, and simply assumesthat these postul ates can be checked and will be checked
by users. To someextent, thedevel opment of diagnostic and specification tests providesthe capacity
to make these checks, and good econometric studies use these tests. However, some basic
assumptions are difficult to check, and they are too often accepted in econometric studies without
serious examination. Fortunately, in many economic applications, particularly using linear models,
theanalysisismore robust than the assumptions, and sensibly interpreted will provide useful results
evenif someassumptionsfail. Further, thereareoften relatively simple estimation alternativesthat
provide some protection against falures, such as use of instrumental variables or
heteroskedasti city-consistent standard errors. New devel opmentsin econometrics expand themenu
of procedures that provide protection against failures of classical assumptions. This chapter
introduces three areas in which "robust” methods are available: the use of nonparametric and
semiparametric methods, the use of simulation methods and "indirect inference”, and the use of
bootstrap methods.

Econometricsfirst devel oped from classical parametric stati stics, with attention focused onlinear
systems. Thiswasthe only practical aternativein an erawhen computation was difficult and data
limited. Linear parametric models remain the most useful tool of the applied econometrician.
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However, the assumption of known parametric functional forms and distributions interposes an
untidy veil between econometric analysisand the propositions of economic theory, which aremostly
abstract without specific dimensional or functional restrictions. Buoyed by good dataand computers,
contemporary econometricians have begun to attack problems which are not a priori parametric.
Onemajor line of attack isto use general nonparametric estimation methods to avoid distributional
assumptions. The second, closer to classical methods, is to use flexible forms to approximate
unknown functions, and specification tests to search for parsimonious representations. The added
dimension in a modern rendition of the second approach is explicit recognition of the statistical
consequences of adding terms and parameters as sample sizes grow.

Many problems of econometric inference can be cast into some version of the following setup:
Thereisarandom vector (Y ,X) € R*xR™ such that X hasa(unknown) density g(x) and almost surely
Y hasa (unknown) conditional density f(y|x). Thereisaknown transformation t(y,x) from R*xR"™
into thereal line R, and the conditional expectation of this transformation, 6(x) = E(t(Y ,X)| X=Xx),
Isthe target of the econometric investigation. Examples of transformations of interest are (1) t(y,x)
=y, inwhich case 6(x) = E(Y | X=x) isthe conditional expectation of Y given x, or the regression
function of Y on Xx; (2) t(y,x) = yy’, in which case 6(x) = E(YY'|X=x) is the array of second
conditional moments, and this function combined with the first example, E(YY'|X=x) -
{E(Y | X=x)}{ E(Y |X=x)} " isthe conditional variance; and (3) t(y,x) = 1,(y), theindicator function
of theset A, inwhich case6(x) isthe conditional probability of theevent A, given X =x. Examples
of economic applications are Y a vector of consumer demands, and x the vector of income and
prices; or Y avector of firm net outputs and x avector of levelsof fixed inputsand prices of variable
inputs.

Define the disturbance € = (y,x) = t(y,x) - 6(x). Then the setup above can be summarized asa
generalized regression model,

t(y,xX) = 0(x) + ¢,

where E(e|x) = 0. Econometric problems fitting this setup can be classified as fully parametric;
semiparametric; or nonparametric. The modédl is fully parametric if the function 6 and the
distribution of the disturbance € are both known a priori to be in finite-parameter families. The
model is nonparametric if both 6 and € have unknown functional forms, except possibly for shape
and regularity properties such as concavity or continuous differentiability. The mode is
semiparametric if it contains afinite parameter vector, typically of primary interest, but parts of 6
and/or the distribution of € are not restricted to finite-parameter families. Thisis arather broad
definition of semiparametric, which includes for example linear regression under Gauss-Markov
conditionswherethedistribution of the disturbancesisnot restricted to aparametric family, and only
the first two moments are parametric. Some econometricians prefer to reserve the term
semiparametric for situations where the problem can be characterized as one with a
finite-dimensional parameter vector that is the target of the analysis and an infinite-dimensional
vector of nuisance parameters (which might, for example, determine an unknown function), for it
Isin this case that non-classical statistical methods are needed.

Where can an econometrician go wrong in setting out to analyze the generalized regression
relationship t(y,x) = 6(x) + €? First, there is nothing in the formulation of this model per se that
assures that 6(x) has any causal or invariance properties that allow it to be used to predict the
distribution of values of t(y,x) if the distribution of x shifts. Put another way, the model will by
definition be descriptive of the conditional mean in the current population, but not necessarily
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predictive under policy changes that alter the distribution of x. Because econometricians are often
interested in conditional relationshipsfor purposes of prediction or analysisof policy scenarios, this
Ispotentially aseverelimitation. The prescription for "robust” causal inferenceisto use statistical
methods and tests that can avoid or detect joint or "wrong-way" causality (e.g., instrumental
variables, Granger invariancetestsintimeseries, exogeneity tests); avoid claiming causal inferences
whereconfounding of effectsispossible; and avoid predictionsthat require substantial extrapolation
from the data. Second, when 6(x) is approximated by a parametric family, there will be a
specification error if the parametric family failsto contain 6(x). Specification errorsare particularly
likely if the parametric family leaves out variables or variable interactions that appear in the true
conditional expectation. Third, the only property that isguaranteed for the disturbances e when 6(x)
iscorrectly specifiedisthe conditional first moment condition E(e|x) = 0. Thereisno guaranteethat
the conditional distribution of € given x isindependent of x, or for that matter that the variance of
e iIshomoskedastic. In addition, there is no guarantee that the distribution of € hasthin enough tails
so that higher moments exist, or are sufficiently well behaved so that estimates are not unduly (and
unstably) influenced by a small number of high influence observations. In these circumstances,
statistical methodsthat assume well-behaved disturbances can be misleading, and better results may
be obtained using methods that bound the influence of tail information. At minimum, it is often
worth providing estimatesof estimator dispersion that are consistent in the presence of variouslikely
problems with the disturbances.

Instatistics, thereisafairly clear division between nonparametric statistics, which worriesabout
the specification of 6(x) or about tests of the qualitative relationship between x and t, and robust
statistics, which worries about the properties of €. In econometrics, both problems appear, usually
together, anditisuseful to refer to thetreatment of both problemsin economic applicationsasrobust
€conometrics.

Despite the leading place of fully parametric models in classical statistics, elementary
nonparametric and semiparametric methods are used widely without fanfare. Histograms are
nonparametric estimators of densities. Contingency tables for data grouped into cells are one
approach to estimating a regression function nonparametrically. Linear regression models, or any
estimatorsthat rely on afinitelist of moment conditions, can beinterpreted as semiparametric, since
they do not require complete specification of the underlying distribution function.

2. HOW TO CONSTRUCT A HISTOGRAM

One of the simplest examples of a nonparametric problem is that of estimating an unknown
univariate unconditional density g(x), given a random sample of observations x; for i = 1,...,n.
Assume, by transformation if necessary, that the support of g isthe unit interval. An elementary
method of approximating g isto form ahistogram: First partition the unit interval into K segments
of length /K, so that segment k is (¢, ;,c,] with ¢, = k/K for k = 0,...,K. Then estimate g within a
segment by the share of the observationsfalling in this segment, divided by segment length. If you
takerelatively few segments, then the observation countsin each segment arelarge, and thevariance
of the sample share in a segment will be relatively small. On the other hand, if the underlying
density is not constant in the segment, then this segment average is a biased estimate of the density
at apoint. Thisbiasislarger when the segment islonger. Segment length can be varied to balance
variance against bias. As sample size rises, the number of segments can be increased so that the
contributions of variance and bias remain balanced.

Suppose the density g has the following smoothness property:
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1g(x") - g(x¥)| < L|x"-x],

where L is a positive constant. Then the function is said to satisfy a Lipschitz condition. If gis
continuoudly differentiable, then thisproperty will be satisfied. Let n, bethe number of observations
from the samplethat fall in segment k. Then, the histogram estimator of g at a specified argument
Xis

LX) =Kny/n for x € (¢.1,CJ-

Compute the variance and bias of this estimator. First, the probability that an observation fallsin

segment k isthesegment meanof g, p, = K- [ * g(x)dx. Then, n, hasabinomial distributionwith

Ci-1

probability p /K, so that it has mean np, /K and variance n(p/K)(1 - p/K). Therefore, for x, €
(C1sCd, £(X,) hasmean p, and variance (K/n)p,(1 - p/K). ThebiasisB,«(X) =p, - g(x). Themean
square error of the estimator equals its variance plus the square of its bias, or

MSE(x) = (K/In)p,(1 - p/K) + (P - 9(X))*

A criterion for choosing K isto minimize the mean square error. Looking more closely at the bias,
notethat by thetheorem of the mean, thereis someargument z, in the segment (¢, ,,¢,] such that p,/K

= f “ gx)dx=g(z) [ dx=g(z)/K. Then, using the Lipschitz property of g,
C

k-1 Ck-1

P- 90| = 9(z) - 9(X)| =< L|z - x| < LK,
Then, the MSE is bounded by
MSE(x) < (K/n)p(1 - p/K) + LZ/K?,

Approximatetheterm p,(1 - p,/K) inthisexpression by g(x), and then minimizethe RHSinK. The
(approximate) minimand is K = (2L%n/g(x))*3, and the value of MSE at this minimand is
approximately (Lg(x)/2n)*3. Of course, to actually do this calculation, you have a belling-the-cat
problem that you need to know g(x). However, there are some important qualitative features of the
solution. First, the optimal K goes up in proportion to the cube root of sample size, and MSE
declines proportionately to n?®. Compare this with the formula for the variance of parametric
estimators such as regression slope coefficients, which are proportional to 1/n. Then, the histogram
estimator is consistent for g, since the mean sgquare error goes to zero. However, the cost of not
being able to confine g to a parametric family is that the rate of convergence is lower than in
parametric cases. Note that when L issmaller, so that gislessvariable with x, K issmaller.

If you areinterested in estimating the entire function g, rather than the value of g at a specified
point X, then you might take as a criterion the Mean Integrated Square Error (MISE),
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k=1 k-1

= ) E(Kn/n - p)7K + XK: fck (P« - 9(x))%dx
k=1 k=1 Ce1
K K .
= (Wn)p(L-pdK) + Y f “ (9(z) - 9(x))*dx
k-1 k=1 Cy-1

K
<Kin+ Y f % L2(z, - x)%dx < K/n + L%3K2
k=1 C1

The RHS of this expression is minimized at K = (2Ln/3)"3, with MISE < (3L/2n)*2. Both
minimizing MSE at a specified x and minimizing MISE imply that the number of histogram cells
K grows at the rate n*. When g(x) < 3, the optimal K for the MISE criterion will be smaller than
the optimal K for the MSE criterion; this happens because the MISE criterion is concerned with
average bias and the MSE criterion is concerned with bias at a point. One practical way to
circumvent the belling-the-cat problem isto work out the value of K for astandard distribution; this
will often give satisfactory results for a wide range of actual distributions. For example, the
triangular density g(x) =2x on 0 < x < 1 hasL = 2 and givesK = 2(n/3)*3. Thus, asample of size
n=8limpliesK =6, while a sample of sizen = 3000 givesK = 20.

3. KERNEL ESTIMATION OF A MULTIVARIATE DENSITY

One drawback of the histogram estimator isthat it is estimating a continuous density by a step
function, and the constancy of this estimate within a cell and the steps between cells contribute to
bias. There would seem to be an advantage to using an estimator that mimics the smoothness that
you know (believe?) isinthetruedensity. Thissection describesthe commonly used kernel method
for estimating a multivariate density.

Suppose oneisinterested in estimating an unknown density g(x) for x = (x,,...,X,,) inthedomain
[0,1]™. Supposethat gisnot known to beinaparametric family, butisknown to be strictly positive
ontheinterior of [0,1]™ and is known to have the following smoothness property: g is continuously
differentiable up to order p (where p > 0), and the order p derivatives satisfy a Lipschitz condition.
Some notation is needed to make this precise. Letr = (r,,...,[,) denote a vector of non-negative
integers, and |r| =} r;. Letg'(x) =" Ao 4 denote the mixed partial derivative of
g of order |r| with respect to the arguments in r. The assumption is that g'(x) exists and is
continuousfor all r satisfying |r| < p, and that thereexistsaconstant L suchthat |g'(x) - g'(y)| < L|x
-y| forany r satisfying |r| = p. In applications, the most common cases considered are p = 0, where
oneisassuming g continuous and not too variable (e.g., Lipschitz), and p = 2, where oneisassuming

g twice continuously differentiable. Define z7 = z'..z ™ . A function g that satisfies the

smoothness condition above has a Taylor's expansion (in h) that satisfies
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for some scalar A € (-1,1).

Exercise 1. Verify that for m = 1, these smoothness conditions reduce to the requirement that
g be p-times continuously differentiable, with dPg(x)/dx? satisfying a Lipschitz condition, so the
Taylor's expansion is a textbook expansion in derivatives up to order p.

Exercise 2. Show that in the case p = 0, the expansion reduces to g(x - hz) = g(x) + Ah-L|z|.

Suppose you have a random sample x; for i = 1,...,n drawn from the density g(x). In
applications, it isalmost always desirable to first do alinear transformation of the data so that the
components of x are orthogonal in the sample, with variancesthat are the same for each component.
Hereafter, assume that the x’s you are working with have this property. Suppose that you estimate
g using akernel estimator,

. 1 v X=X
X) = K
£ nh ™ |21: ( h ]

The function K(z) is the kernel, and the scalar h is the bandwidth. The kernel K is afunction on
(-eo,+o2)™ with the properties that | K(z)dz = 1, and for someinteger swith0 < s< p, [Z*K(2)dz =
Ofor |r| < sand [Z-K(2)dz = k, for |r| = st+1, where the k; are constants that are finite and not all
zero. Inwords, K isa"density-like" function which integrates to one, but which is not necessarily
always non-negative. All the moments of this function up through order s vanish, and moments of
order s+ 1 exist and some do not vanish. Thisiscalled akernel of order s. Inapplications, you will
encounter mostly first-order kernels satisfying [zK(z)dz = 0 and [z°K(z)dz > 0; these are usually
constructed as non-negative densities that are symmetric about zero. Higher-order kernels, for s>
1, will be used to take advantage of problems where g isknown to be differentiable to higher order
thantwo. Higher order kernels will necessarily sometimes be negative.

Anexampleof afirst-order kernel isK (z) = (2r) ™?exp[-z'z/2], aGaussian kernel formed by the
product of univariate standard normal densities. Forming products of univariate kernels in this
fashion is a convenient way to build up multivariate kernels. Another example of a multivariate
kernel is the multivariate Epanechnikov kernel, K(z) = (*2c.,,(m+2)-(1 - 2'z)-1(z'z < 1), where c,,
isthe volume of aunit spherein R™, which can be calculated recursively using the formulasc, = 2,
c,=m, andc,=c,,'n/(n-1) for n>2. Anexample of asecond-order kernel derived from afirst-order
kernel K is

K*(2) = [K(2) - K(y2)]/(1-y),

whereyisascalarin (0,1). (If K issymmetric about zero, then K* isactually athird-order kernel.)
Kernelsto any order can be built up recursively as linear combinations of lower order kernels.

Mean and Variance of the Kernel Estimator

The mean of the kerndl estimator is
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Using the fact that the observation x; are independent, the variance of the kernel estimator is
Ve L0 -Eqoor= —L 3 e XX e 2|
X) = X) - Eg(X)]* = — - —
n2h?m i1 h h
= L3 ) gy | K 22X at| |
nh2m h h

Consistency, Bias, and Mean Sguare Error

Requireh-- 0 and n-h*™ - +«. Then, EG(X) —— g(x) and V 4(x) — 0, so that g(x) convergesto
g(x) in mean sgquare error, and is hence consistent. Note that for m large, these conditions require
that h fall quite lowly asnrises. Thisis called the curse of dimensionality.

Next approximate the bias and variance of the estimator when hissmall. Assumethat the order
of the kernel sis less than or equal to the degree of differentiability p. Introduce the change of
variablesy = x - hz in the expressions for the mean and variance of g(x), and then use the Taylor’s
expansion for g(x - hz) up to order s, to obtain

- 1 X-y| . - «alx -
Eq)= [ K (T) g)dy= [ K(@g(x- oz

- S (Ch o . bt [(x)- 2.
=gx)+ ) L g(x)f K(z):Zdz + A R Y g f K(z2)-ZL|z|dz

-0 ql rl=s

s+1

=g0) +2"L

Y lgxl-c.,

sl [r|=s

where C, = [|K(2)-Z'|-|z|dz is a positive constant determined by the kernel, and )’ is a scalar in
(-1,1). Then,

) , hs+l .
Bias(p) =)L —— X [0IIC,.
- r|=s

From thisformula, one seesthat the magnitude of the bias shrinks at therate h***, where sisthe order
of thekernel, aslong as s < p. Thus, when one knowsthat g has a high degree of differentiability,
one can use a higher order kernel and control bias moretightly. The reason thisworksisthat when
gisvery smooth, you can in effect estimate and remove bias components that change smoothly with
X; e.g., biastermsthat are linear in deviations from the target x. However, if one uses alow order
kernel, the biasis determined by the order of the kernel, and is not reduced even if thefunctiongis
very smooth. At the other extreme, the biasis of order h*** for any kernel of order s > p, since the
Taylor's series cannot be extended beyond the order of differentiability of g, so nothing isgained on
the bias side by going to akernel of order s> p. For example, if p =0, so that one knows only that
g is Lipschitz, then one cannot reduce the order of bias by using a symmetric kernel.

Page 111, Chapter 7-7



Next consider the variance. Making the change of variablesy = x - hz,

V4(x) =E[4(X) - EQP = —— [ K@ ox-ha)dz- 1 (f K(z)g(x—hz)dz)2
nh™ n

W1 Keydz e 2
nh™ nhm?

where D is a constant that depends on K and g. As h — 0, the first term in the variance will
dominate. Then, the mean square error of the estimator g at x is bounded by

h 2(s+1) (

2
MSE(X) = Bias(x)? + V&(x) = L* y |gr(x)|Cr] + —gr(1X) [ K@pdz+HoT,
n m

(S!)Z [r|=s
where HOT stands for "Higher Order Terms'. The mean integrated square error (MISE) isthen
h2(s+l) 1
MISE = [MSE(x)dx = L* A+ f K(2)’dz + HOT,
(s)? nh™

where

A= | [Z gf(x)Cr)z dx .

Iri=s

The optimal bandwidth h minimizes MISE:

h. =

opt

2 _ 1
m(s') f K(Z)Zdz m+2(s+1) )
2(s+1)n-AL?

Then, the bandwidth fallswith n, at aslower rate the higher the dimension m or the higher the order
of the kernel s. Intuitively, thisis because when m is high, there are more dimensions where data
can"hide", sothesampleislessdense and one hastolook morewidely to find sufficient neighboring
points. Also, when the order of the kernel s high, more distant points can be used without adding
too much to bias because the function is smooth enough so that |eading bias terms can be taken out.
Increasing the order of derivativestypically increases A and/or L, and this also shrinks bandwidth.
In an applied problem, direct application of the formulafor h,, isimpractical because it depends on
functions of g that one does not know.

Substituting the optimal bandwidth in MISE yields

2(s+1) 5 m 2(s+1)
MISE(h,) = nm2eD . JASTDALtnass) | {f K(Z)Zdz} m2eD . Me2(s+l)
- m(s!)? 2(s+1)

Notefirst that MISE will alwaysfall more slowly than 1/n. Thisisdueto the nonparametric nature
of the problem, which impliesin effect that only local dataisavailableto estimate the density at each
point. Chuck Stone has shown that the rate aboveisnot particular to kernel estimation, but isabest
rate that can be obtained by any estimation method. Second, the higher the dimension m, the lower
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the rate at which MISE falls with sample size, the curse of dimensionality. If the problem isvery
smooth, and one exploits this by using a higher-order kernel, one can offset some of the curse of
dimensionality. Inthelimiting case, ass— +, therate approachesthelimiting 1/nrate. However,
other termsin MISE a so change when one goesto higher order kernels. In particular, [K(z)*dz will
increase for higher order kernels, and the constant A will typically increase rapidly because higher
order derivatives are less smooth than lower order ones.

Least-Squares Cross-Validation

The idea behind cross-validation is to formulate a version of the MISE criterion that can be
estimated from the dataalone. Then, the bandwidth that minimizesthisempirical criterionisclose
to the optimal bandwidth. The MISE criterion can be written

MISE=E f [4(X) - g(X)]?dx = E f S(X)%dx - 2.E f S(X)-g(x)dx + f g(x)%dx .
The approach is to obtain unbiased estimators of the terms involving g(x), and then to choose h

iteratively to minimize this estimated criterion. Consider first the term E f S(x)%dx. This

expression can be estimated using the kernel estimator g. To get a convenient computational
formula, first define K@(z) = [ K(w - 2)-K(w)dw . Thisisaconvolution that defines a new kernel
starting from K, and is an expression that can often be determined analyticaly. When K is a
probability density, K@ has asimple interpretation: if W, and W, are independent random vectors
with density K, then the density of Z =W, - W, isK®. For example, if K isaproduct of univariate
standard normal densities, then K@ is a product of univariate normal densities with mean 0 and
variance 2. Using the definition of K@, and making the transformation of variablesw = (x - x;)/h,

[ &xyox= 2h2 IXn; [ Kk (%) K (%]

- b B

i=1 j=1

This statistic converges to its expectation as n — e,

Yy f K (%) g(x)dx . Replacethe

2h2m i1

Next consider theterm f S(X)-g(x)dx =

X=X
unknown g(x) inthe expression f K (TX'] g(x)dx by the empirical density from the sample,

excluding x;; this puts probability 1/(n-1) at each data point x; for j # i. This gives an estimator

> ZK(¥

nh™ n-1 i3 i7i

for f S(X)-g(x)ax.
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Exercise 3. Show that f £(x)-g(x)dx and the estimator for it given above have the same

expectation.

Putting together the estimators for the first two terms in the MISE, one obtains the empirical
criterion

MISE'(h) = th

2K(0)
(n-1)h™

For application, use anonlinear search algorithm to minimize thisexpressionin h. The minimand
hs 1S the optimal bandwidth estimated by the cross-validation method. An important theoretical
result due to Chuck Stoneisthat if g is bounded, then MISE(h,,)/MISE(h,,) ~ 1 asn - +e, so that
asymptotically one can do as well using the bandwidth obtained by minimizing the empirical
criterion MISE'(h) as one can do using the optimal bandwidth.

+

K(Z)()ﬁ;lxi)_nz_n K()%_Xi)

4. NONPARAMETRIC REGRESSION

Now consider the general problem of estimating 6(x) in the regresson model t; = 6(x;) + ¢,
wherex; isof dimension m, t; = t(y;,x;) isaknown transformation, 6 is an unknown function, g isa
disturbance satisfying E(g; | ;) = O, but otherwise not restricted, and (y;,x;) for i =1,...,nisarandom
sample. Thisisthegeneral setup from theintroduction. Consider locally weighted estimators of the
form

TO= Y Wyl XJHYX),

i=1

where thew,, are scalars that put the most weight on observations with x; near x. The weightsdo
not have to be non-negative, but their sum has to approach oneasn - +w. Here are some examples
of nonparametric estimation methods that are of this form, and their associated weight functions:

1. Kernel Estimation: Suppose K isakernel function from R™ into R, and h is a bandwidth. The
function K will be large near zero, and will go to zero at arguments far away from zero; common
examplesfor m = 1 are the uniform kernel, K(v) = 1, ; ,;(v); the normal kernel K(v) = o(v), where
¢ isthe standard normal density; thetriangular kernel K(v) = Max{ 1-|v|,0} ; and the Epanechnikov
kernel K(v) = (3/4)(1-v?)1,; .,y(v), which turns out to have an efficiency property. Thelocal weights
are
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where the bandwidth h, shrinks with sample size. The kernel estimator of 6(x) is

The denominator of this expression can be interpreted as an estimator of g(x), and the numerator as
an estimator of g(x)E,,t(y,x) = g(x)0(x). Thekernel functionK istypically defined so that [K(v)dv
=1, and istaken to be symmetric so that [vK(v)dv = 0. If 8 isknown to be asmooth function, with
Lipschitz derivatives of order p, then there turns out to be an advantage (in large enough samples)
to using a higher-order kernel that satisfies [vik(v)dv = 0 forj = 1,...,p.

2. Nearest Neighbor Estimator. For the given x, order the observations (y,X,) o that | - X,)| <
X -Xg| < ... < [X-Xgy|. Tosimplify discussion, rule out ties. Define a sequence of scalarsw,
that sum to one, and define

T.(x) = W it Yy Xy -

n
i=1

If w,, =0fori>r,thisistermed ar-nearest neighbor estimator. Examples of weightsare uniform,
W, = Urfori < rand zero otherwise, and triangular, w,, ;, = 2(r-i+1)/r(r+1). If 6 isknownto bea
smooth function with Lipschitz derivatives of order p, then it is advantageous to run a local

m m
regression, inwhich t(y,x) isregressed on dl pointsof theform [ x,Pwith ) p, < p, with
h=1 h=1
weights w, ;,, and the fitted value of this regression at x is the estimator of 6(x). This extension
reduces bias by taking into account the fact that a smooth function must vary regularly in its
arguments, allowing larger neighborhoods so that variance as well as bias can be reduced.
Uniform nearest neighbor and uniform kernel estimators have the following relationship: If the
bandwidth in a uniform kernel estimator is chosen as a function of the data, a variable kernel
method, so that exactly r observations fall in the interval where the kernel is positive, then this
estimator is a uniform nearest neighbor estimator.

3. Other Nonparametric Methods. Thereare several widely used nonparametric estimation methods

other than locally weighted estimators. First, the function 6(x) may be approximated by sums of
standard functions, such as polynomials, with the number of termsin the sums growing with sample
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size. A traditional form of these series approximations is the use of Fourier or Laplace
approximations, or other seriesof orthogonal polynomials. These seriesaretruncated at some point,
depending on the sample size, the dimension of the problem, and the smoothness assumed on 6(x).
Once thisis done, the problem is effectively parametric, and ordinary regression methods can be
used. (Judicious choice of the series so that the terms are orthogonal results in computational
simplifications, as you do not haveto invert very large matrices.) This approach to nonparametric
regression is called, awkwardly, semi-nonparametric estimation. The traditional econometric
practice of adding variables to regression models as sample sizes grow, and using some criterion
based on t-statistics to determine how many variables to keep in, can be interpreted as a version of
this approach to estimation. What nonparametric econometrics adds is a mechanism for choosing
the number of termsin an "optimal" way, and an analysis that determines the statistical properties
of the result.

Morerecently it hasbecome common to useafunctional approximation approach with functions
whose determination is morelocal; popular functional forms are splines, neural nets, and wavel ets.
Thisapproach iscalled the method of sieves. Loosely speaking, splinesare piecewise polynomials,
neural nets are nested logistic functions, and wavelets are piecewise trigonometric functions.
Another approach to nonparametric estimation is penalized maximum likelihood, in which the log
likelihood of the sample, written in terms of the infinite-dimensional unknown function, is
augmented with a penalty function that controls the "roughness’ of the solution.

All the nonparametric estimation methods listed above will be consistent, in the sense that the
mean square error MSE(x) of T, (X) at agiven point X convergesto zero, with asymptotically normal
distributions (although not at a root-n rate) under suitable regularity conditions and choices of
estimation tuning features such as bandwidth. Further, the conditions on the underlying problem
needed to get this result are essentially the same for all the methods. An important result, due to
Chuck Stone, isthat given samplesize, thedimensionality of aproblem, and the smoothnessthat can
be assumed for the regression function, thereis amaximum rate at which M SE(x) can decline. Any
of the estimation methods listed above can achieve this maximum rate. Thus, at least in terms of
asymptotic properties, one method is as good as the next. In practical sample sizes, there are no
general resultsfavoring onemethod over another. Kernel methodsareusually the easi est to compute
at a point, but become computationally burdensome when an estimator is needed for many points.
Nearest neighbor estimators require large sorts, which are time-consuming. The method of sieves
involves more computational overhead, but has the advantage of being "globa” so that once the
coefficients of the series expansion have been estimated, it is easy to produce forecastsfor different
points. The method of sievesis currently the most fashionable approach, particularly using neural
net or wavelet forms which have been spectacularly successful in recovering some complex test
functions. On the whole, nonparametric methods in finite samples place a considerable burden on
the econometrician to decide whether nonlinearitiesin nonparametric estimators are true features of
the data generation process, or are the result of "over-fitting" the data.

Consistency:

Asin the case of the histogram estimator of a density, good large sample properties of alocally
weighted estimator are obtained by giving sufficient weight to nearby points to control variance,
while down-weighting distant pointsto control bias. Assamplesizeincreases, distant observations
will be down-weighted more strongly, since there will be enough observations close by to control
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thevariance. Thefollowing theorem, adapted from C. Stone (1977), givessufficient conditionsfor
consistency of alocally weighted estimator.

Theorem 1. Assume(i) g(x) hasaconvex compact support B < R™; (i) 0(x) satisfiesaLipschitz
property |8(x’) - 6(x)| < L|x" - x| for al x’,x € B; (iii) the conditional variance of t(y,x) given
X, denoted Q(x), satisfiesQ, < Q(x) < Q,, where Q, and Q, are finite positive definite matrices,
(iv) arandom samplei = 1,..,n isobserved; and (v) asn - + the local weights w,, satisfy

n
(a) E{Xi} |z:l: Wni(X;Xl,---,Xn)2 -0
n
(b) E{Xi} |§:; Wni(X;Xl;---,Xn) -1-0
n
(C) E{Xi} Z |Wni(X;X1;---;Xn) ‘ .|X - Xi| - 0.

W
iR

Then T, (X) - 6(x) convergesto zero in mean square.

Proof: The bias of the estimator is

n
B,(x) = E{Xi} i-1

W, (XX g5 X,)[0(X) - 6(X)] + 6(X) {E{Xi} 2; W (XXX ) = 1} ,
so that assumption (v), (b) and (c) imply

B,(X)| <L- E{Xi} | Wi (XX, X) || X = X| + 0(X) {E{Xi} lewni(x;x X)) ~ 1} - 0.

n
i=1

The variance of the estimator is, by assumption (v), (a),

Vi) = By W, (XX 1,000 X, ) 2Q(X) < Eryy

n n
W (X X000 X))

i-1 i-1

Then, MSE =V (x) + B,(x)? ~ 0, completing the proof. =

It is useful to work out conditions on nearest neighbor and kernel estimators that satisfy the
sufficient conditions in Theorem 1. First, consider a uniform nearest neighbor estimator, with r,,
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points included in the neighborhood at sample size n. Then, w,, = 1/r, for the points in the
neighborhood. The LHS of condition (v), (b) in Theorem 1 equals 1/r,,, so the condition is satisfied
if r, - +e. Next, we show that a sufficient condition for (v), (c) in Theorem Lisr/n- 0. Let N,(X)

denote a neighborhood of x of radiust. For any A >0, definet, suchthat g(N_) = (1+A)r/n, and
notethat r/n - Oand x € Bimpliest, » 0. Let R, denote the (random) number of observationsin
theneighborhood N_ ;thenER,=n g(N ) =1+ )r,andVar(R,)=n g(N_) [1- o(N ) ]<

(1+A)r,,. Let T, denote the (random) radius of the neighborhood that contains exactly r,, of the
observationsx;. Then

P(Tn > Tn) = P(Rn < rn) = P(Rn -ER,<T, - (1+7\')rn) = P(Rn -ER, <- 7\'rn)
< Var(R)MWr2 < (1+0)/\r,,
with the first inequality obtained by applying Chebyshev’sinequality to the sum of the independent
random indicators for the events x; € N_ ; these indicators sumto R,,. From this result, and a

n

bound |x - x| < M for x, X" € B implied by the compactness of B,

ET, <t P(T,<1)+MP(T,>1) <1, + M(1+\)/A%r,, - O
Then,

n
Eg 2 [WalXyX)|:[x - x| < ET, -0,

i=1

establishing that (v), (c) in Theorem 1 holds. The kernel estimator of 6(x) is

n
Note that thisestimator isof thegenericform T,(x) = Z w; t(yi,x), wherethew, are weightsthat
i-1

X=X
sum to one. Because the kernel K (TX'] Issmall unless x; is near x, the weights w; will be

concentrated on points with x; near x. Then, this estimator corresponds to intuition on how a
non-parametric estimator can be constructed. Y ou will recognize the denominator in the formula
for T(x) issimply akernel estimator of g(x). Thenumerator isan estimator of [t(y,x)-f(y|x)dy-g(x).
Then, T,(X) can be interpreted as an estimator of [t(y,x)-f(y|x)dy = [[t(y,x)-f(y|x)dy-g(x)]/g(x).
Now suppose that 6(x) and g(x) are continuously differentiable to order p, with Lipschitz order
p derivatives, and that the kernel is of order s < p. Also assumethat 6%(x) isfinite and Lipschitzin
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X. Asinthe case of density estimation, requirethat h - 0 and nh™ - +e asn -~ +e. Thiswill ensure
that the numerator of T, (x) converges in mean square error to 6(x)-g(x) and that the denominator
converges in mean square error to g(x), so that theratio is a consistent estimator of 6(x).
Arguments similar to those for density estimation are used to establish further statistical
properties of T,(x). Treat the numerator and the denominator separately. The denominator is the
earlier density estimator, where we found that the bias satisfied Bias,,,,(X) = C-h*"!, where Cisa
constant. Make a Taylor’s expansion of the function g(x - hz) = 6(x - hz)-g(x - hz) to order s:

~ (-hy het
ax-hz)= Y = X q)zZ+r — X [dx)Z[Lz.
o )T s s

Then, the numerator satisfies

e Ytk (%] = Jg(x-h2) 0(x-2) K (2)dz = 9(x)-000) - 1"-A"-H",
nh™ i-1

where A’ isaconstant that depends on the order sderivatives of t, and on the Lipschitz constant L.
Then, Bias, o (X) =A"-A’-h™%,

Thevariance of the denominator, from the previousanalysis, is % f K(2)%dz+HOT. An
n

2
anal ogous argument applied to the numerator establishesthat itsvarianceis L%SX) f K(2)%dz
nh

+ HOT. The covariance of the numerator and denominator is zero.

Consider aratioa,/B, of random variablesa,, and B, that havefinite second moments, satisfy o,
0, and B~ , By @ - +, and have 3, uniformly bounded and bounded away from zero. Then, Ea,
- a,, EB, ~ Bo, and theratio can be rewritten

o, — Ea, _&.Bn - EB, . Ea, - a, _&'EBn - Bo
a'n 0’0 — EBn B0 EBn EBn B0 EBn
-E
_ B, -EB,
EB,
The expectation of the square of this expression is the mean square error of o,/p,. For nlarge, the

denominator is almost always very closeto one, and is rarely closeto zero. The expectation of the
square of the numerator can be written

Va, N (&]2 VB, 2a,  cov(a,pB,) N [biasa g biasﬁ)z

1

B2 Bo) B2 B B2 Bo B

Applying this formulato the numerator and denominator of T, (x), substituting the expressions just
derived for variances and biases, the mean square error in T,(X) is

0(9)°
nh Mg(x)

f K(Z)2d2+h2(s+1)‘ L ’

MSE) = — O®) [ K@pdz+ o
g(X

nh Mg(x)
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where C is a constant depending on order s derivatives, Lipschitz constants, and K. The h,, that
minimizes M SE(x), or theintegral MISE of M SE(x) over adomain where g(x) is bounded positive,
isproportional to n¥™2*D) and the mean square error criterion isproportional to ms™/(M2st) st
asinthe case of density estimation. Again, the precision of the estimator falls when dimensionality
m rises, and high-dimension problemsrequireimmense sampl e sizesto achieve accurate estimators.
A high degree of smoothness, exploited using high-order kernels can offset some of the negative
impacts of dimensionality, but can never get mean square error to fall at al/nrate. Asinthe case
of density estimation, a least squares cross-validation procedure can be used to determine an
approximately optimal bandwidth in applications. W. Hardle and O. Linton (1994) give the
formulas.

Optimal Rates

The number of observations included in a nearest neighbor estimator, or the bandwidth in a
kernel estimator, can vary over considerable ranges and still produce consistent estimators.
However, there aretypically optimal valuesfor these design parameters that minimize mean square
error. These values depend on the properties of the function being estimated, but their qualitative
propertiesare of interest. These notes mentioned earlier theresult of Stonethat there will be abest
rate at which M SE(x) declines, for any nonparametric method, and that all the standard methods can
achieve thisrate. This best rate of decline turns out to be very slow when the dimension m of x is
large. This is called the curse of dimensionality, and is a consequence of the fact that when
dimensionality ishigh, dataare more sparse. (Thisproposition can be made precise by considering
the statistical problem of the expected radius of the largest sphere that can be circumscribed around
a data point without encountering any other data points. For a given sample size, this expected
radius rises with dimension m at arate that corresponds to the curse of dimensionality.)

I will give a rough outline of an argument that determines the optimal bandwidth for kernel
estimation in the case that 6(x) is Lipschitz, and after that a rough outline of an argument that
determinesthe optimal number of neighborsfor nearest neighbor estimation. Theseargumentsdraw
heavily from the demonstrations following the proof of Theorem 1, and parallel the arguments for
consistent kernel estimation of a multivariate density given earlier.

Kernel Estimation: From the earlier analysis, the variance of the estimator is approximately
proportional to K(0)/g(x)nh™, and the bias is approximately proportional to h. Then, the
first-order-condition for minimization of variance plus squared biasis h, = D/nY(™? for a constant
D, and the corresponding M SE declines at rate n?@*™, For m = 1, thisisthe same n?® rate that was
achieved by the optimal histogram estimator of a Lipschitz density.

Nearest Neighbor Estimation: From the earlier analysis, if there are r observations in the
neighborhood, with r -~ +- and r/n - 0O, then the estimator is a (weighted) average of r observations,
so that its variance is approximately D,/r, where D, is a constant that does not depend onr. The
volume of asphereof radiustin R™ isC,,t", where C,, isaconstant depending only on m. Then, for
g(x) > 0, theradius 1, of aneighborhood that is expected to contain (1+A)r points satisfies (1+A)r/n

=g (N_ )= g(X)C,z," and the random radius T, of a neighborhood that contains exactly r points

satisfiesET , < 1, + D,/r = D,(r/n)Y™ + D,/r for some constant D,. Suppose for the moment that we
omit the D, term. Then, the first-order-condition for minimizing the sum of variance and squared
biasisDy/r, = (D,/m)r,-n?™ which impliesthat the optimal r, is proportional to n??™, Substituting
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thisinto the formulafor the bias shows that at this rate the D, term becomes negligible relative to
the D, term, justifying itsomission. Finally, whenr, is proportional to n?*™, the M SE declines at
the rate n2@m,

The common rate 2™ gt which MSE declines for the "best" nearest neighbor and kernel
estimators of a Lipschitz nonparametric regression isin fact the maximum rate found by Stone for
a problem of m dimensions with Lipschitz 6 that has no further known smoothness properties.
Hence the rates above for the number of neighbors and for bandwidth are also "best”. Note that for
m even moderately large, the rate of decline of MSE isagonizingly slow. When m =8 for example,
to reduce M SE by afactor of 10, it isnecessary to increase sample size by afactor of 100,000. This
Isthe curse of dimensionality in action. The only way to circumvent this problem isto assume (and
justify the assumption) that 6 is differentiable to high order, and use this in constructing the
nonparametric estimator, or to assume that 6 depends only on low-dimensional interactions of the
variables, e.g., 0 isasum of functions of the variables taken two at atime.

Asymptotic Normality

Returning to the general family of locally weighted estimators, we look for conditions, in
addition to those guaranteeing consistency, that are sufficient to establish that the nonparametric
estimator is asymptotically normal. The following theorem gives a genera result; the added
conditions are (iv) and in (vi), strengthened conditions (b) and (c), and new conditions (d)-(f):

Theorem 2. Assume (i) g(x) has a convex compact support B < R™; (ii) 6(x) satisfies a
Lipschitz property [8(x’) - 6(x)| < L|x" - x| for al x’,x € B; (iii) the conditiona variance of
t(y,x) given x, denoted Q(x), satisfies Q, < Q(X) < Q,, where Q_ and Q, are finite positive
definitematrices; (iv) E, | t(y.x) - 6(x)|* < A|Q(x)|**for some constant A; (v) arandom sample
i =1,..,nisobserved; and (vi) asn- +~ thelocal weightsw,; satisfy

n

@ Y Er Wil(XiXyiXp) = O

i=1

-12

(b) ( 2 E W (- X () {E{Xi} lewni(x;x X ) = 1} -0

-1/2

E{ x} .

n
| Wi (Xi Xy, X) [ X = X[~ O
i=1

(©) (2; E{xi}ani(X;Xl""’Xn)Q(Xi)

B D> W (6% X )P
(d) -0

: 32
Db Z; Wni(X;XI,...,xn)Z}
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n 2
{E{xi}z W OGX e X)X = X |}
i=1 .0

(€) .
E{Xi}; W (XX )2Q(X)]

N 2
{E{Xi}g W (XXX ) - 1} .

) -
E{Xi}; W (%X, X YZQ()|

N 172
Then {E{X.Z Wni(x;xl,...,xn)ZQ(&)} {T.(x) - 0(X)} converges in distribution to N(O,1).
=1

Proof: We make use of the following central limit theorem, which is a corollary of the
Lindeberg-Feller theoremfor triangul ar arrays; see Serfling (1980, 1.9.3, Corollary, p. 32): For each
n, let ¢, for i < n be independent random variables with mean zero, finite variances ¢,,%, and for

n n vi2 n n 172
somev > 2, (Z EgniV) / (Zcﬁi] ~ 0. Then, (chi) / ( oﬁi] -4 N(O,1).
i=1 i-1 i=1 i=1

|
Assumethat T, (x) isascalar, or el se consider afixed linear combination of components. Define

i = W, [t(Y;,X;) - 0(x)]; then for each n, the {,; areindependent with finite variances 6,2 = w,,?Q(X,).

3/2
2
Opi

2

iz:; E{xi}WniSQ(Xi”a/Z) / (IEE E{xi}WniQ(Xi)

Hypotheses (iv) and (vi), (d) imply

M-

D> By 9 100 —em?’) ’ [

I
[y

32
<A

n 32

n

2
Z; E{xi}‘Wni\g] / (X; E Wi
i= i=

< A ]71€,])

Finally, consider the scaled bias term

-1/2
[ Ey T -00)]

[ 2:1: E{xi}aniQ(Xi)
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-1/2

{ zlj E o Wal0(x) - 6(3)] + e(x)[; B Wy - 1]} .

= (X; E{Xi}w,ﬁg(&)

This convergesto zero by (vi), (e) and (f). Then, the limiting distribution has mean zero. =

Consider the"best" kernel and nearest neighbor estimators. Theassumptionson theseestimators
made in the discussion of consistency and best rates, along with assumptions(i)-(v) in Theorem (ii),
are sufficient to establish (vi), (8)-(d). These in turn are sufficient to establish consistency and
asymptotic normality, but possibly with anon-zero mean. A deviceintroduced by Herman Bierens
allows one to get this asymptotic mean to zero while preserving the "best" rate. | will explain the
trick for anearest neighbor estimator. Supposer, = Dn?®™ andr,’ = 2™, are two cutoff numbers
for nearest neighbor estimation, both growing at the"best" rate, where D issome constant. Let T,(x)
and T, (x) bethe corresponding estimators. Sincer,’ >r,, theestimator T,'(x) will havealarger bias
and a smaller variance than T (x). Now consider an estimator T*(x) = 2T, (x) - T,'(x). This
estimator is also alocally weighted estimator, with weights that are the { 2,-1} linear combination
of theweightsfor thetwo original estimators. It iseasy to check that these weights satisfy the same
propertiesin Theorems 1 and 2 asdo the original weights, so that T* (x) isconsistent for 6(x). These
combined weightsincrease at the "best" rate V"™, sothat T* (x) isagain a"best" estimator. Recall
from the discussion of optimal rates that except for terms that are negligible in large samples, the
bias for anearest neighbor estimator with r = Cn?@™ pointsis proportional to (r/n)Y™ = CYmp e,
For T,(x), C = D, whilefor T,'(x), C = 2"D. Therefore, except for higher-order terms, the biasin
T*(x) is proportional to 2DY™n Y@M - (2MD)UmMn ™ = 9 Then, thereis a"best”" nearest neighbor
estimator that isasymptotically normal with mean zero. Theweightsfor the estimator T* (x) can be
interpreted as "higher order” weights that remove more bias; note that these weights are sometimes
negative. Thistrick has reduced bias, at the expense of increasing variance, since the variance of
T*(x) isgreater than that of T,(x), whileleaving the "best" rate unchanged. A similar device works
for kernel estimators, using ahigher-order kernel that isalinear combination of two kernelswhose
bandwidths differ by a multiplicative constant.

Exercise 4. Find the appropriate constants for a second-order kernel that removes asymptotic
bias from the estimator so that its asymptotic distribution is centered at zero.

5. SEMIPARAMETRIC ANALYSIS

Semiparametric methods provide estimates of finite parameter vectorswithout requiring that the
compl ete data generation process be assumed in afinite-dimensional family. By avoiding biasfrom
incorrect specification, such estimators gain robustness, although usually at the cost of decreased
precision. The most familiar semiparametric method in econometrics is ordinary least squares,
which estimates the parameters of alinear regression model without requiring that the distribution
of the disturbances be in afinite-parameter family. The recent literature in econometric theory has
extended semiparametric methods to avariety of nonlinear models. Four overlapping major areas
are models for censored duration data (e.g., employment duration); limited dependent variable
(partial observability) modelsfor discrete or censored data (e.g., employment status or employment
hours); models for data with (natural or intentional) endogenous sample selection (e.g., wage
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determination among self-selected workers, or case-control sampling); and models for additive
non-parametric effects. The following table summarizes some applications.

Model Applications

Regression and Single Index Models for Employment Duration, Innovation

Censored Duration Data: Y |x = Y |X'f Lags, Mobility

Limited Dependent Variable Models Discrete: Employment Status,

(E.g., Discrete response or censored response) Brand Choice

Y =x'B - ¢, &e|x ~F(), Censored: Employment Hours,

observability transformation Y = ¥(Y") Expenditure Levels

E.g., Discrete: Y = sgn(Y"), Censored: Y = Min(Y®,Y")

Endogenous Sample Selection Natural: Self-selected Workers,

Y =x'B-e e[x~f(), x~qg(), Self-selected Homeowners

Natural: (Y ,x) observed iff Y >0

Intentional: (Y ,x) sampled iff Y >0 Intentional: Case-Control Sample
_ Designs

P(Y x|Obg) = f(Y-x'B)g(x)1(Y>0)

[ [ fy-2Bo@adyd

P(Y |x,0bs) = f(Y-x'B)/ fy; fly-x'p)dy

Additive Non-Parametric Effects: Y = x'B + H(z) + & Robust policy analysis

In most cases, the primary focus of semiparametric analysis is estimation of coefficients of
covariates that index the location of the distribution of a dependent variable; then, the unknown
distributionisa(infinite-dimensional) nuisance parameter. There are also applicationswhere some
functional of theunknown distribution, such asthe expectation of the dependent variabl e conditioned
on covariates, is of primary interest. The final objective may be point estimates or confidence
intervals for the objects of interest, or hypothesis tests involving these parameters. Usually, it is
important to have measures of precision for the estimates of interest, including convergence rates,
asymptotic distributions, and bootstrap or other indicators of finite-sample precision and accuracy
of asymptotic approximations.

These noteswill not survey thefull range of semiparametric model sin econometrics, or develop
the properties of semiparametric estimator except for illustrative cases. A good survey of the
foundations of semiparametric analysis can be found in Powell (1994). These notes will instead
survey two areas of application. Thefirst is the analysis of censored employment duration data,
perhaps the leading case of applied semiparametric work. The second is the analysis of data on
stated willingness-to-pay for natural resources.

Censored Employment Duration
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The main focus of the literature on employment duration has been the effect of covariates such
as sex, race, age, and education on the hazard of leaving ajob. Data on employment duration is
typically censored because employment spellsstart beforeapanel study isinitiated (and the start date
may not be recovered accurately using retrospective questions) and/or continue past the end of the
panel study, or because of attrition from the panel. Inthischapter, we consider only right-censoring
beforetheend of aspell. Parametric analysisof the duration problem hastypically used exponential
or Welbull survival curves, or the Cox proportional hazards model, which qualifies as one
semiparametric formulation.

Horowitz and Newmann (1987) make perhapsthefirst empirical application of semiparametric
censored regression methods to data on employment duration. To provide some context for the
economic application, consider the hazards that may lead to termination of a spell of employment.
First, termination may be initiated either by the employee (quits), or the employer (layoffs,
separations). The quit decision of an employee is presumably influenced by nonpecuniary job
features(e.g., safety, variety, and work rules), wage opportunity cost, and worker characteristicssuch
as education, race, and loyalty. The termination decision of the firm isinfluenced by the expected
productivity of the worker, net of wages. The worker’s job-specific human capital influences both
wage opportunity cost and expected productivity. Wage opportunity cost is also influenced by
expected unemployment insurance benefits and duration of unemployment. Macroeconomic and
product cyclesinfluence expected productivity. Several aspectsof thisdescription areimportant for
modeling employment duration:

1. Quits and separations are competing risks, with overlapping but not identical covariates.
Structural estimates of duration must distinguish these two hazards. Data on whether
employment spells end in quits would grestly aid identification and estimation of the separate
hazards.

2. Important covariates such as the level of macroeconomic activity and job-specific human
capital vary in elapsed or chronological time, so a structural model must accommodate
time-varying covariates. To do thisisfairly easy in discrete time using heterogeneous Markov
models, and quite difficult in continuous time.

3. Unobserved variables such as worker loyalty are heterogeneous in the population and are
selected by survival. Thus, it is necessary for structural modeling of duration to determine the
distribution of these unobservables. The presence of unobserved heterogeneity also selectsthe
subpopulation that start employment spells during the interval of observation. The
subpopul ation starting employment spells near the beginning of the observation interval will be
lessloyal onaveragethanall workers. Thosewhosefirst observed employment spell start comes
near the end of the observation period will be moreloyal on averageif the panel islong enough.
4. Inastructural model of employment duration, the hazard must depend solely on the history
of economic variables, and not directly on elapsed time. Thus, models that postulate a
reduced-form "baseline" hazard areremoving variation that must have astructural source. From
the standpoint of structural estimation of the economic determinants of duration, emphasis on
the effect of covariates with the baseline hazard treated as a nuisance parameter is misplaced.
5. Economic theory providesneither atight specification of functional formsor thedistributions
of unobservables; the assumption that observables enter in a parametric additive combination
must bejustified as an approximation. Consequently, analysesthat assume observables appear
Inan exact additive combination within unknown transformations or distributionsin fact assume
too much on the structure of the additive combination, and perhaps too little on the unknown
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transformations, which may be approximable to comparable accuracy using flexible
finite-parameter families.

The duration data generation process can be characterized by asurvival curve q(t|x) stating the
proportion of a population with spells starting at time zero who survive at elapsed timet, given an
observed covariate process x(+). If there are unobserved covariates & distributed in the initia

population with density v(-|x,0), and the "structural” surviva curve is q(t|x,£), then the data
generation process satisfies

D q(t|x) = f At/ x.8)v(E[x,0)dE.

—o0

The density of the unobserved covariates, conditioned on survival, is modified over time by
selection, satisfying

(2 V(E[X.D) = v(E[x,0)a(t|x,E)/q(t]x).

The survival curve can also be described by the hazard rate,

©) h(t|x.£) = - ViLn(q(t|x.£)).
The average hazard rate in the surviving population is

(@ hr (t]x) = - T.Ln(e(t] )

. ( f:“h(tx,g)q(tx,g)v(gx,O)da) qthx) = [ hitlxv(E|xtde
Equation (3) can be inverted to obtain
© atx8) =exp (-['nsxads) = e (-Alx) ;
with A(t|x,2) termed the integrated hazard. The mean duration of completed spellsis
(6) E(tx8)=- [~ tVatixgde= | altx et

with the second formula obtained using integration by parts.

When the observation interval is finite, some spells are interrupted or right-censored; the
survivor function defined up to the censoring point continues to characterize the data generation
process. The mean duration of all spells whether ended naturally (at t) or by censoring (at t°) is
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7) E(Min(t,t%)) = - fotc t V,g(t|x,E)dt + t°q(t°| x.£) = fotc q(t] x,&)dt.

Anaogous formulas hold for the average hazard rate.

With sample attrition, the censoring time becomes a random variable, with an associated
censoring survivor function r(t°|x,£). Then the probability that aspell is observed to extend to tis
q(t|x,&)r(t|x,&); the combined hazard rate for termination of an observed spell either naturally or by
censoringish(t|x,E) - r'(t|x,£)/r(t|x,&); for aspell ending at timet, the probability that it is censored
ish(t|x,)/(h(t|x,E) - r'(t|x,E)/r(t|x,&)); and the mean duration of observed spellsis

[ atxanxga

Anexampleof aparametric duration model whenx istime-invariant isthe Weibull model, which
Specifies

(8) q(t|x) = exp(-te*?),

with o a positive parameter, f avector of parameters, and x a vector of covariates. The associated
hazard rate is

9) h(t|x) = at**e*?
and the mean duration of completed spellsis
(10) E(t|x) = €I (1+ Vo),

where I" isthe gamma function. When a = 1, this simplifies to the exponential duration model.
There are three strategies for statistical inference of censored duration data:

1. The fully parametric approach, with q(t|x), or in the case of unobserved heterogeneity
q(t|x,€) and v(§|x,0), assumed to bein afinite-parameter family.'

14Typical examples are aWeibull or log-normal distribution for g(t|x), or an exponential distribution for q(t|x,&) combined
with agammadistribution for £. The parameters of the distribution can be estimated by maximum likelihood.
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2. The fully nonparametric approach, in which q(t|x) is estimated without parametric
restrictions, using for example a Kaplan-Meier estimator.™

3. The single-index semiparametric approach, in which q(t|x) depends on x through a scalar
function V(x,B) that is known up to afinite parameter vector 3, but g(t|v) is not confined to a
parametric family. In the case of unobserved heterogeneity, either q(t|v,&) or v(§|v,t) may be
nonparametric (but not both, without further restrictions, due to identification requirements).*

We survey some of the alternative semiparametric problems that have been discussed in the
literature. Let x be avector of covariates, assumed now to be time-invariant. Let 3 be avector of
unknown parameters, V(x,p) = X' be asingle index function known up to 8, and q(t|x'p) the
survivor function. Let T" bethe random variable denoting completed duration, and T¢ the censoring
time, so observed durationis T = Min(T",T¢). Four alternative modelsfor T are

1. Regressionmodel: LnT" =x'B + ¢, with &|x distributed with an unknown density f(e) with zero
mean. Thedensity f isoften assumed symmetric and homoskedastic. Thismodel yieldsthesurvivor
function
(11) q(t[x'B) =1-F(Lnt-x'p),
where F is the cumulative distribution function of f. The associated hazard rate is

(12) h(t|x'B) = f(Lnt - x'B)/t[1- F(Lnt - x'B)].

A generaized version of thismodel alows e to be heteroskedastic, with variance depending on the
index x'pB, or more generally on some other function of x. The censored regression model issimply

(23) LnT = Min(Ln T¢x'B+e);

Brhe dlassica Kaplan-Meier estimator isformulated for duration data without covariates. Suppose that in a data set spells
starting at a common time O are observed to end (naturally or by censoring) at timest, < ... <t;. Let n; denote the number that end
naturally at timet;, and let m; denote the number that are censored at thistime. The total number "at risk” at timet; isN; =

J
Z (ni+my). The Kaplan-Meier estimate of the hazard rate at t; is h* () = n/N;. A corresponding estimate of the survival
i

J
function is o* () = (1-h*(t))g* (t;.0), or g*(t) = (1-n/N;). In the presence of categorical covariates, the Kaplan-Meier
i-1
estimator obviously applies cell-by-cell for each configuration of the covariates. Using the nearest neighbor ideafrom
non-parametric regression, the Kaplan-Meier estimator can be adapted to the general case of non-categorical covariates. In the
case of unobserved heterogeneity, it is not possiblein general to identify the structural survivor functions and the density of the
unobserved covariates when both are non-parametric. Heckman and Singer (1984) establish this result, and also establish
semiparametric methods for estimation of a parametric structural survivor function g(t|x,&,8) in the presence of a non-parametric
heterogeneity density v(§|x,0).

80ther semi parametric approaches include multiple-index models and methods that parameterize quantiles without fully
parameterizing the distribution.
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it has the property in the case of non-stochastic censoring that
(14) E(LnT|x) = [[1- Fy-x'B)]ldy
Is an increasing function of x'p.

2. Transformation (Generalized Box-Cox) model: Suppose G isan unknown monotoneincreasing
transformation from (0,+) onto the real line, and assume

(15) G(T) =x'p +e¢,

with e|x distributed with a known or unknown density f(e). The associated survivor function is
(16) q(t[x’p) = 1- F(G(t) - x'P),

and the associated hazard rate is

17 h(t|x'B) = G'(OF(G(Y) - x'B)[1 - F(G(t) - x'B)].

Again, the model can be generalized to allow heteroskedasticity depending on x'f.

3. Projection Pursuit (singleindex) regression: Suppose H is a unknown transformation from
thered lineinto thereal line. Assume

(18) LnT =H(X'B) +e,

with e|x distributed with a known or unknown density f(e). The associated survivor function is
(19) q(t[x’p) =1- F(Lnt-H(x'B)),

and hazard rate is

(20) h(t|x'B) =f(Lnt- H(x'B))/t[1 - F(Lnt - H(X'B))].

Theerror distribution is usually assumed homoskedastic, but some estimatorsfor thismodel permit
heteroskedasticity depending on x'p.

4. Proportional Hazards model: Let h(t) be an unknown nonnegative "baseline hazard"
function, and assume the covariates exert a proportional effect on the hazard, so that

(21) h(t|x) = hy(t)exp(-x'p).
Define the integrated baseline hazard
(22) A ) = fot h,(s)ds.
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Then the survivor function is

(23) at/x'B) = exp[-A,H) e ) ,
and
(24) Ln A(T) =x'B +¢,

where ¢ has the extreme value cumul ative distribution function
(25) Fie)=1- expl-e) .

Other error distributions may result from a proportional hazards model with unobserved
heterogeneity. For example, following Lancaster (1979), assume

(26) h(t[x,) = hy(t)exp(-xB)E,

with & having agamma density, v(§|x,0) = £*e%/T'(0). Then, applying the relation (1),

@) at= (1 e e™0 )

whichimpliesthat (15) holdswith e having ageneralized logistic distribution (or, € having a Pareto
distribution),

(28) F(e) = 1- (1+€)”.
The average hazard for (26),
(29) h*(t|x) = 8hy®e™/ @™ + exb) |

is no longer of the proportional hazards form. The conditional distribution of the unobserved
covariatesgiven survival v(&| x,t) remains Gammawith parameter 6, but in the transformed variable

(1+e™0 Pye

The proportional hazards model (21) is a special case of the transformation model where the
disturbancehasthedistribution (25). The proportional hazardsmodel with heterogeneity (26) isalso
a specialization of the transformation model. When the baseline hazard varies with a power of t,
h,(t) = at**, (21) specializes to the parametric Weibull duration model, and also can be interpreted
as a censored regression model with extreme value distributed disturbances.
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FIGURE 1. SINGLE-INDEX MODELS

Observation Rules: T =Min(T¢,T") for right-censored data
T =sgn(Ln(T")) for binomial discrete response data

(Specificity Increases as Y ou Move Down the Table)

| CONDITIONAL DISTRIBUTION SINGLE-INDEX MODEL: T'|x = T

I
GENERAL ADDITIVE INDEX MODEL: G(T") =H(x'B) + ¢

e|X ~ F, F, G, H unknown with, e.g., F symmetric
I I

xB |

linear in x'p linear in Ln(T")
I I
TRANSFORMATION PROJECTION PURSUIT
MODEL REGRESSION
G(T)=xP+e Ln(T) =H(X'B) + ¢
I I
extreme value disturbances linear in x'B
I I
PROPORTIONAL HAZARDS CENSORED REGRESSION MODEL
MODEL
I I
constant hazard rate extreme value disturbance

I I
| PARAMETRIC WEIBULL DURATION MODEL|

A common "generalized additivesingle-index" model in which thefour modelsabove arenested
IS

(30) G(T) =H(X') +,
with e distributed with cumulative distribution function F. The associated survivor function is
(31) q(t|x'B) = 1 - K(G(T) - H(X')).

Figure 1 showsthelogical relationship between these models. All the models are special cases
of single-index sufficiency where the conditional distribution of the dependent variable depends on
covariates x solely through the index x'B. The proportional hazards model and the censored
regression model are logically distinct, except when both specialize to the common Weibull
parametric model. Both are specializations of the transformation model. The censored regression
model isaspecialization of the projection pursuit regression model. The transformation model can
be rewritten as a heteroskedastic projection pursuit model: If G(T") = x'B + & with G monotone

Page 131, Chapter 7-27



increasing, then Ln T" = H(x'B) + ¢, where H(x'B) = E,Ln G'(x'B + ¢), and { has the distribution
function F(G(exp(C + H(x'B)) - x'B), which in general is heteroskedastic.

The statistical issues that arise in application of these models are the (large sample and,
potentially, small sample) distributional properties of estimators that are available under various
assumptions, and the efficiency of alternative estimators. Most of thework to date has concentrated
on finding computationally feasible estimators, establishing consi stency and asymptotic normality,
and establishing asymptotic efficiency bounds.

Horowitz and Newmann use two estimators for the censored regression model, a quantile
estimator (Powell, 1986) and one-step semiparametric generalized |least squares estimator (SGLS)
(Horowitz, 1986). Other estimators that have been proposed for this problem include flexible
parametric approximation of thecumul ativedistribution function (e.g., Duncan, 1986, who considers
spline approximations--the "method of sieves'). Chamberlain (1986) and Cosslett (1987) have
established for the censored regression problem the existence of apositiveinformation bound onthe
parametric part. This suggests that the it is adequate to use relatively crude estimators of the
nonparametric part in order to achieve [n asymptotically normal estimation of the parametric part.
The Powell and Horowitz estimators have been shown |n asymptotically normal. Neither achieves
the information bound for i.i.d. errors, and in general neither is efficient relative to the other.

Estimation of the proportional hazards model with an unknown baseline hazard function has
been studied extensively; seeKaplanand Meier (1968), Cox (1972), Ka bfleisch and Prentice (1982),
and Meyer (1990). A particularly useful "semiparametric’ method for thismodel, applicable to the
case where duration ismeasured in "weeks", isto flexibly parameterize the baseline hazard; Meyer
(1990) shows this method is root-n asymptotically normal.

Estimators for the projection pursuit (single index) model have been proposed by Ichimura
(1987), Ruud (1986), Stoker (1986), and Powell, Stock, and Stoker (1989). TheIchimuraestimator
chooses 3 to minimize the conditional variance of Ln T given x'B, using a kernel estimator of the
conditional mean to form an estimate of the conditional variance. This estimator is consistent even
if the disturbances are heterogeneous in the index function, so it can aso be applied to the
transformation model. The Ichimuraestimator is n'? asymptotically normal, and has recently been
argued to achieve the semiparametric information bound for the homoskedastic projection pursuit
problem with normal disturbances. Itisamost certainly not efficient for the transformation model.
The Ruud and Stoker estimators rely on the fact that under suitable conditions the regression of Ln
T on x is proportional to f3; these are also |n asymptotically normal.

An estimator for the transformation model, applicable also to the proportional hazards model,
IS the maximum rank correlation method of Han (1987) and Doksum (1985).

Newey (1990) has established the asymptotic efficiency of some kernel and quantile estimators
for the censored regression model when error distributions are symmetric. The status of these
estimators under some other information conditions remains unresolved. A problem requiring
further work is construction of reliable and practical covariance estimators for the semiparametric
estimators. An interesting empirical question is whether the censored regression model or the
proportional hazards model s can be accepted as restrictions on the transformation model (and what
are appropriate and practical test statistics)?

Sated Willingness-to-Pay for a Natural Resource

A method for €liciting Willingness-to-Pay (WTP) for natural resources is a referendum
contingent val uation experiment: Survey respondents are asked if they are willing to pay an amount
b, where bisabid set by experimental design. Let d denoteadummy variablethatisonefora"Yes'
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response, zero otherwise. A sample of n observations are collected on (b,d) pairs, plus covariates
X characterizing the respondent. Suppose WTPisdistributed in the population asw = xp3 - €, where
¢ has a cumulative distribution function G(e) that isindependent of x. Then, Pr(d=1|x'B) = G(xp
- b), or

(32) d=G(xB - b) +e,

Suppose B and the function G are unknown. The econometric problem is to estimate B and, if
necessary, G, and usetheseto estimate ameasure of location of the distribution of WTP, conditional
on x or unconditional. Thisis an example of a projection-pursuit regression model.

Contingent valuation experiments are controversia because they are very sensitive to
psychometric context effects, such as anchoring that leads respondents who are unsure about their
preferencestotakethe offered bid asacuetothe"politically correct” range of values. Some subjects
also appear to misrepresent their responses strategically, giving extreme values that they would not
practically pay, but which express" protest” positions. Theseeffectsmake W TP estimatesimprecise,
and their connection to welfare economics tenuous.

Why do contingent val uation experiments use the referendum dlicitation format, rather than a
format in which subjects would be asked to give an open-ended WTP response? One answer isthat
the open-ended format produces a much higher non- response rate, so that the referendum method
reduces sel ection bias caused by non- response. Another isthat psychologically the referendum and
open-ended methods elicit quite different behaviors. Some argue that the referendum format is
closer to the voting mechanisms used elsewhere to make social decisions, and thereisavirtuein
mimicking this mechanism for socia decisions on natural resources.

One issue that enters the contingent valuation experimental design is the location of the bid
levelsb. Alternativesareto randomizeb, or to chooseb on agrid with aspecified mesh. Inpractice,
coarse meshes have been used, which limits the accuracy of semiparametric estimates. Let h(b|x)
be the density from which the bid level b isdrawn, given x. Since thisis chosen by experimental
design, it is known to the analyst.

Econometric analysis of referendum WTP data can use the fact that (32) is a binary response
model and asingle-index model (that is heteroskedastic, but with the heteroskedasticity depending
on the index). Then, available methods to estimate  are the Manski (1978) maximum score
estimator, the Cosslett (1987) semiparametric maximum likelihood estimator, the Ichimura (1986)
estimator that minimizes expected conditional variance, the Horowitz (1992) estimator that is a
smoothed version of maximum score, and the Klein-Spady (1993) estimator. The key result for the
binomial response model is that under some smoothness conditions, there are root-n consistent
estimators B, for B; i.e., nY*(B, - p) is asymptotically normal. A nonparametric estimator of G can
be obtained jointly with the estimation of 3, asin the Cosslett procedure, or by conventional kernel
methodsin asecond step after the f estimateis plugged into form theindex; it can be estimated only
at a nonparametric rate less than root-n.

Oneparticularly simpleestimator for theindex parameters  has been proposed for thisproblem
by Lewbel and McFadden (1997): Carry out aleast squares regression on the model,

(33) (d - L(b<0))/h(b;|x;) = xB + G

The authors show that the coefficients from this regression are consistent for 3, and are
asymptotically normal at an? rate. The estimates are not particularly efficient, but their simplicity
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makes them an excellent starting point for analysis of model specification and construction of more
efficient estimators.

Exercise 5. Provethat the estimator based on (33) isconsistent. Apply alaw of large numbers
to conclude that

Sl

X' (di - Ub<0))/h(by[x;) =, ExEpx X' (G(XxB-b) - 1(b<0))/h(b]x).

n
i=1
Then apply integration by parts to conclude that

Epjx X(G(XB-b) - 1(b<0))/h(b|x) = x- f i (G(xB-b) - 1)-db + x- fom G(xp-b)-db

=X’ fm b-G(xp-b)-db = x'xp.

From this conclude that the least squares coefficients converge to (Ex’'x)*(Ex’'xp) = .
Theauthors a so establish that the r-th moment of WTP, conditioned on x = x,,, can be estimated
consistently at aroot-n rate by

(349 M= (B) +1 3 (b+(xgx)p)™

di - 1((XiB>bi)
> (0,5 X)B|)
i-

n
i=1

The estimators (33) and (34) are good examples of statistical procedures for a semiparametric
problem that are "robust” in the sense that they do not depend on parametric assumptions on the
distribution of WTP, and provide an easily computed alternative to use of a kernel-type
nonparametric estimator.

6. SMULATION METHODSAND INDIRECT INFERENCE

Econometric theory hastraditionally followed classical statisticsin concentrating on problems
that yielded analytic solutions. This explains the emphasis on the linear model, and on asymptotic
approximations in situations where nonlinearities or other factors make exact sample analysis
intractable. Increased computational power, and better understanding of the uses and limitations of
numerical analysis, have greatly expanded the ability of econometricians to explore the
characteristics of the methods they use under realistic conditions. Theideaisstraightforward. The
economist can write down one or moretrial data generation processes, perhaps after aninitial round
of econometric analysis, and use these data generation processes to generate simulated or virtual
samples. If acomparison of areal sample with these virtual samples reveas inconsistencies, this
isevidencethat thetrial datageneration processisunrealistic. Conversely, if theeconometrician has
discovered the true data generation process, then the virtual samples generated from it should not
differ systematically from the real sample. Computers and Monte Carlo simulation methods come
in at the stages of drawing the virtual samples and comparing the real and virtua samples.

If the kinds of comparisons just described are done casually, without attention to statistical
properties, they can mislead the analyst. Traditional calibration exercises in economics and other
disciplines often suffer from this deficiency. However, it is possible to develop a statistical theory
to support these comparisons, and use this theory to consistently identify the real data generation
process, or good approximationsto it. In various manifestations, this theory has been developed by
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Hendry, Mizon, and Richard under the name encompassing, by Gourieroux and Monfort under the
name indirect inference, and by McFadden under the name simulation-assisted inference.

Consider two parametric families of data generation processes, H; containing models f(y| x,a)
for parameter vectorso inaset A, and H, containing models g(y|x,B) for parameter vectors  in a
set B. Both of these families have the same dependent variabley, and are conditioned on the same
explanatory variables x. 1t may be the case that one of these familiesis nested within the other; this
isthe situation in classical hypothesis testing where the null hypothesis (say H,) is a subset of the
universe (say H;), and the true data generation process is a member of H; and under the null a
member of H,. However, we will now consider more general situations where the two familiesare
not necessarily nested, and the true data generation process may not be in either.

Example. The family H; is the family of linear modelsy = xy + €, where x isa vector of
explanatory variables and € isanormal disturbance with variance 6°. Thisfamily is parameterized
by a’ = (y,6%). H,isthefamilyy =z +n, where zisavector of explanatory variablesand nisa
normal disturbance with variance )\?, parmeterized by B = (5,.%). The vectors x and z may have
some variables in common, but in the most general case will each contain some distinct variables
so that neither is contained (nested) within the other. y = o, + ¢ and the family H of linear models
y =z + 1, where x and z may have some variablesin common, but also contain distinct variables
corresponding to alternative theories of the determination of y. The families are said to be non-
nested when neither can be written as alinearly restricted case of the other.

A proximity measure between densitiesis the Kullback-Leibler Information Criterion (KLIC),

Krg(aB.X) = f log(f(y | x,a)/g(y|x,B))-f(y|x.c)dly.

The KLIC is always non-negative, and is zero only if f and g coincide. This measure depends on
exogenous variables x. We could alternately take its expectation with respect to x,

ng(a’ﬁ) = Efog(a’ﬁ’X)

and approximate this expectation by a sample average

ngn(oﬂB) =

1 ng(a’B’Xi)'
n

n
i=1
For the model g, define the pseudo-true value B(a) to bethe § € B that minimizes K (a,B), and

the conditional pseudo-true value B;.(a) to bethe € B that minimizes K ,(a.,f). Then, g(y|x,B«(a))
is the data generation processin the g family closest to f(y|x,a), and

‘Jf(a"B) = ng((l,Bf(U.))
is the proximity of f and the g € H, that isclosest to f. In an earlier chapter, where f(y|x,a,) was
identified as the true data generation process, we called g(y|X,Bs(,)) the least misspecified model
inH,. However, wewill now consider more general situations where the f family may not contain
the true data generation process.
Exercise 6. Inthelinear model example, Show that

log(f/g) = 0.5-{1og(\%/c?) - (y-xy)2c? + (y-28)2\3}
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= 0.5{log(A¥c?) - (y-xy)A(Uc? - 1A?) + 2(y-xy)(Xy-28)/A? + (xy-28)*/A\?},

and hence that K (o)) = 0.5{log(A%/c°) + 6?/A* - 1 + E(xy-z3)*/)%}. The pseudo-true valuesin the
model H, are the vaues B(a) that minimize K, (o). Show that the pseudo-true vaue for 6 is
(Ez'2)"Y(Ez’'x)y and the pseudo-truevaluefor A2isc? +y'{ Ex'x - (Ex'z)(Ez'2) *(Ez'x)}y. Show that
the minimum distance from f to H, is

J(a) =0.5log(1 + y'{EX'x - (Ex'2)(EZ'2)(EZ'X)}v/c?).
Thedistanceis zero if z can be written as alinear combination of the variablesin x

A model f(y|x,a) is said to encompass the family g if f can account for, or explain, the results
obtained with the g family. Operationally, this concept says the g family will fit similarly the
observed sample data and virtual data generated by the model f(y|x,a). If we define

b, = argmax; ay; | %:,B);

n

i-1
to be the maximum likelihood estimate from the family H, for the observed sample, and f(y|x,a)
encompasses H,, then b, should converge to the pseudo-true value B(a). Conversely, if b, - B(a)
converges to a non-zero limit, f(y|x,a) fails to encompass H,. This isthe same as saying that as
judged from the family H,, samples generated by the model f(y|x,a) look like samples generated by
the true data generation process.

Exercise 7. Inthe linear model example with n observations, write the models H; and H, asy
=Xy+eand y =25+ nrespectively. Show that the maximum likelihood estimates in the family
Hyared, = (Z2'2)*Z'yand 2> =y'[| - Z(Z'Z)*Z']y/n, and in the H; family arey, = (X'X)*X'y and
ol =y'[I - X(X'X)*X'y/n. Supposethemodel y = XB + ¢ with parameterso. istrue. Show that the
differences of the maximum likelihood estimatesin the H, family and the corresponding pseudo-true
values for this family, evaluated at a,, converge in probability to zero.

If f(y|x,a,) isthetrue datageneration process, then by definition it encompassesany other family
of models H,. It is possible for a member of H, to encompass the true data generation process
f(y|x,a,); this means that the member of g can generate data that looks like data drawn from
f(y|x,a,). Thiscould obviously happen if H, contains one or more models that are observationally
equivalent to f, but could also occur if H, contains models that are more "structural” than f so that
they potentially can explain the same phenomena as f, and more.

In the theory of tests of non-nested hypotheses, the setup is to have two families of data
generation processes, H; and H,, which are not nested, with thetrue datageneration process assumed
to bein one of the two families. Then, the family containing the true data generation process will
encompass the other, but not vice versa (except in the unidentified case where there are modelsin
either family that can mimic the true data generation process). Let a, be the maximum likelihood
estimator of a from themode f(y|x,a). Thenb, - B,(a,) convergesto zeroif and only f encompasses
g, and a, - B4,(b,) convergesto zero if and only if gencompasesf. These observationsform thebasis
for practical test statisticsfor non-nested hypotheses; see Pesaran (1987) and Gourieroux & Monfort
(1994). Theseideas also form the basis for an estimation method called indirect inference, or ina
more general but lessfocused form, method of simulated moments: If thefamily H, containsthetrue
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datageneration processf(y|x,a,), thenthismodel encompasses g and one hasb, - ;,(c,,) converging
to zero if a,, converges to o, and with an assumption of identifiability, to a non-zero limit if a,
converges to something other than o,,. Then, choosing o, to makeb, - B;,(a,,) small will under some
regularity conditions make these estimators consistent for «,,. The reason to consider these indirect
estimates, rather than direct maximum likelihood estimates of o from the model f(y|x,a), isthat the
true model may be very complex or very difficult to work with computationally. For example,
f(y|x,a) may involve a complex structural model, or may involve probabilities that require
high-dimensional numerical integration to evaluate. Then, the indirect inference may utilize a
simpler family of models H, that are easier to compute or more "robust”. For example, g may be a
reduced form model and indirect inference may involve choosing structural parameters so that their
transformation to reduced form parameters gives the same values as direct | east squares estimation
of the reduced form. Or, indirect inference may utilize aselect list of moment conditions that you
are confident hold in the population. The reason simulation methods enter isthat the practical way
to calculate B;,(a,,) isto use Monte Carlo methods to draw virtual samples from the data generation
process f(y| x,a) for varioustrial o, and select a,, to minimize the distance between the estimator b,
from the observed sample and estimators b,(a) obtained from a virtual sample from f(y|x,a) by
estimating § by maximum likelihood estimation applied to thisvirtual sample. Becausethisprocess
can aso be interpreted as matching the "moments’ b, from the virtua sample with simulated
"moments’ b, (o) from the simulated virtual sample by varying o, it is also called the method of
simulated moments.

Encompassing is a limited concept when comparing the true data generation process with an
aternative, since thetrue data generation processwill encompass any alternative model. However,
it becomes more general and more interesting under two circumstances: (1) the true data generation
process may fail to lie in either H; or H,, or (2) the results from H; and H, are based on limited
information, such as GMM estimatesthat rely on specific orthogonality conditions, rather that afull
parametric specification of adatageneration process. Then, encompassing can be auseful approach
to model selection.

Wewill not attempt to provide any general introduction to simulation and Monte Carlo methods
in these notes. However, there afew key concepts that are important enough to introduce at this
stage. First consider the problem of drawing a virtual sample from the data generation process
f(y|x,a) for atrial value of a. Consider the simplest case when y is one-dimensiona. The
corresponding CDF U = F(Y |x,a) has a uniform distribution, and a Monte Carlo draw of y for
observationiisy = F*(u|x;,), where u; isadraw from auniform distribution. Thisisapractical
method of drawing a realization of a random variable if F* can be determined analytically or
efficiently evaluated numerically. When it isimpractical to calculate F*, one may be able to use
Monte Carlo Markov Chain (MCMC) methods. A Metropolis-Hastings (MH) sampler for f(y|x,a)
is defined by a conditiona density q(y’|y,x) chosen by the analyst and kernel w(y,y’,x) =
Min{a(y’|y.x), fy’ |x,a)-a(y|y’ x)/f(y|x,a)}. Thiskernel is associated with atransition processin
which y’ is sampled from q(y’|y,x), then the process moves to y’ with probability p(y,y’,x), and
otherwise stays at y, where p(y,y’,x) = Min{ 1,q(y|y’ . x)-f(y’ |x,a)/q(y’ |y,x)-f(y|X,0)}. A simple
choicefor q(y’|y,x) isadensity q(y’) independent of y and x from which it is computationally easy
to draw and which has the property that f(y|x,a)/q(y) is never too large, a key determinant of the
efficiency of the sampling process. The MH sampler is a generalization of what are called
acceptance/r g ection methods.

The Metropolis-Hastings sampler starts from an arbitrary point, and proceeds recursively.
Suppose at step t-1, the draw is y** and f,, = f(y"!|x,0)). Draw y’ from the conditional density
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q(|y"), and defineq,, = q(y'|y™) and q.,=q(y"*|y’), Calculatea(y™y’) = Min{1,q,{/q..f..} . Draw
auniform [0,1] random number {. If { < p(y*™y’,X), set y' = y’; otherwise, set y' = y**. Onceitis
“burned in”, the sequence y' behaves like a sample drawn from f(-|x,a)). Note that the termsin the
sequence are not statistically independent. When one needs to form expectations with respect to
f(y|x,a), these can be approximated by means over the y* draws.

In indirect inference or method of simulated moments, one searches iteratively for parameter
values that satisfy some criterion, such as minimizing the distance of b, - B, (o) from zero, using
simulation to approximate B;,(a). It isimportant in doing this that the ssmulated value of B,(a),
considered as a function of o, have a property called stochastic equicontinuity. Informally, this
means that the simulator does not "chatter" as o varies. The way to accomplish thisisto keep the
Monte Carlo drawsthat drivethe simulation fixed asa changes. For example, when avirtual sample
fromf(y|x,u) isdrawn by theinversemethody” = F*(u| x,a.), keepingtheuniformly distributed draws
u fixed asa is varied does the job.

Further reading on simulation methods and indirect inference can befoundin M cFadden (1989),
Gourieroux & Monfort (1994), and Hajivassiliou & Ruud (1994).

7. THE BOOTSTRAP

Theideafundamental to all of statistical inferenceisthe principlethat a statistical sampleforms
an analogy to the target population, and to estimate the results of an operation on the target
population, one can complete the analogy by carrying out the same operation on the statistical
sample. Thus, the samplemean isanal ogousto the popul ation mean, and hence has decent statistical
propertiesasan estimate of the popul ation mean. Manski (1994) shows how this principle can guide
the construction of estimators.

Extending the analogy principle, if one is interested in the relationship between a target
population and a given sample drawn from this population, one could form an analogy by starting
from the given sample, drawing subsamples from it, and forming anal ogous relationships between
the original sample and the subsamples. When the subsampl es are drawn with replacement and are
the same size as the original sample, thisis called the bootstrap.

Toillustrate the operation of the bootstrap, suppose you have an estimate a,, of the parameter in
adatageneration processf(y| x,a), obtained from asample of sizen from the target population. Y ou
would like to know the variance of the estimator a,. Notethat thisisa property of therelationship
between the population and the sample that could in principle be determined by drawing repeated
samples from the population, and estimating the variance of a, from the repeated samples. The
bootstrap idea is to start from the observed sample, draw repeated subsamples from it (with
replacement), and complete the analogy by forming the estimator a' for each subsample, and
computing the sample variance of these estimators. The bootstrap process is computationally
intensive, because it involves the subsampling process and the computation of a’, repeated many
times. Under very general regularity conditions, the analogy principle applies and the estimate of
thevarianceof a, formedinthisway will havegood statistical properties. Specificaly, the bootstrap
estimate of the variance of a, will have the same properties as the first-order asymptotic
approximation to the variance, without the effort of determining anaytically and computing the
asymptotic approximation. Further, the bootstrap estimator will under some conditions pick up
higher order effects, so that it isabetter finite sample approximation that the first-order asymptotic
approximation. In particular, if the expression being studied has a limiting distribution that is
independent of the parameters of the problem, as for example when one is interested in the finite
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sample distribution of the ratio of a parameter estimate to its standard error which has a limiting
T-distribution, the bootstrap will be more accurate for finite samplesthat the first-order asymptotic
approximation. A statistic with the last property is called pivotal.

Bootstrap methods can often be used to estimate the distribution of statistics, for purposes of
estimating moments or critical levels, in situations where asymptotic analysis is intractable or
tedious. The bootstrap is itself one member of a broad class of techniques called resampling
methods. Therearevariouspitfallsto beavoided in application of resampling methods, and avariety
of shortcutsand variantsthat can speed cal cul ation or makethem moreaccurate. For further reading,
see Efron & Tibshirani (1993), Hall (1994), and Horowitz (1999).
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