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Economics 240B, Second Half                                                             Daniel McFadden © 1999

CHAPTER 1.  DISCRETE RESPONSE MODELS

1. INTRODUCTION  

When economic behavior is expressed as a continuous variable, a linear regression model
is often adequate to describe the impact of economic factors on this  behavior, or to predict this
behavior in altered circumstances.  For example, a study of food expenditures as a function of price
indices for commodity groups and income, using households from the Consumer Expenditure
Survey, can start by modeling indirect utility as a translog function and from this derive a linear in
logs regression equation for food expenditures that does a good job of describing behavior.  This
situation remains true even when the behavioral response is limited in range (e.g., food consumption
of households is non-negative) or integer-valued (e.g., college enrollment by state), provided these
departures from a unrestricted continuous variable are not conspicuous in the data (e.g., food
consumption is observed over a range where the non-negativity restriction is clearly not binding;
college enrollments are in the thousands, so that round-off of the dependent variable to an integer
is negligible relative to other random elements in the model).  However, there are a variety of
economic behaviors where the continuous approximation is not a good one.  Here are some
examples:

(1) For individuals:  Whether to attend college; whether to marry; choice of occupation; number
of children; whether to buy a house; what brand of automobile to purchase; whether to migrate,
and if so where; where to go on  vacation.

(2) For firms:  Whether to build a plant, and if so, at what location; what commodities to
produce; whether to shut down, merge or acquire other firms; whether to go public or private;
whether to accept union demands or take a strike.

For sound econometric analysis, one needs probability models that approximate the true data
generation process.  To find these, it is necessary to think carefully about the economic behavior, and
about the places where random factors enter this behavior.  For simplicity, we initially concentrate
on a single binomial (Yes/No) response.  An example illustrates the process:  

Yellowstone National Park has been overcrowded in recent years, and large user fees to control
demand are under consideration.  The National Park Service would like to know the elasticity
of demand with respect to user fees, and the impact of a specified fee increase on the total
number of visitors and on the visitors by income bracket.  The results of a large household survey
are available giving household characteristics (income, number of children, etc.), choice of
vacation site, and times and costs associated with vacations at alternative sites.  Each vacation
is treated as an observation.

Start with the assumption that households are utility maximizers.  Then, each household will have
an indirect utility function, conditioned on vacation site, that gives the payoff to choosing this
particular site and then optimizing consumption in light of this choice.  This indirect utility function
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will depend on commodity prices and on household income net of expenditures mandated by the
vacation site choice.  It may also contain factors such as household tastes and perceptions, and
unmeasured attributes of sites, that are, from the standpoint of the analyst, random.  (Some of what
appears to be random to the analyst may just be heterogeneity in tastes and perceptions over the
population.)  Now consider the difference between the indirect utility of a Yellowstone vacation and
the maximum indirect utilities of alternative uses of leisure.  This is a function y* = f(z, ) of observed
variables z and unobserved variables .  We put a "*" on the utility difference y to indicate that is
latent rather than observed directly.  Included in z are variables such as household income, wage rate,
family characteristics, travel time and cost to Yellowstone, and so forth.  The form of this function
will be governed by the nature of indirect utility functions and the sources of .  In some applications,
it makes sense to parameterize the initial indirect utility functions tightly, and then take f  to be the
function implied by this.  Often, it is more convenient to take f to be a form that is flexibly
parameterized and convenient for analysis, subject only to the generic properties that a difference
of indirect utility functions should have.  In particular, it is almost always possible to approximate
f closely by a function that is linear in parameters, with an additive disturbance:  f(z, ) � x  - �,
where  is a k×1 vector of unknown parameters, x is a 1×k vector of transformations of z, and
� = -f(z, ) + Ef(z, ) is the deviation of f from its expected value in the population.  Such an
approximation might come, for example, from a Taylor's expansion of Ef in powers of (transformed)
observed variables z.
     Suppose the gain in utility from vacationing in Yellowstone rather than at an alternative site is
indeed given by y* = x  - �.  Suppose the disturbance � is known  to the household and unknown to
the econometrician, but the cumulative distribution  function (CDF) of � is a function F(�) that is
known up to a finite parameter vector.  The utility-maximizing household will then choose
Yellowstone if y* > 0, or � < x .   The probability that this occurs, given x, is 

P(� < x ) = F(x ).

Define y = 1 if Yellowstone is chosen, y = -1 otherwise; then, y is an (observed) indicator for the
event y* > 0.  The probability law governing observed behavior is then, in summary,

 P(y�x ) =  .
F(x ) if y � 1

1 � F(x ) if y � �1

Assume that the distribution of � is symmetric about zero, so that F(�) = 1 - F(-�); this is not
essential, but it simplifies notation.  The probability law then has an even more compact form,

P(y�x ) = F(yx ) .

How can you estimate the parameters ?  An obvious approach is maximum  likelihood.  The
log likelihood of an observation is

l( �y,x) = log P(y�x ) � log F(yx ) .

If you have a random sample with observations t = 1,...,T, then the sample log likelihood is



     1To be precise, iterated NLLS, with the  appearing in the weighting function replaced by the last iterate, will converge to the
MLE estimator; a single NLLS without weighting provides estimates of  that are consistent and asymptotically normal, but not
asymptotically efficient; and one iterate with weights calculated from a consistent estimator of  will be asymptotically equivalent
to MLE.
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LT( ) = log F(ytxt ) .�
T

t'1

The associated score and hessian of the log likelihood are

� LT( ) =  ytxt�F�(ytxt )/F(ytxt ) �
T

t'1

� LT( ) =  xt�xt{F�(ytxt )/F(ytxt ) - [F�(ytxt )/F(ytxt )]2} .�
T

t'1

A maximum likelihood program will either ask you to provide these formula, or will calculate them
for you analytically or numerically.  If the program converges, then it will then find a value of  (and
any additional parameters upon which F depends) that are (at least) a local maximum of LT.  It can
fail to converge to a maximum if no maximum exists or if there are numerical problems in the
evaluation of expressions or in the iterative optimization.  The estimates obtained at convergence
will have the usual large-sample properties of MLE, provided the usual regularity conditions are met,
as discussed later.

It is sometimes useful to write the score and hessian in a slightly different way.  Let d =
(y+1)/2; then d = 1 for Yellowstone, d = 0 otherwise, and d is an indicator for a Yellowstone trip.
Then, we can write 

l(y�x, ) = d�log F(x ) + (1-d)�log F(-x ). 
 

Differentiating this expression, and noting that F�(x ) = F�(-x ), we get
� l = xF�(x ){d/F(x ) - (1-d)/F(-x )} = w(x )�x�[d - F(x )],

where w(x ) = F�(x )/F(x )F(-x ).  The sample score is then 

� LT( ) =  w(xt )�xt��[dt - F(xt )] .�
T

t'1

The MLE condition that the sample score equal zero can be interpreted as a weighted orthogonality
condition between a residual [d - F(x )] and the explanatory variables x.  Put another way, a
weighted non-linear least squares (NLLS) regression dt = F(xt ) + t, with observation t weighted
by w(xt )½, will be equivalent to MLE.1

The hessian can also be rewritten using d rather than y:  � l = -x�x�s(x ), where s(x ) =

 - [d - F(x )] .  The  expectation of s(x ) atF�(x )2

F(x )F(�x )
F�(x )

F(x )F(�x )
�

F�(x )2(1�2F(x ))

F(x )2F(�x )2



     2We will see later that there are some more robust estimators, not as simple, that avoid having to place F in a parametric
family, or use a non-parametric estimate of F.  Sometimes assumptions on F are sufficiently problematic so this extra complexity
is worth the trouble.
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the true value o is  > 0, so that the sample sum of the hessians of the observations
F�(x o)

2

F(x o)F(�x o)

in sufficiently large samples is eventually almost surely negative definite in a neighborhood of o.
It should be clear from the sample score, or the analogous NLLS regression, that the

distribution function F enters the likelihood function in an intrinsic way.  Unlike linear regression,
there is no simple estimator of  that rests only on assumptions about the first two moments of the
disturbance distribution.2

2. FUNCTIONAL FORMS AND ESTIMATORS

In principle, the CDF F(�) will have a form deduced from the application; in many cases, this
form would naturally be conditioned on the observed explanatory  variables.  However, an almost
universal practice is to assume that F(�) has one of the following standard distributions that are not
conditioned on x: 

(1) Probit:  F is standard normal.
(2) Logit:  F(�) = 1/(1+e-g), the standard logistic CDF.
(3) Linear:  F(�) = �, for 0 � � � 1, the standard uniform distribution.
(4) Log-Linear:  F(�) = eg, for � � 0, a standard exponential CDF.

There are many canned computer programs to fit models (1) or (2).  Model (3) can be fit by
linear regression, although heteroscedasticity is an issue.  Model (4) is  not usually a canned program
when one is dealing with individual observations, but for repeated observations at each configuration
of x it is a special case of the discrete analysis of variance model that is widely used in biostatistics
and can be fitted using ANOVA or regression methods.  Each of the distributions above has the
property that the function s(x ) that appears in the hessian is globally positive, so that the log
likelihood function is globally concave.  This is convenient in that any local maximum is the global
maximum, and any stable hill-climbing algorithm will always get to the global maximum.  The linear
and log-linear distributions are limited in range.  This is typically not a problem if the range of x is
such that the probabilities are bounded well away from zero and one, but can be a serious problem
when some probabilities are near or at the extremes, particularly when the model is used for
forecasting.

The remainder of this section deals with some alternatives to maximum likelihood
estimation, and can be skipped on first reading.  Recall that MLE chooses the parameter vector  to
achieve orthogonality between the explanatory variables x, and residuals d - F(x ), with weights
w(x ).  When the explanatory variables are grouped, or for other reasons there are multiple responses
observed for the same x, there is another estimation procedure that is useful.  Let j = 1,...,J index the
possible x  configurations, mj denote the number of responses observed at configuration xj, and sj
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denote the number of "successes" among these responses (i.e., the number with d = 1).  Let pj =
F(xj o) denote the true probability of a success at configuration xj.  Invert the CDF to obtain cj =
F-1(pj) = xj .  Note that p = F(c) implies �c/�p = 1/F�(c) and �2c/�p2 = - F�(c)/F�(c)3.  Then, a Taylor’s
expansion of F-1(sj/mj) about pj gives

F-1(sj/mj) 
 = F-1(pj) +  - �  

sj/mj � pj

F�(F &1(pj))

(sj/mj � pj)
2

2

F�(F &1(qj))

F�(F &1(qj))
3

 = xj  + j + j , 

where qj is a point between pj and sj/mj, j = (sj/mj - pj)/F�(F
-1(pj)) is a disturbance that has expectation

zero and a variance proportional to pj(1-pj)/mj, and j is a disturbance that goes to zero in probability
relative to j.  Then, when the mj are all large (the rule-of-thumb is sj 	 5 and mj-sj 	 5), the
regression

F-1(sj/mj) = xj  + j

gives consistent estimates of .  This is called Berkson’s method.  It can be made asymptotically
equivalent to MLE if a FGLS transformation for heteroscedasticity is   made.  Note however that in
general this transformation is not even defined unless sj is bounded away from zero and mj, so it does
not work well when some x’s are continuous and cell counts are small.  Note that Berkson’s
transformation in the case of probit is -1(sj/mj); in the case of logit is log(sj/(mj-sj)); in the case of
linear is sj; and in the case of the exponential model is log(sj/mj).  It is a fairly general proposition
that the asymptotic approximation is improved by using the transformation F-1((sj+0.5)/(mj+1)) rather
than F-1(sj/mj) as the dependent variable in the regression; for logit, this minimizes the variance of
the second-order error.

There is an interesting connection between the logit model and a technique called normal
linear discriminant analysis.  Suppose that the conditional distributions of x, given d = 1 or given
d = 0, are both multivariate normal with respective mean vectors µ1 and µ0, and a common
covariance matrix .  Note that these assumptions are not necessarily very plausible, certainly not
if some of the x variables are limited or discrete.  If the assumptions hold, then the means µ0 and µ1

and the covariance matrix  can be estimated from sample averages, and by Bayes law the
conditional distribution of d given x when a proportion q1 of the population has state d = 1 has a logit
form

P(d=1�x) =  =  ,
q1n(x�µ1, )

q0n(x�µ0, ) � q1n(x�µ1, )
1

1 � exp(� �x )

where  = -1(µ1-µ0) and  = µ1�
-1µ1 - µ0�

-1µ0 + log(q1/q0).  This approach produces a fairly robust
(although perhaps inconsistent) estimator of the logit parameters, even when the normality
assumptions are obviously wrong.

3. STATISTICAL PROPERTIES OF MLE

The MLE estimator for most binomial response models is a special case of the general setup
treated in the statistical theory of MLE, so that the incantation "consistent and asymptotically normal



Page 6, Chapter 1-6

(CAN) under standard regularity conditions" is true.  This is a simple enough application so that it
is fairly straightforward to see what these "regularity" conditions mean, and verify that they are
satisfied.  This is a thought exercise worth going through whenever you are applying the maximum
likelihood method.  First, here is a list of fairly general sufficient conditions for MLE to be CAN in
discrete response models; these are taken from McFadden "Quantal Response Models", Handbook
of Econometrics, Vol. 2, p. 1407.  Commentaries on the assumptions are given in italics.

(1) The domain of the explanatory variables is a measurable set X with a probability p(x).  This
just means that the explanatory variables have a well-defined distribution.  It certainly holds if
the domain (support) of X is a closed set, and p is a continuous density on X.

(2) The parameter space is a subset of 
k, and the true parameter vector is in the interior of this
space.  This says you have a finite-dimensional parametric problem.  This assumption does not
require that the parameter space be bounded, in contrast to many sets of assumptions used to
conclude that MLE are CAN.  The restriction that the true parameter vector be in the interior
excludes some cases where CAN breaks down.  This is not a restrictive assumption in most
applications, but it is for some.  For example, suppose a parameter in the probit model is
restricted (by economic theory) to be non-negative, and that this parameter is in truth zero.
Then, its asymptotic distribution will be the (non-normal) mixture of a half-normal and a point
mass.

(3) The response model is measurable in x, and for almost all x is continuous in the  parameters.
The standard models such as probit, logit, and the linear probability  model are all continuous
in their argument and in x, so that the assumption holds.  Only pathological applications in
which a parameter determines a "trigger level" will  violate this assumption.

(4)  The model satisfies a global identification condition (that guarantees that there is at most one
global maximum; see McFadden, ibid, p. 1407).  The concavity of the log likelihood of an
observation for probit, logit, linear, and log linear models guarantees global identification,
provided only that the x’s are not linearly dependent.

(5) The model is once differentiable in the parameters in some neighborhood of the true values.
This is satisfied by the four CDF from Section 2 (provided parameters do not give observations
on the boundary in the linear or log linear models where probabilities are zero or one), and by
most applications.  This is weaker than most  general MLE theorems, which assume the log
likelihood is twice or three times  continuously differentiable.

(6) The log likelihood and its derivative have bounds independent of the parameters in some
neighborhood of the true parameter values.  The first derivative has a Lipschitz property in this
neighborhood.  This property is satisfied by the four CDF, and any CDF that are continuously
differentiable.
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(7) The information matrix, equal to the expectation of the outer product of the score of an
observation, is nonsingular at the true parameters.  This is satisfied automatically by the four
CDF in Section 2, provided the x’s are not linearly dependent.

The result that conditions (1)-(7) guarantee that MLE estimates of  are CAN is carried out
essentially by linearizing the first-order condition for the estimator using a Taylor’s expansion, and
arguing that higher-order terms than the linear term are asymptotically negligible.  With lots of
differentiability and uniform bounds, this is an easy argument.  A few extra tricks are needed to carry
this argument through under the weaker smoothness conditions contained in (1)-(7).

4. EXTENSIONS OF THE MAXIMUM LIKELIHOOD PRINCIPLE

The assumptions under which the maximum likelihood criterion produces CAN estimates
include, critically, the condition (2) that the parametric family of likelihoods that are being
maximized include the true data generation process.  There are several reasons that this assumption
can fail.  First, you may have been mistaken in your assumption that the model you have written
down includes the truth.  This might happen in regression analysis because some variable that you
think does not influence the dependent variable or is uncorrelated with the included variables
actually does belong in the regression.  Or, in modeling a binomial discrete response, you may
assume that the disturbance in the model y* = x  - � is standard normal when it is in truth logistic.
Second, you may deliberately write down a model you suspect is incorrect, simply because it is
convenient for computation or reduces data collection problems.  For example, you might write
down a model that assumes observations are independent even though you suspect they are not.  This
might happen in discrete response analysis where you observe several responses from each economic
agent, and suspect there are unobserved factors such as tastes  that influence all the responses of this
agent.  

What are the statistical consequences of this model misspecification?  The answer is that this
will generally cause the CAN property to fail, but in some cases the failure is less disastrous than one
might think.  The most benign situation arises when you write down a likelihood function that fails
to use all the available data in the most efficient way, but is otherwise consistent with the true
likelihood function.  For example, if you have several dependent variables, such as binomial
responses on different dates, you may write down a model that correctly characterizes the marginal
likelihood of each response, but fails to characterize the dependence between the responses.  This
setup is called quasi-maximum likelihood estimation.  What may happen in this situation is that not
all the parameters in the model will be identified, but those that are identified are estimated CAN,
although not necessarily with maximum efficiency.  In the example, it will be parameters
characterizing the correlations across responses that are not identified.  Also fairly benign is a
method called pseudo-maximum likelihood estimation, where you write down a likelihood function
with the property that the resulting maximum likelihood estimates are in fact functions only of
selected moments of the data.  A classic example is the normal regression model, where the
maximum likelihood estimates depend only on first and second moments of the data.  Then the
estimates that come out of this criterion will be CAN even if the pseudo-likelihood function is
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misspecified, so long as the true likelihood function and the pseudo-likelihood function coincide for
the moments that the estimators actually use.

More tricky is the situation where the likelihood you write down is not consistent with the
true likelihood function.  In this case, the parameters in the model you estimate will not necessarily
match up, even in dimension, with the parameters of the true model, and there is no real hope that
you will get reasonable estimates of these true parameters.  However, even here there is an
interesting result.  Under quite general conditions, it is possible to talk about the "asymptotically
least misspecified model", defined as the model in your misspecified family that asymptotically has
the highest log likelihood.  To set notation, suppose f(y�x) is the true data generation process, and
g(y�x, ) is the family of misspecified models you consider.  Define 1 to be the parameters that
maximize

Ey,x f(y�x)�log g(y�x, ).

Then, 1 determines the least misspecified model.  While 1 does not characterize the true data
generation process, and the parameters as such may even be misleading in describing this process,
what is true is that 1 characterizes the model g that in a "likelihood metric" is as close an
approximation as one can reach to the true data  generation process when one restricts the analysis
to the g family.  Now, what is interesting is that the maximum likelihood estimates b from the
misspecified model are CAN for 1 under mild regularity conditions.  A colloquial way of putting
this is that MLE estimates are usually CAN for whatever it is they converge to in probability, even
if the likelihood function is misspecified.

All of the estimation procedures just described, quasi-likelihood maximization,
pseudo-likelihood maximization, and maximization of a misspecified likelihood function, can be
interpreted as special cases of a general class of estimators called generalized method of moment
estimators.  One of the important features of these estimators is that they have asymptotic covariance
matrices of the form -1 �-1, where  comes from the hessian of the criterion function, and  comes
from the expectation of the outer product of the gradient of the criterion function.  For true maximum
likelihood estimation, this form reduces to -1, but more generally the full form -1 �-1 is required.

One important family of quasi-maximum likelihood estimators arises when an application
has a likelihood function in two sub-vectors of parameters, and it is  convenient to obtain preliminary
CAN estimates of one sub-vector, perhaps by maximizing a conditional likelihood function.  Then,
the likelihood is maximized in the second sub-vector of parameters after plugging in the preliminary
estimates of the first sub-vector.  This will be a CAN procedure under general conditions, but it is
necessary to use a formula of the form -1 �-1 for its asymptotic covariance matrix, where 
includes a contribution from the variance in the preliminary estimates of the first sub-vector.  The
exact formulas and estimators for the terms in the covariance matrix are given in the lecture notes
on generalized method of moments.

5. TESTING HYPOTHESES

It is useful to see how the general theory of large sample hypothesis testing plays out in the
discrete response application.  For motivation, return to the  example of travel to Yellowstone Park.
The basic model might be binomial logit,
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P(y�x ) = F(yx ) = 1/(1 + exp(-yx )),

where x includes travel time and travel cost to Yellowstone, and family income, all appearing
linearly:

x  = TT� 1 + TC� 2 + I� 3 + 4,

with TT = travel time, TC = travel cost, I = income.  The parameter 4 is an intercept term that
captures the "average" desirability of Yellowstone relative to alternatives after travel factors have
been taken into account.  The Park Service is particularly concerned that an increase in Park entry
fees, which would increase overall travel cost, will have a particularly adverse effect on low income
families, and asks you to test the hypothesis that sensitivity to travel cost increases as income falls.
This suggests the alternative model

x  = TT� 1 + TC� 2 + I� 3 + 4 + 5�TC/I,

with the null hypothesis that 5 = 0.  This hypothesis can be tested by estimating the model without
the null hypothesis imposed, so that 5 is estimated.  The Wald test statistic is the quadratic form (b5

- 0)�V(b5)
-1(b5 - 0); it is just the square of the T-statistic for this one-dimensional hypothesis, and it

is asymptotically chi-square distributed with one degree of freedom when the null hypothesis is true.
When the null hypothesis is non-linear or of higher dimension, the Wald statistic requires retrieving
the covariance matrix of the unrestricted estimators, and forming the matrix of derivatives of the
constraint functions evaluated at b.  An alternative that is computationally easier when both the
unrestricted and restricted models are easy to estimate is to form the Likelihood Ratio statistic
2[LT(b) - LT(b*)], where b and b* are the estimates obtained without the null hypothesis and with
the null hypothesis imposed, respectively, and LT is the sample log likelihood.  This statistic is
asymptotically equivalent to the Wald statistic.  Finally, the Lagrange Multiplier statistic is obtained
by estimating the model under the null hypothesis, evaluating the score of the unrestricted model at
the restricted estimates, and then testing whether this score is zero.  In our example, there is a slick

way to do this.  Regress a normalized residual  [dt - F(xtb)]/ from the restrictedF(xb)F(�xb)

model on the weighted explanatory variables  x� F�(xb)/ . that appear in theF(xb)F(�xb)

unrestricted model.  The F-test for the significance of the explanatory variables in this regression is
asymptotically equivalent to the Lagrange Multiplier test.  The reason this trick works is that the
Lagrange Multiplier test is a test of orthogonality between the normalized residual and the weighted
variables in the unrestricted model.

6. MULTINOMIAL RESPONSE

Conceptually, it is straightforward to move from modeling binomial response to modeling
multinomial response.  When consumers or firms choose among multiple, mutually exclusive
alternatives, such as choice of brand of automobile, occupation, or plant location, it is natural to
introduce the economic agent’s objective function (utility for consumers, profit for firms), and
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assume that choice maximizes this objective function.  Factors unobserved by the analyst,
particularly heterogeneity in tastes or opportunities, can be interpreted as random components in the
objective functions, and choice probabilities derived as the probabilities that these unobserved
factors are configured so as to make the respective alternatives optimal.

Suppose there are J alternatives, indexed C = {1,...,J}, and suppose the economic agent seeks
to maximize an objective function U(zi,s, i), where zi are observed attributes of alternative i, s are
characteristics of the decision maker, and i summarizes all the unobserved factors that influence the
attractiveness of alternative i.  Then, the multinomial response probability is

     PC(i�z,s) = Prob({ �U(zi,s, i) > U(zi,s, i) for j � i}),

where z = (z1,...,zJ).  For example, if C = {1,...,J} is the set of automobile brands, with zi the
attributes of brand i including price, size, horsepower, fuel efficiency, etc., then this model can be
used to explain brand choice, or to predict the shares of brands as the result of changing prices or
new model introductions.  If one of the alternatives in C is the "no purchase" alternative, the model
can describe the demand for cars as well as brand choice.  If C includes both new and used
alternatives, then it can explain replacement behavior.  If i  C identifies a portfolio of two brands,
or one brand plus a "no purchase", it can explain the holdings of two-car families.  

Placing U in a parametric family and making  a random vector with a parametric probability
distribution produces a parametric probability law for the observations.  However, it is difficult to
do this in a way that leads to simple algebraic forms that do not require multivariate integration.
Consequently, the development of  multinomial response models has tended to be controlled by
computational issues,  which may not accommodate some features that might seem sensible given
the economic application, such as correlation of unobservables across alternative portfolios that have
common elements.

The simplest multinomial response model is multinomial logit (MNL), which has a closed
form

PC(i�z,s) = exp(xi )/ exp(xj ),�
j0C

where xi is a vector of known functions of zi and s.  This model is derived from the maximizing
framework above by assuming U(zi,s, i) = xi  + �i, with the �i independently identically distributed

with the special CDF ), termed the Type I  extreme value distribution.  exp(�e
&gi

The likelihood of observation n from a MNL model for choice from C is

ln = din�log(PCn(i)), �
i0C

where PCn(i) = /  , and din =1 indicates choice and djn = 0 for non-chosene
xin �

k0C
e

xkn

alternatives.  The gradient, or score, is



     3 A step size adjustment may speed convergence or avoid "overshooting" that could interfere with convergence.
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sn = � ln = din�[xin - xkn�PCn(k)] �
i0C

�
k0C

 = [din - PCn(i)]�xin. =  [din - Pcn(I)]�xiCn�
i0C

�
i0C

where xCn = PCn(i)�xin. �
i0C

The score has the interpretation of requiring orthogonality in the sample between the explanatory
variables xin and the residuals din - PCn(i).  The hessian, or information matrix, is

Hn = -� ln = PCn(i)�[xin - xCn]�[xin - xCn]�, �
i0C

The matrix Hn is positive semi-definite, and the expectation of Hn will be positive definite so long
as the xin are not linearly dependent.  This assures that the log likelihood function is concave.

Consider the sample log likelihood LN = ln.  Any parameter vector that sets the sample�
N

n'1

score to zero will also be a global maximum, and standard iterative  maximization by a procedure
like Newton-Raphson will converge to a global maximum.3  The Newton-Raphson iterative
adjustment in parameters will be 

 = sn �  xiCn�[din - PCn(i)],�
N

n'1
Hn

&1

�
N

n'1
�
N

n'1
�
i0C

PCn(i)�xiCnxiCn�
&1

�
N

n'1
�
i0C

where xiCn = xin - xCn � xin - PCn(i)�xin.  The adjustment  can also be interpreted as the�
i0C

estimates of the coefficients from a linear regression of [din - PCn(i)]/  on the variablesPCn(i)

�xiCn.  This has the same form as a Lagrange Multiplier test statistic, and one can writePCn(i)

down a criterion for convergence that is identical to a LM test of whether the last iterate of the
parameter vector is the true parameter vector.  (One would want to accept the hypothesis and stop
iterating only if there is very little probability of a type II error, accepting a false hypothesis.
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Therefore, the convergence criterion should use this LM statistic with a very large type I error, say
99.9%.)

One implication of the MNL model is that the ratio of the probabilities of two alternatives
i and j depends only on xi and xj, and not on the presence or properties  of other alternatives; i.e., 

PCn(i)/PCn(j) = .  This is called the Independence from Irrelevant Alternatives (IIA)e
(xin&xjn)

property.  This is a very restrictive property when xin depends only on attributes of alternative i for
each i.  It implies patterns of cross-elasticities of substitution that are implausible for many
applications.  For example, a MNL model of the multinomial choice of school for graduate study in
economics makes no allowance for the possibility that there may be unobserved factors shared by
several schools (e.g., the Northern California location of Berkeley and Stanford), so that
discrimination within this class (which we might call the "blue department" and the "red
department") is likely to be sharper than it is between one of these departments and an East Coast
department such as Princeton.  The IIA property is a powerful restriction which if true can greatly
simplify estimation and forecasting, and if false produces a misspecified model that can give
misleading estimates and forecasts.  The IIA property is not on its face particularly plausible, and
what is remarkable about the MNL model is that it often performs well in forecasting situations even
when IIA does not appear to be reasonable.  However, it is important to understand the consequences
of the IIA property of MNL, and to develop models for discrete response that can be used when IIA
is clearly invalid.

7. ALTERNATIVES TO THE MNL MODEL FOR MULTINOMIAL RESPONSE

As in the derivation of the MNL model, associate with alternative i in a feasible set C a
"payoff" ui = zi  + �i, which in the case of consumer choice may be the indirect utility attached to
alternative i and in the case of firm choice may be profit from alternative i.  The zi are observed
explanatory variables, and the �i are unobserved disturbances.  Observed choice is assumed to
maximize payoff:  yi = 1(ui 	 uj for j  C).  One form of this model is a random coefficients
formulation ui = zi , E  = , �i = zi(  - ), implying cov(�i,�j) = zi�Cov( )�zj� .  For C = {1,...,J},
define u, z, �, and y to be J×1 vectors with components uj, zj, �j, yj, respectively.  Define a (J-1)×J
matrix i by starting from the J×J identity matrix, deleting row i, and then replacing column i with
the vector (-1,...,-1).  For example, letting 1J-1 denote a (J-1)×1 vector of ones and IJ-1 denote an
identity  matrix of dimension J-1, one has  

1 = [-1J-1  IJ-1].

Then alternative i is chosen if iu � 0.  The probability of this event is

Pi(z, ) = Pr( iu � 0�z, ) � f(u�z, )du,�
iu#0

where f(u�z, ) is the conditional density of u given z. The parameters  include the slope parameters
 and any additional parameters characterizing the distribution of the disturbances �.  The

multivariate integral defining Pi(z, ) can be calculated analytically in special cases, notably
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multinomial logit and its generalizations.  However, for most densities the integral is analytically
intractable, and for dimensions much larger than J = 5 is also intractable to evaluate with adequate
precision using standard numerical integration methods.  Then, the four practical methods of
working with random utility models for complex applications are (1) use of nested multinomial logit
and related specializations of Generalized Extreme Value (GEV) models, (2) use of multinomial
probit with special factor-analytic structure to provide feasible numerical integration; (3) use of
multinomial probit with simulation estimators that handle high dimensions; and (4) use of mixed
(random coefficients) multinomial logit, with simulation procedures for the coefficients.

GEV Models
Assume that the indirect utility of i can be written ui = vi + �i with �i a disturbance and vi the

systematic part of utility, depending on observed variables and unknown parameters.  For example,
one might have vi = (y-ti) + xi, where y is income, ti is the cost of alternative i (including costs of
time), and �i is a part that varies randomly across consumers.  The terms ,  are parameters.  

The �’s have a joint CDF of generalized extreme value (GEV) form if

 F(�1,...,�J) = )), exp(�H(e
&g1 ,...,e

&gJ

where (i) H(w1,...,wJ) is a non-negative linear homogeneous function of w 	 0,  satisfying (ii) if any
argument goes to +�, then H goes to +�; and (iii) the mixed partial derivatives of H exist, are
continuous, and alternate in sign, with non-negative odd mixed derivatives.  A function H with
properties (i) - (iii) will be termed a GEV generating function. 
 

Theorem 1.  Suppose H(w) for w = (w1,...,wJ) is a GEV generating function.  Then, F(�) is a CDF
with Extreme Value Type I univariate marginals.  Further the random  utility model ui = vi + �i

with � distributed F(�) satisfies 

 E maxi ui = log ) + E,  H(e
v1 ,...,e

vJ

where E = 0.5772156649 is Euler’s constant, and the choice probabilities satisfy 

 Pi = �Hi ) .e
vi (e

v1 ,...,e
vJ )/H(e

v1 ,...,e
vJ

The linear function H = wi is a GEV generating function which yields the multinomial�
J

i'1

logit (MNL) model.  The following result can be used to build up complex choice models.  In this
theorem, the sets A and B are not required to be mutually exclusive.

Theorem 2. If sets A,B satisfy A�B = {1,...,J}, HA(wA) and HB(wB) are GEV generating functions
in wA and wB, respectively, and if s 	 1, then  H(w) = HA(wA

s)1/s + HB(wB) is a GEV generating
function in (w1,...,wJ).

One can use this theorem to show that a three-level nested MNL model is generated by a function
H of the form 
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 H =   , �
M

m'1
�
K

k'1
�

.

i0Amk

wi
sms )

k

1
sm

1

s )

k

where the Amk partition {1,...,J} and s�k,sm 	 1.  This form corresponds to a tree: m indexes major
branches, k indexes limbs from each branch, and i indexes the final twigs.  The larger s�k or sm, the
more substitutable the alternatives in Amk.  If s�k = sm = 1, this model reduces to the MNL model.
The GEV model is most efficiently estimated by MLE, but a convenient (and numerically relatively
stable) method of getting preliminary estimates is to proceed sequentially, starting at the innermost
nests.  At each level of nesting, choice can be represented by a MNL model, which will however
depend on parameters estimated from deeper levels of nesting.  Details of this estimation procedure
are given in McFadden (1984).

One interesting feature of GEV models is that they provide a convenient computational
formula for the exact consumers’ surplus associated with a policy that  changes the attributes of
alternatives.  Let vi� = (y-ti) +  xi� and vi� = (y-ti) +  xi�, where xi� is the vector of original
attributes and xi� is the vector of improved  attributes.  Then, the willingness-to-pay for the change
from x� to x� is

 WTP = �  .
1

log H(e
vO1,...,e

vOJ) � log H(e
vN1,...,e

vNJ)

This is the "log sum" formula first developed by Ben Akiva (1972), McFadden (1973), and
Domencich and McFadden (1975) for the multinomial logit model, and by McFadden  (1978, 1981)
for the nested logit model.  This formula is valid only when the indirect utility function is linear in
income.

The MNP Model
A density that is relatively natural for capturing unobserved effects, and the patterns of

correlation of these effects across alternatives, is the multivariate normal distribution with a flexible
covariance matrix.  This is termed the multinomial probit model.  If � = z , where  is interpreted
as a random variation in "taste" weights across observations with  ~ N(0, ), then the transformed
variable w = iu is multivariate normal of dimension J-1 with mean iz  and covariance iz z� i�.
Unless J � 5 or dimensionality can be reduced because  has a factorial covariance structure, the
resulting MNP response probabilities are impractical to calculate by numerical integration.  The
method of simulated moments was initially developed to handle this model; see McFadden (1989).

For dynamic applications (e.g., multiperiod binomial probit with autocorrelation), and other
applications with large dimension, alternatives to simulation of the MNP model with a unrestricted
covariance matrix may perform better.  McFadden (1984, 1989) suggests a "factor analytic" MNP
with a components of variance structure, starting from

ui = zi  + ik k + i i ,  �
K

k'1
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where 1,..., K, 1,..., J are independent standard normal, with the k interpreted as levels of
unobserved factors and the ik as the loading of factor k on alternative i.  The ’s are identified by
normalizations and exclusion restrictions.  The choice probabilities for this specification are

Pi(z, ) =  ( i)� ( k)�
%4

i'&4
�

%4

'&4
�
K

k'1

× �d id 1���d K�
júi (zj�zi) � �k[ jk� ik]� k � i i

j

Numerical integration (when K+1 < 5) or simulation methods can be used to approximate this
function and its derivatives for purposes of approximate maximum likelihood estimation.  If
simulation is used, two important rules should be followed:  First, the Monte Carlo draws used for
simulation should be made once and then frozen over the course of iterative search for parameters.
This avoids "chatter" that can destroy the statistical properties of simulation-based estimators.
Second, the number of simulation draws per observation should rise faster than the square root of
sample size.  This will assure that the simulation is asymptotically negligible, and cannot interfere
with the CAN properties of MLE.

Mixed MNL (MMNL)
Mixed MNL is a generalization of standard MNL that shares many of the advantages of

MNP, allowing a broad range of substitution patterns.  Train and McFadden (1999) show that any
regular random utility model can be approximated as closely as one wants by a MMNL model.
Assume ui = zi  + �i, with the �i independently identically Extreme Value I distributed, and  random
with density f( ; ), where  is a vector of parameters.  Conditioned on ,

Li(z� ) = /�j C .e
zi e

zj

Unconditioning on ,

Pi(z� ) = Li(z� )�f( ; )�d  . �
This model can be estimated by sampling randomly from f( ; ), approximating Pi(z� ) by an average
in this Monte Carlo sample, and varying  to maximize the likelihood of the observations.  Care must
be taken to avoid chatter in the draws when  varies.  The MMNL model has proved computationally
practical and flexible in applications.  It can approximate MNP models well, and provides one
convenient route to specification of models with flexibility comparable to that provided by MNP.

8. TESTS FOR THE IIA PROPERTY OF MNL

Alternatives to the MNL model may be derived from random utility models in which
subsets of alternatives have disturbances �in that are correlated, perhaps because of  common
unobserved attributes.  Common components of disturbances cancel out of the  determination
of choice within such a subset.  As a result, discrimination of differences in observed attributes



     4Hausman-McFadden, Econometrica, 1984.
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is sharper in a subset than overall; there is less random noise to blur discrimination.  Tests for
the presence of sharper discrimination in subsets is then a test of the IIA property of the MNL
model.

For any discrete response model, including but not limited to MNL, let sn denote the
score of an observation, and Hn the negative of the hessian for an observation.  A Taylor’s
expansion of the sample score about the maximum likelihood estimator establishes that in large
samples 

 b - o = ( Hn)
-1( sn) + O(N-1/2),  �

N

n'1
�
N

n'1

and the covariance matrix of b - o is approximately   = ( Hn)
-1,  where all expressions�

N

n'1

are evaluated at o.  In sufficiently large samples, b is  approximately normally distributed with
mean o and covariance matrix , and the quadratic form

 (b - o)� C
-1(b - o) = ( sn)�( Hn)

-1( sn) �
N

n'1
�
N

n'1
�
N

n'1

is approximately chi-squared distributed with degrees of freedom equal to the dimension of o.
This is a Wald test statistic for the null hypothesis that  = o.  It can also be applied to a
subvector of , with the commensurate submatrix of C

-1 in the center of the quadratic form, to
test the null hypothesis that this subvector takes on specified values.  

We describe a series of hypothesis testing procedures that can be interpreted as tests of
the IIA property of MNL.  We will show a connection between these statistics and conventional
test statistics for omitted variables.

Hausman-McFadden IIA Test:4

Estimate the MNL model twice, once on a full set of alternatives C, and second on a
specified subset of alternatives A and the subsample with choices from this subset.  If IIA holds,
the two estimates should not be statistically different.  If IIA fails, then there may be sharper
discrimination within the subset A, so that the estimates from the second setup will be larger
in magnitude than the estimates from the full set of alternatives.  Let A denote the estimates
obtained from the second setup, and A denote their estimated covariance matrix.  Let C denote
the estimates of the same parameters obtained from the full choice set, and C denote their
estimated covariance matrix.  (Some parameters that can be estimated from the full choice set
may not be identified in the second setup, in which case C refers to estimates of the subvector
of parameters that are identified in both setups.)  Consider the quadratic form 

 ( C - A)�( A - C)-1( C - A) .
This has a chi-square distribution when IIA is true.  In calculating this test, one must be careful
to restrict the comparison of parameters, dropping components as necessary, to get A - C



     5D. McFadden, "Regression based specification tests for the multinomial  logit model" Journal of Econometrics, 1987.
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non-singular.  When this is done, the degrees of freedom of the chi-square test equals the rank
of A - C.  The simple form of the covariance matrix for the parameter difference arises
because C is the efficient estimator for the problem.  

McFadden omitted variables test.5

Estimate the basic MNL model, using all the observations; let Pin = PCn(i) denote the
fitted model.  Suppose A is a specified subset of alternatives.  Create new variables in one of
the following three forms:

a. If xin are the variables in the basic logit model, define new variables  

 zin =  ,
xin � (�

j0A
Pjnxjn)/(�

j0A
Pjn) if i  A

0 if i � A

The variables zin can be written in abbreviated form as zin = iA(xin - xAn), where iA = 1 iff

i  A and xAn = Pjn*Axj and Pjn*A is the conditional probability of choice of j given�
j0A

choice from A, calculated from the base model.  

b. If Vin = xin  is the representative utility from the basic model, calculated at basic model
estimated parameters, define the new variable

 zin =  ,
Vin � (�

j0A
PjnVjn)/(�

j0A
Pjn) if i  A

0 if i � A

or more compactly, zin = iA(Vin - VAn). 

c. Define the new variable

 zin =  ,
log(Pin*A) ��

k0A
Pkn*Alog(Pkn*A) if i  A

0 if i � A

where Pin*A is calculated using the basic model estimates.

� The constructions b. and c. are the same.  The denominators of the probabilities in the
expression -log(Pin*A) that appears in the type c. variable drop out, leaving the terms in the
construction b.
� Estimate an expanded MNL model that contains the basic model variables plus the new
variables zin.  Then test whether these added variables are significant.  If there is  a single added
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variable, as in the construction b., then the T-statistic for this added variable is the appropriate
test statistic.  More generally, one can form a likelihood ratio statistic

 LR = 2    
Log Likelihood

with z )s
�

Log Likelihood

without z )s

If IIA holds, this likelihood ratio statistic has a chi-square distribution with degrees of freedom
equal to the number of added z variables (after eliminating any that are linearly dependent).

Properties:
� The test using variables of type a. is statistically asymptotically equivalent to the
Hausman-McFadden test for the subset of alternatives A.
� The test using variables of type b. is equivalent to a one-degree-of-freedom
Hausman-McFadden test focused in the direction determined by the parameters .  It will have
greater power than the previous test if there is substantial variation in the V’s across A.  It is also
asymptotically equivalent to a score or Lagrange Multiplier test of the basic MNL model
against a nested MNL model in which subjects discriminate more sharply between alternatives
within A than they do between alternatives that are not both in A.  One minus the coefficient
of the variable can be interpreted as a preliminary estimate of the inclusive value coefficient for
the nest A.
� If there are subset-A-specific dummy variables in the basic model, then some of  the omitted
type a. variables are linearly dependent upon these variables, and cannot be used in the testing
procedure.  Put another way, subset-A-specific dummy variables can mimic the effects of
increased discrimination within A due to common unobserved components.
� One may get a rejection of the null hypothesis either if IIA is false, or if there is some other
problem with the model specification, such as omitted variables or a failure of the logit form
due, say, to asymmetry or to fat tails in the disturbances.
� Rejection of the IIA test will often occur when IIA is false, even if the nest A does not
correctly represent the pattern of nesting.  However, the test will typically have greatest power
when A is a nest for which an IIA failure occurs.
� The tests described above are for a single specified subset A.  However, it is trivial to test the
MNL model against several nests at once, simply by introducing an omitted variable for each
suspected nest, and testing jointly that the coefficients of these omitted variables are zero.
Alternative nests in the test can be overlapping and/or nested.  The coefficients on the omitted
variables and their T-statistics provide some guide to choice of nesting structure if the IIA
hypothesis fails.



     6  Stratification may in itself be economical, permitting the contacting and interviewing of subjects at reduced cost.  In
addition, stratification may concentrate observations in areas yielding high information on the behavior of economic interest. 

     7  In this chapter, we will treat the data vector (z,y) as discrete.  There is no fundamental change if some components of (z,y)
are continuous; it is merely necessary to replace summations with integrals with respect to appropriate continuous or counting
measures.  There are additional technical assumptions required to assure measurability and integrability when some components
are continuous.
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CHAPTER 2.  SAMPLING AND SELECTION

1. INTRODUCTION 

Economic survey data are often obtained from sampling protocols that involve stratification,
censoring, or selection.  Econometric estimators designed for random  samples may be inconsistent
or inefficient when applied to these samples.  Several  strands in the econometrics literature have
investigated estimators appropriate to such data:  seminal papers of Heckman (1974) on sample
selection, and Manski and Lerman (1977) on choice-based sampling; further work on endogenous
stratification by Hausman and Wise (1977), Manski and McFadden (1981), Cosslett (1981), and
Hsieh, Manski, and McFadden (1984); and related work on switching regression by Goldfeld and
Quandt (1973, 1975), Madalla and Nelson (1974), and Lee and Porter (1984).  This chapter
synthesizes this literature, and provides machinery that can be used to crank out estimators for a
variety of biased sampling problems. 

When the econometrician can influence sample design, then the use of stratified sampling
protocols combined with appropriate estimators can be a powerful tool for maximizing the useful
information on structural parameters obtainable within a data collection budget.6  

The estimation problem facing an econometrician can be described, schematically, in terms
of a contingency table relating a vector of exogenous variables z and a vector of endogenous
variables y, as in the table below where each column and row corresponds to different values for the
vector of variables.  The joint distribution of (z,y) in the population is a probability   

(1)        p(z,y) � P(y�z, o)p(z) � Q(z�y)q(y),  

where P(y�z, o) is the conditional probability of the endogenous vector y, given the exogenous
vector z, defined as a member of a parametric family with true parameter  vector o; p(z) is the
marginal distribution of the exogenous variables, obtained by a row sum in the table; q(y) is the
marginal distribution of y, obtained by a column sum in the table; and Q(z�y) is the conditional
distribution of z given y, defined by Bayes law in equation (1).7  We identify P(y�z, o) as the
structural model of econometric interest; where by "structural" we mean that this conditional
probability law is invariant in different populations or policy environments where the marginal
distribution of z is altered.  A structural model will result if there is a stable causal relationship from



     8  The log likelihood of an observation is log P(y�z, ) + log p(z), and the kernel of this log likelihood is the part that depends
on the parameter vector .
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z to y, with no contemporaneous feedback from y to z.  One would expect this to be the case if z
describes the environment of an economic agent (e.g., prices, income) and y describes the agent’s
behavioral response (e.g., occupation choice, hours of labor supplied).  However, there are many
economic applications where it is a reasonable approximation for policy analysis to assume P(y�z, o)
is a “reduced form” with the needed invariance property, without invoking strict assumptions on
causality.

y1 y2 ..... yJ

z1 P(y1|z1, o)p(z1) P(y2|z1, o)p(z1) ..... P(yJ|z1, o)p(z1) p(z1)

z2 P(y1|z2, o)p(z2) P(y2|z2, o)p(z2) ..... P(yJ|z2, o)p(z2) p(z2)

: : : : :

zK P(y1|zK, o)p(zK) P(y2|zK, o)p(zK) ..... P(yJ|zK, o)p(zK) p(zK)

q(y1) q(y2) ..... q(yJ) 1

A simple random sample draws independent observations from the population, each with
probability law P(y�z, o)�p(z).  The kernel of the log likelihood of this sample depends only on the
conditional probability P(y�z, ), not on the marginal density p(z); thus, maximum likelihood
estimation of the structural parameters o does not require that the marginal distribution p(z) be
parameterized or estimated.8  In this sample, z is ancillary to o, and the observation that it can be
conditioned out without loss of information on o can be elevated to a general principle of statistical
inference (Cox and Hinckley, 1974). 

We next introduce a notation for stratified or biased samples.  Suppose the data are collected
from one or more strata, indexed s = 1,..., S.  Each stratum is characterized by a sampling protocol
that determines the segment of the population that qualifies for interviewing.  Define R(z,y,s) to be
the qualification probability that a population member with characteristics (z,y) will qualify for the
subpopulation from which the stratum s subsample will be drawn.  Examples of sampling protocols
and their characterizations in terms of qualification probabilities follow: 

1. Simple random subsample, with R(z,y,s) � 1. 

2. Exogenous stratified sampling, with R(z,y,s) = 1 if z  As for a subset As of the universe
Z of exogenous vectors, R(z,y,s) = 0 otherwise.  The set As might define a location, such as
a census tract, or a socioeconomic characteristic such as race.  The protocol for identifying
the qualified subpopulation under locational stratification is typically to enumerate the
response units at a location, and then sample randomly from this enumeration.  In the



     9  The inverse of the qualification factor is called the raising factor.
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contingency table, this corresponds to sampling randomly from one or more rows.  The
protocol for identifying the qualified subpopulation using a socioeconomic criterion is
typically a screening interview.  Exogenous stratified sampling can be generalized to
differential rates by permitting R(z,y,s) to be any function from (z,s) into the unit interval;
a protocol for such sampling might be, for example, a screening interview that qualifies a
proportion of the respondents that is a function of respondent age. 

3. Endogenous stratified sampling, with R(z,y,s) = 1 if y  Bs, with Bs a subset of the
universe of endogenous vectors Y, and R(z,y,s) = 0 otherwise.  The set Bs might identify a
single alternative or set of alternatives among discrete responses, such as the subpopulation
whose appliance and energy consumption choices include an air  conditioner. Alternately,
Bs might identify a range of a continuous response, such as an income category.  A classical
choice-based sample for discrete response is the case where each response corresponds to a
different stratum.  In Figure 1, endogenous sampling corresponds to sampling randomly from
one or more columns.  Endogenous samples with strata corresponding to single columns are
called pure choice-based samples.  Endogenous stratified sampling can be generalized to
qualification involving both  exogenous and endogenous variables, with Bs defined in general
as a subset of Z×Y.  For example, in a study of mode choice, a stratum might qualify bus
riders (endogenous) over age 18 (exogenous). It can also be generalized to differential
sampling rates, with a proportion R(z,y,s) between zero and one qualifying in a screening
interview. 

4. Sample selection/attrition, with R(z,y,s) giving the proportion of the population with
variables (z,y) whose availability qualifies them for stratum s.  For example, R(z,y,s) may
give the proportion of subjects with variables (z,y) that can be contacted and will agree to be
interviewed, or the proportion of subjects meeting an endogenous selection condition, say
employment, that qualifies them for observation of wage (in z) and hours worked (in y). 

The joint probability that a member of the population will have variables (z,y) and will qualify for
stratum s is R(z,y,s)�P(y�z, o)�p(z).  Then for stratum s, the proportion of the population qualifying
into the stratum, or qualification factor9,  is 

(2)       r(s) =   R(z,y,s)�P(y�z, o)�p(z),  �
z

�
y

and the conditional distribution of (z,y) given qualification is 

(3)       G(z,y�s) = R(z,y,s)�P(y�z, o)�p(z)/r(s).  

A sample from stratum s is governed by the probability law G(z,y�s).  Note that G(z,y�s) depends on
the unknown parameter vector  and on the distribution p(z) of the explanatory variables.  In simple



     10  Note that n(z,y�s)/ns is the empirical probability measure for a random sample of size ns from the population with law
G(z,y�s).  In the case of discrete variables with a finite number of configurations, the n(z,y|s) are simply cell counts.  Nothing is
changed for continuous variables, except that technically one must consider stochastic limits of empirical processes. 
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cases of stratification, such as Examples 1-3 above, R(z,y,s) is fully specified by the sampling
protocol.  The qualification factor r(s) may be known, for example when stratification is based on
census tract with known sizes; estimated from the survey, for example when qualification is
determined by a screening interview; or estimated from an auxiliary sample.  In case of attrition or
selection, R(z,y,s) may be an unknown function, or may contain unknown parameters. 

Suppose a random sample of size ns is drawn from stratum s, and let N = �sns denote total
sample size.  Let n(z,y�s) denote the number of observations in the stratum s subsample that fall in
cell (z,y).10  Then, the log likelihood for the stratified sample is 

(4)       L =    n(z,y�s)�Log G(z,y�s).  �
S

s'1
�

z
�

y

This likelihood does not include screening or auxiliary data on the qualification factors, which will
be informative if these factors are unknown. 

2. EXOGENOUS STRATIFIED SAMPLING 

When the qualification probability R(z,y,s) is independent of y, the qualification factor r(s)

=  R(z,s)p(z) is independent of o, and the log likelihood function (4) separates into the sum�
z

of a kernel 

(5)       L1 =    n(z,y�s)�Log P(y�z, )  �
S

s'1
�

z
�

y

and terms independent of .  Hence, the kernel is independent of the structure of exogenous
stratification.  This implies that estimators designed for random samples will have the same
properties in exogenously stratified samples.  The information matrix for the likelihood function
under exogenous stratification, 

(6)     J =  µs   P(y�z, o)�[� Log P(y�z, o)]�[� Log P(y�z, o)]�,
   �

S

s'1
�

z

R(z,s)p(z)
r(s) �

y

depends on the sample design.  Then, exogenous stratification can be used to increase the
information available in a sample of given size; this is precisely the objective of classical
experimental design. 
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3. ENDOGENOUS STRATIFICATION 

Suppose the qualification probability R(z,y,s) depends on y.  Then the qualification factor
(2) depends on o, and the log likelihood function (4) has a kernel depending in general not only on

, but also on the unknown marginal distribution p(z).  Further, any unknowns in the qualification
probability also enter the kernel.  There are four possible strategies for estimation under these
conditions: 

1. Brute force -- Assume p(z) and, if necessary, R(z,y,s), are in parametric families, and
estimate their parameters jointly with .  For example, in multivariate discrete data analysis,
an analysis of variance representation absorbs the effects of stratification, and allows one to
back out the structural parameters.  This approach is straightforward and needs no further
discussion for small problems, but is burdensome or infeasible when the Z variables have
many dimensions or categories, or are continuous. 
2. Weighted Exogenous Sample Maximum Likelihood -- This is a pseudo-maximum
likelihood approach which starts from the likelihood function appropriate to a random
sample, and reweights the data (if possible) to achieve consistency.  A familiar form of this
approach is the classical survey research technique of reweighting a sample so that it appears
to be random. 
3. Conditional Maximum Likelihood -- This approach pools the observations across strata,
and then forms the conditional likelihood of y given z in this pool.  This  has the effect of
conditioning out the unknown density p(z). 
4. Full Information Maximum Likelihood -- This approach estimates p(z)  nonparametrically
as a function of the remaining parameters, and substitutes to  concentrate the likelihood as
a function of the finite parameter vector.   

4. WEIGHTED EXOGENOUS SAMPLE MAXIMUM LIKELIHOOD (WESML) 

Recall that the kernel of the log likelihood for exogenous sampling is given by (5).  Suppose
now endogenous sampling with true log likelihood (4), and consider a pseudo- maximum likelihood
criterion based on (5),

(7)       W( ) =     n(z,y�s)�w(z,y,s)�Log P(y�z, ),  �
S

s'1
�

z
�

y

where w(z,y,s) is a weight introduced to achieve consistency.  Assume that ns/N � µs as N � �.
Then, using the notation “�as” to denote almost sure convergence,

(8)       n(z,y|s)/N � [n(z,y|s)/ns]�[ns/N]�as G(z,y|s)µs, 
 

implying from (3) that 
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(9)       W( )/N �as µs   G(z,y|s)�w(z,y,s)�Log P(y�z, )  �
S

s'1
�

z
�

y

=  p(z)�  { R(z,y,s)w(z,y,s)µs/r(s)}�P(y�z, o)�Log P(y�z, ). �
z

�
y

�
S

s'1

A sufficient condition for consistency of the pseudo-maximum likelihood estimator is that the
bracketed term, 

(10)                               R(z,y,s)w(z,y,s)ns/N�r(s)  �
S

s'1

be independent of y.  Suppose r(s) is consistently estimated by f(s), from government statistics,
survey frame data such as the average refusal rate, or an auxiliary sample.  Consider the weights
 

(11)                                w(z,y) = ;    �
S

s'1
R(z,y,s)ns/Nf(s)

&1

these are well-defined if the bracketed expressions are positive, and R(z,y,s) contains no unknown
parameters.  These weights do not depend on the stratum from which the observation is drawn, but
do depend generally on the endogenous variable y. 

When the qualification probabilities R(z,y,s) are strictly positive for all (z,y) and all strata,
and contain no unknowns, another set of possible weights is 

(12)      w(z,y,s) = 1/R(z,y,s).  

These can be interpreted as reweighting observations in inverse proportion to the  probability with
which they qualify from the population, and are precisely the weighting most commonly used in
classical survey research.  When the weights (11) and (12) are both feasible, the weights (11) are
more efficient.

A classical application of WESML estimation is to a sample in which the strata coincide with
the possible configurations of y, so that R(z,y,s) = 1(y = s).  In this case, w(z,y) = N�f(y)/ny, the ratio
of the population to the sample frequency.  Another application is to enriched samples, where a
random subsample (s = 1) is enriched with an endogenous subsamples from one or more
configurations of y; e.g., s  = y = 2.  Then, w(z,1) = N/n1 and w(z,2) = N�f(2)/[n1�f(2) + n2].

When the r(s) are known, and f(s) � r(s), the WESML estimator has an asymptotic
covariance matrix Jw

-1HwJw
-1, where 

(13)           Jw = - (µs/r(s))   w(z,y,s)R(z,y,s)P(y|z, o)p(z)� l ,  �
S

s'1
�

z
�

y
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(14)         Hw = µs
2  w(z,y,s)2[R(z,y,s)P(y|z, o)p(z)/r(s)]�[� l]�[� l]� - qs�qs� �

S

s'1
�

z
�

y
�

S

s'1

where l = log P(y|x, ) and 

qs =  µs w(z,y,s)�[R(z,y,s)�P(y|z, o)�p(z)/r(s)]� l, �
z

�
y

and l and its derivatives are evaluated at o.  These covariance terms come from a Taylor's expansion
of the first-order conditions for maximization of W( ), and can be estimated consistently by
replacing terms with their sample analogs. 

5. CONDITIONAL MAXIMUM LIKELIHOOD (CML) 

Pool the observations from the different strata.  Then, the data generation process for the pool
is 

          Pr(z,y) = G(z,y|s)ns/N,  �
S

s'1

and the conditional probability of y given z from this pool is 

          Pr(y|z) =  .  
�

S

s'1
G(z,y|s)ns/N

�
y

�
S|

s'1
G(z,y|s)ns/N

Substituting (3) yields a formula independent of p(z), 

(15)      Pr(y|z) =  .  
�

S

s'1
R(z,y,s)�P (y�z, o)�n s /N�r (s)

�
y

�
S

s'1
R(z,y,s)�P (y�z, o)�n s /N�r (s)

The CML estimator maximizes the conditional likelihood of the pooled sample in  and any
unknowns in R(z,y,s).  When r(s) is known, or one wishes to condition on estimates f(s) of r(s) from
auxiliary samples, (15) is used directly.  More generally, given auxiliary sample information on the
r(s), these can be treated as parameters and estimated from the product of the likelihood (15) and the
likelihood of the auxiliary sample. 
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For discrete response in which qualification does not depend on z, the formula (15)

simplifies to Pr(y�z) =  , where y = R(z,y,s)�ns/N�r(s) can be treated as an
P(y�z, o)� y

�
y

P(y�z, o)� y

�
S

s'1

alternative-specific constant.  For multinomial logit choice models, Pr(y�z) then reduces to a
multinomial logit formula with added alternative-specific constants.  It is possible to estimate this
model by the CML method using standard random sample computer programs for this model,
obtaining consistent estimates for slope parameters, and for the sum of log y and alternative-specific
parameters in the original model.  It remains necessary to use formulas for endogenous sampling to
estimate the asymptotic covariance matrix consistently.

For the previous example of an enriched sample, one has Pr(1�z) = P(1�z, o)�n1/N�D and
Pr(2�z) = P(2�z, o)�[n1/N + n2/N�r(2)]/D, where D = n1/N + P(2�z, o)�n2/N.  An example in a different
context shows the breadth of application of (15).  Suppose y is a continuous variable, and the sample
consists of a single stratum in which high income families are over-sampled by screening, so that
the qualification probability is R(z,y,1) =  < 1 for y � yo and R(z,y,1) = 1 for y > yo.  Then Pr(y�z)
= �P(y�z, o)/D for y � yo and Pr(y�z) = P(y�z, o)/D for y > yo, where D =  + (1- )�P(y>yo�z, o).

When the r(s) are known, the asymptotic covariance matrix of the CML estimator is
Jc

-1HcJc
-1, where 

(16)      Jc = - (µs/r(s))  R(z,y,s)P(y|z, o)p(z)� c ,  �
S

s'1
�

z
�

y

(17)     Hw = µs
2  [R(z,y,s)P(y|z, o)p(z)/r(s)][� c]�[� c] - qs qs�  �

S

s'1
�

z
�

y
�

S

s'1

where c = log Pr(y|z, ) and qs =  µs [R(z,y,s)P(y|z, o)p(z)/r(s)]� c, and c and its�
z

�
y

derivatives evaluated at o.  Note that the structure of this covariance matrix is the same as that for
WESML. 

6. FULL INFORMATION CONCENTRATED MAXIMUM LIKELIHOOD (FICLE) 

Formally, the likelihood (4) can be treated as a function of the unknown parameter vector ,
any unknown parameters in the qualification probabilities, and the unknown multivariate density
p(z), with this whole density treated as an unknown parameter, possibly infinite dimensional. This
is a semiparametric estimation problem, in which a finite parameter vector is to be estimated in the
presence of a possibly infinite-dimensional vector of nuisance parameters.  In some applications, this
can be done by direct formal maximization of the likelihood in p(z), given the remaining parameters,
yielding a concentrated likelihood function of the finite parameter vector. 
Let 
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(18)      L =    n(z,y�s)�Log G(z,y�s) �
S

s'1
�

z
�

y

+ s[r(s) -  R(z,y,s)P(z,y,s)p(z)] + o[1 - p(z)]  �
S

s'1
�

z
�

y
�

z

be a Lagrangian for the formal maximization problem.  Solving the first-order-condition for p(z)

yields 

(19)      p(z) = /  .  �
S

s'1
�

y
n(z,y�s) �

S

s'1
�

y
sR(z,y,s)�P(y�z, o) � o

Substituting (19) into (18), simplifying, and dropping terms independent of the unknowns, yields 

(20)    L1 =   n(z,y�s)�Log  �
S

s'1
�

z
�

y

R(z,y,s)�P.(y|z, )/r(s)

N ��
S|

s'1
s[�

y
R(z,y,s)�P.(y|z, ) � r(s)]

+  �  �
z

�
S

s'1
�

y
n(z,y�s)

�
S

s'1
s[r(s) ��

y
R(z,y,s)�P.(y�z, )]

N ��
S|

s'1
s[�

y
R(z,y,s)�P.(y|z, ) � r(s)]

A joint critical point of this concentrated function in  and the s gives the FICLE estimator.  Cosslett
(1981) has shown that estimators in this class are fully efficient.  Since this is a semiparametric
problem, Cosslett’s argument required calculation by variational methods of the least information
contained in the parametric part of the problem; this method in its general form provides what are
now called the Wellner efficiency bounds.  The asymptotic covariance matrix of the FICLE
estimators has the same general structure as the previous estimators, but the specifics are
complicated by the presence of the finite vector of nuisance parameters s.  For straightforward
response-based endogenous samples, with y used to define non-overlapping strata, the FICLE criteria
and the CML criteria can be manipulated  into almost the same form, with ns/Nf(s) and s/N
appearing in analogous positions and converging to the same limit.  

7. EXTENSIONS AND CONCLUSIONS

Both the WESML and CML estimators are computationally practical in a variety of
endogenous sampling situations, and have been widely used.  In general, neither estimator dominates
the other.  Monte Carlo experience is that the WESML estimator is more efficient when the weights
for different alternatives are nearly the same, and that CML is more efficient when the weights differ
substantially across alternatives.  The FICLE estimator has not been widely used.  
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When the population qualification factors r(s) are unknown, and consistently estimated by
f(s) obtained from auxiliary data, then the estimators described above are consistent.  However, in
computing the asymptotic covariance matrices of the estimators, it is necessary to take account of
presence of estimated quantities in estimation criterion.  This will in general contribute additional
terms to the asymptotic covariance matrix; see Newey and McFadden (1995).  A more efficient
procedure is to estimate the r(s) jointly using the sample and auxiliary data.  Hsieh, Manski, and
McFadden (1985) develop the procedures for doing this.

Extensions of the theory of endogenous sampling can be made to more complex
applications, and to more complex sources of auxiliary information, such as duration data (with
length-biased sampling) and endogenously recruited panel data,; see Lancaster and Imbens (1990)
and McFadden (1996).

8. SELECTION

There are a variety of econometric problems where dependent variables are discrete,
censored at lower or upper limits, or truncated or selected so they are not always observed.  It is often
convenient to model the behavior of such variables as the result of a two-stage process,

  ����    ����  ,
Exogenous

Variables

Latent

Dependent Variables

Observed

Dependent Variables

where there are intermediate unobserved (latent) variables that are in the first stage determined by
exogenous variables through a conventional linear model, and observed dependent variables that in
the second stage are determined by some non-linear mapping.  The structure of the first mapping,
the dimensionality of the latent variables, and the structure of the non-linear mapping can all be
varied to fit particular applications.  Historically, latent variable models come from psychometrics,
where both the mappings from exogenous variables to latent variables, and from latent variables to
observed dependent variables are linear, and the critical feature is that the dimensionality of the
latent variables is much lower than the dimensionality of the observed dependent variables.  A
classical psychometric application is to ability testing, where the observed dependent  variables are
responses to test items, and the latent variables are factors such as verbal, quantitative, and motor
abilities.  In their most general form, these are called Multiple-Indicator, Multiple Cause (MIMC)
models, and analysis of the mapping from latent to observed dependent variables is called factor
analysis.  An example of an economic application of MIMC models is the Friedman permanent
income hypothesis,  where the observed dependent variables are measured yearly incomes and there
is a single latent variable, permanent income.  These lecture notes will discuss the second major
application of latent variable models, to situations where the mapping from latent to observed
dependent variables is nonlinear, and the observed dependent variables are not necessarily
continuous.

A fairly general notation for a model with m latent variables for each observation unit is yj
*

= xj  + �j, where j = 1,...m.  This can be written more compactly in matrix notation as y* = X  + �,
where y*  
m is a m×1 vector of latent variables for one observation, X is a m×k array of
explanatory variables whose rows are the xj vectors,  is a k×1 vector of parameters, and � is a m×1
vector of disturbances with a multivariate density f(�� ) that contains additional parameters .  This
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notation can accommodate  parameters that differ across equations by introducing variables in each
xj in interaction with dummies for the different equations.  The observed dependent variables are
given by a mapping y = h(y*) that is in general nonlinear and many-to-one.  Some examples illustrate
the possibilities, and indicate the scope of possible applications: 

(1) y*  
1 and y = h(y*) =  generates a binomial response model.  An
�1 if y ( 	 0

�1 if y ( < 0

application might be to firms’ decisions to go bankrupt or stay in business, where y* is latent
expected profit; see also application (5) below.

(2) y*  
1 and y = h(y*) =  generates a censored data (Tobit) model.  An
y ( if y ( 	 0

0 if y ( < 0

application might be to expenditure on clothing in a one-week observation period, where zeros
are common. 

(3) y*  
1 and y = h(y*) =  , where NA means no observation is available and
y ( if y ( 	 c

NA if y ( < c

c is a constant, generates a truncated data model.  An application might be to competitive
(among buyers) auction prices for units of a good, where a transaction is observed only if a bid
exceeds a reservation price c.  In case y* < c, one may in one variant of this model observe x, and
in another variant observe nothing about x. 

(4) y*  
1 and y = h(y*) is given by y = i if i � y* < i+1 for i = 0,...,J, with  0 = -� and J+1 = +�,
where 1 to J are parameters.  This mapping generates an  ordered response or count model.  An
application might be to household choice of  number of children, or to wealth or income within
brackets established by the  questionnaire.

(5) y*  
2 and y = h(y*) =  has the following interpretation:   if y1
* 	 0,

(�1,y (

2 ) if y (

1 	 0

(�1,NA) if y (

1 < 0

then y1 = +1 is an indicator for this, and y2 = y2
* is observed. If y1

* < 0, then y1 = -1 is an indicator
for this, and y2 is not observed.  Variants may have x2 observed or not when y2 is unobserved.
An application is to bankruptcy decisions of the firm, where y1

* is expected profit and y2
* is

realized profit.  This is termed a bivariate selection model.
 

(6) y*  
m and y = h(y*) is a mapping from 
m into {1,...,m}, where y = i if yi
* 	 yj

*  for j � i.
This generates a multinomial response model in which the observed response corresponds to the
maximum of the latent variables.  An application might be to choice of occupation. 
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(7) y*  
m and y = h(y*) is a mapping from 
m into {-1,+1}m, with yj = +1 if yj
* 	 0, and yj = -1

otherwise.  This generates a multivariate binomial response model.  An application might be to
panel data on employment status. 

(8) y*  
m and y = h(y*) is a mapping from 
m into {0,1,2,...}m, with yj = kj for an integer kj if

ij � yi,j+1 < i,j+1.  This is a multivariate ordered response or count model.  An application is to
numbers of units purchased of each of m goods. 

Let A(y) denote the set of y* that map into observation y; this can be written as A(y) = h-1(y),
where h-1 denotes the inverse of the (possibly) many-to-one mapping h.  Then, the probability of an
observation can be written   

 g(y�X, , ) = f(y*-X � )dy*.�A(y)

The integral should be interpreted as extending over the dimensions where the condition y*  h-1(y)
gives a range of values.  In the Tobit example (2) above, y = 0 implies h-1(0) = (-�,0], and the integral
is over this interval.  However, y > 0 implies h-1(y) = y, and g(y�X, , ) = f(y-X � ) without
integration.  In the bivariate selection model (5), the observation (+1,y2) requires integration in one

dimension, g((+1,y2)�X, , ) = f(y1
*-x1 ,y2-x2 � )dy1

*, while the observation (-1,NA) requires�
%4

0

integration in both dimensions, g((-1,NA)�X, , ) =  f(y1
*-x1 ,y2

*-x2 � )dy1
*dy2

*. �
0

&4 �
%4

&4

Consider the log likelihood of an observation, l( , ) = log g(y�X, , ).  The score with respect
to the parameters  = ( , ) is

� l( , ) =  �A(y)
� logf(y (�X � ) �f(y (�X � )dy (

�A(y)
A(y)f(y (�X � )dy (

= E ;� logf(y (�X � )|y (h &1(y)

that is to say, the score of the observation y can be expressed as the conditional expectation of the
score of the latent variable model, conditioned on the event that the latent vector yields y.  If these
integrals can be evaluated analytically or numerically, then it is usually feasible to do maximum
likelihood estimation of the parameters.  Even when the integrals are intractable, it may be possible
to approximate them by simulation methods.

The basic latent variable model setup above can be extended in several ways.  For
time-series or panel data, X may contain variables determined by lagged latent variables.  If
disturbances are serially correlated, one confronts all the problems of identification, stationarity, and
consistent estimation that occur in conventional linear systems, plus additional problems of dealing
with initial conditions.  The leading author who has worked on these problems is Heckman.  The
latent variable model can also be extended to have a more full-blown simultaneous-equations form,
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with complex paths linking observed and latent variables, with a multiple-indicator, multiple-cause
structure.  Leading authors on MIMC models are Goldberger and Joreskog.

9. THE BIVARIATE SELECTION PROBLEM

An important economic application of latent variable models is to the problem of selection:
Who or what we can observe about economic agents is influenced by their behavior, so that our data
are not representative of the whole population.  Our analysis needs to correct for the effects of
selection if we are to make consistent inferences about the population.  A classic example of
selection occurs in the study of wages and hours worked of married women.  These variables are
observed only for women who are working, but the same economic factors that determine these
variables also influence the decision to work.  For example, an unobserved disturbance that gives
Mrs. Smith a higher-than-average potential wage and Mrs. Jones a lower than-average potential wage
is more likely to induce Mrs. Smith into the labor force than Mrs. Jones.  Then, a regression of wage
on family characteristics using data for workers will typically overestimate the potential wage of
non-workers.  The econometric analysis of this problem provides a good tutorial for a broad
spectrum of selection problems that arise because of economic behavior or because of survey design
(e.g., deliberate stratification).  

Consider a bivariate latent variable model with normal disturbances,

(21)                                                            y* = x  + � ,
w* = z  +  ,

where x and z are vectors of exogenous variables, not necessarily all distinct,  and  are parameter
vectors, again not necessarily all distinct, and  is a positive parameter.  The interpretation of y* is
latent desired hours of work, and of w* is latent log potential wage.  The disturbances � and  have
a standard bivariate normal distribution

(22)                                ~ N  ,
� 0

0
,
1

1

with zero means, unit variances, and correlation .

There is a nonlinear observation rule determined by the application that maps the latent
variables into observations.  A typical rule might be "Observe y = 1 and w = w* if y* > 0; observe y
= -1 and do not observe w when y* � 0".  This could correspond, for example, to an application
where the event of working (y = 1) or not working (y = 0) is observed, but actual hours worked are
not, and the wage is observed only if the individual works (y* > 0).  It is sometimes convenient to
code the discrete response as s = (y+1)/2; then s = 1 for workers, s = 0 for non-workers.

The event of working is given by a probit model.  The probability of working is P(y=1�x) =
P(� > -x ) = (x ), and of not working is P(y=-1�x) = P(� � -x ) = (-x ), where  is the standard
univariate cumulative normal.  This can be written compactly as

 P(y�x) = (yx ).



Page 32, Chapter 2-14

In the bivariate normal, the conditional density of one component given the other is
univariate normal, 

��  ~ N( ,1- 2) = �  1

1� 2

��

1� 2

and 

�� ~ N( �,1- 2) = � . 
1

1� 2

` � �

1� 2

The joint density can be written as the product of the marginal density of one component times the
conditional density of the other, 

(�, ) ~ ( )� �  = (�)� � .  1

1� 2

��

1� 2

1

1� 2

` � �

1� 2

The density of (y*,w*) can then be written

(23)                f(y*,w*) = ( )� �  
1 w (�z 1

1� 2

y (�x � (w (�z )/

1� 2

 = (y*-x )� �  .  
1

1� 2

w (�z � (y (�x )

1� 2

Now consider the log likelihood of an observation, l( , , , ).  In the case of a non-worker (y = -1
and w = NA), the density (23) is integrated over y* < 0 and all w*.  Using the second form in (23),
this gives probability (-x ).  In the case of a worker, the density (23) is integrated over y* 	 0.
Using the first form in (23)

(24)              el( , , , ) =   .

(�x ) if y � �1

1 ( w�z )�
x �

w�z

1� 2
if y � 1

The log likelihood can be rewritten as the sum of the marginal log likelihood of the  discrete variable
y and the conditional log likelihood of w given that it is observed, l( , , , ) = l1( , ) + l2( , , , ),
with the marginal component,

(25)                        l1( ) = log (yx ) ,

and the conditional component (that appears only when y = 1),
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(26)       l2( , , , ) = -log  + log ( )  + log  - log (x ) .
w�z

x �
w�z

1� 2

One could estimate this model by maximizing the sample sum of the full likelihood function l, by
maximizing the sample sum of either the marginal or the conditional  component, or by maximizing
these components in sequence.  Note that asymptotically  efficient estimation requires maximizing
the full likelihood, and that not all the parameters are identified in each component; e.g., only  is
identified from the marginal component.  Nevertheless, there may be computational advantages to
working with the marginal or conditional likelihood, at least in the first step of estimation.
Maximization of l1 is a conventional binomial probit problem, which can be done easily with many
canned programs.  Maximization of l2 could be done either jointly in all the parameters , , , ;
or alternately in , , , with the estimate of  from a first-step binomial probit substituted in and
treated as fixed.  The first case, maximization of l2 in all the parameters, provides estimates whose
variances are estimated by the inverse of the information matrix for l2.  The maximization of l2 with
an estimate of  substituted in requires use of the formula for the variance of a GMM estimator
containing an embedded estimator; see the lecture notes on this topic.  Neither of these procedures
is fully efficient, and the two methods cannot be ranked in terms of efficiency. 

When  = 0, the case of "exogenous" selection in which there is no correlation between the
random variables determining selection into the observed population and the level of the observation,
note that l2 reduces to the log likelihood for a regression with normal disturbances, implying that the
maximum likelihood estimates for  and  will be the OLS estimates.  However, when  � 0,
selection matters and regressing of w on z will not give consistent estimates of  and .

An alternative to maximum likelihood estimation is a GMM procedure based on the
moments of w.  Using the property that the conditional expectation of  given y = 1 equals the
conditional expectation of  given �, integrated over the conditional density of � given y = 1, plus
the property of the normal that d (�)/d� = -�� (�), one has

(27)         E{w�z,y=1} = z  + E{ �y=1} = z  + E{ ��} (�)d�/ (x ) �
%4

&x

= z  + � (�)d�/ (x ) �
%4

&x

= z  + (x )/ (x ) � z  + M(x ), 

where  =  and M(c) = (c)/ (c) is called the inverse Mill’s ratio.  (As a computational note, it is
much better when calculating M to use a direct approximation to this function, rather than taking the
ratio of computational approximations to  and .)  Further, using the relationship 
  
                                     E( 2��) = Var( ��) + {E( ��)}2 = 1 - 2 + 2�2, 
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and the integration-by-parts formula 

                      �2 (�)d� = - � �(�)d� = -c (c) + (�)d� = -c (c) + (c), �
%4

&c �
%4

&c �
%4

&c

one obtains

(28)            E{(w-z )2�z,y=1} = 2E{ 2�y=1} = 2 E{ 2��} (�)d�/ (x ) �
%4

&x

= 2 {1 - 2 + 2�2} (�)d�/ (x ) = 2{1 - 2 + 2 - 2x (x )/ (x )} �
%4

&x

= 2{1 - 2x (x )/ (x )} = 2{1 - 2x �M(x )}.

Then,

(29)     E  = E{(w-z )2�z,y=1} - [E{w-z �z,y=1}]2[w � z � E{w�z �z,y�1}]2|z,y�1

= 2{1 - 2x (x )/ (x ) - 2 (x )2/ (x )2}

= 2{1 - 2M(x )[x  + M(x )}. 

It is possible to go on and compute higher moments, using the recursion formula:  

µ(c,k, ) � E1(�>c)�(�- )k = (�- )k (�)d�  �
4

g'c

= -(c- )k-1 (c) - �µ(c,k-1, ) + (k-1)�µ(c,k-2, ).

A GMM estimator for this problem can be obtained by applying NLLS, for the observations with y
= 1, to the equation

(30)                        w = z  + M(x ) + ,

where  is a disturbance that satisfies E{ �y=1} = 0.  This ignores the heteroskedasticity of , but it
is nevertheless consistent.  This regression estimates only the product  � , but consistent
estimates of  and  could be obtained in a second step:  The formula for the variance of ,

(31)          V{ �x,z,y=1} = 2{1 - 2M(x )[x  + M(x )]},

suggests obtaining an estimate of 2 by regressing the square of the estimated residual, e
2, on one

and the variable M(x e)[x e + M(x e)], where e is the estimated parameter vector.  Then, the
estimated coefficients a and b in the regression

(32)                |2 = a + b{M(x e)[x e + M(x e)]} + 

provide consistent estimates of 2 and 2 2, respectively.
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The GMM estimator above is asymptotically inefficient because it fails to correct for
heteroskedasticity, but more fundamentally because there are common parameters between the
regression and the variance of the disturbances, and because the disturbance  is not normally
distributed, so there is information in moments beyond the first two.  The first of these inefficiencies
could be eliminated by an estimated GLS-type transformation:  From the first-step NLLS regression
and the estimator of  described above, calculate the weight 

 2 = 1 - |2M(x e)[x e + M(x e)],  

and then rerun a weighted NLLS regression,

(33)                w/  = (z/ e)  + (M(x e)/ e) + ( / e).
 

The variance of this regression is now 2, so that all the parameters of the original problem are
estimated by the regression parameters plus the estimated variance of the regression.

The NLLS estimator above involves about the same amount of calculation as full maximum
likelihood estimation, so that the latter method is usually preferable because it is asymptotically
efficient, and the standard errors obtained from the information matrix are easier to calculate than
the two-step GLS standard errors.  However, there is an alternative two-step estimation procedure,
due to Heckman, that requires only standard computer software, and is widely used:

[1] Estimate the binomial probit model, 

(34)                        P(y�x, ) = (yx )  ,

by maximum likelihood.
[2] Estimate the linear regression model, 

(35)                        w = z  + M(x e) + , 

where  =  and the inverse Mill’s ratio M is evaluated at the parameters estimated from the first
stage.

To estimate  and , and increase efficiency, one can do two additional steps,
[3] Estimate 2 using the procedure described in (12), with estimates e from the second step and

e from the first step; and
[4] Estimate the weighted linear regression model 

(36)                        w/  = (z/ )  + M(x e)/  + ( / ), 

where 
2 = {1 - e

2M(x e)[x e + M(x e)]},  

and the parameters in this weight come from the first and second steps, plus
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e 
2 = e 

2/ e 
2 

with e
2 from step two and e

2 from step three.
The standard errors of the first-step estimates e are obtained from the binomial probit

maximum likelihood.  However, the second-step estimates e and e have standard errors that are not
given correctly by the regression (35), both because the errors are heteroskedastic and because a
right-hand-side variable contains embedded parameters from an earlier step; see the lecture notes on
GMM estimation with embedded estimates for the formulas for the correct standard errors.

One limitation of the bivariate model is most easily seen by examining the regression (35).
Consistent estimation of the parameters  in this model requires that the term M(x |) be estimated
consistently.  This in turn requires the assumption of normality, leading to the first-step probit model,
to be exactly right.  Were it not for this restriction, estimation of  in (35) would be consistent under
the much more relaxed requirements for consistency of OLS estimators.  To investigate this issue
further, consider the bivariate selection model (21) with the following more general distributional
assumptions:  (i) � has a density f(�) and associated CDF F(�); and (ii)  has  E( ��) = � and a
second moment E( 2��) = 1 - 2 that is independent of  �.  Define the truncated moments

J(x ) = E(���>-x ) = �f(�)d�/[1 - F(-x )] �
4

&x

and

K(x ) = E(1 - �2��>-x ) = [1 - �2]f(�)d�/[1 - F(-x )] .�
4

&x

Then, given the assumptions (i) and (ii),

E(w�z,y=1) = z  + E(���>-x ) = z  + J(x ), 

 E((w - E(w�z,y=1))2�z,y=1) = 2{1 - 2[K(x ) + J(x )2]}. 

Thus, even if the disturbances in the latent variable model were not normal, it would nevertheless
be possible to write down a regression with an added term to correct for  self-selection that could be
applied to observations where y = 1:

(37)        w = z  + E{ �x +�>0} +  = z  + J(x ) + ,

where  is a disturbance that has mean zero and the heteroskedastic variance

 E( 2�z,y=1)) = 2{1 - 2[K(x ) + J(x )2]}. 

  
Now suppose one runs the regression (30) with an inverse Mill’s ratio term to correct for
self-selection, when in fact the disturbances are not normal and (36) is the correct specification.
What bias results?  The answer is that the closer M(x ) is to J(x ), the less the bias.  Specifically,
when (36) is the correct model, regressing w on z and M(x ) amounts to estimating the misspecified
model
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 w = z  + M(x ) + {  + [J(x ) - M(x )]} .

The bias in NLLS is given by

  = ; 

� �

e �

Ez�z Ez�M

EMz EM 2

&1 Ez(J�M)

EM(J�M)

this bias is small if  =  is small or the covariance of J - M with z and M is small.  
Calculation for some standard distributions shows that when disturbances deviate from

normal, M may not be a good approximation to J, implying that bias due to  misspecification can be
substantial.  For example, consider as alternatives to the normal density for � the logistic density,

 f(�) = e-ag/(1+e-ag)2,  a = , 
3

and the bilateral exponential density,

f(�) = (1/2 )�e-*g*/ . 2 2

For these densities, the function J can be calculated analytically.  For the logistic density, one obtains
J(�) = -x + (1/a)�log(1+eag)�(1+e-ag), and for the bilateral exponential density, one obtains J(�) =

e-c*g*�(1 + c���)/2cF(�), where F(�) =  1(�<0)�ecg + 1(�	0)�(1 - e-cg) and c-1 = .  The J(�) functions2

have the same qualitative shape for the normal, bilateral exponential, and logistic densities, but  they
are substantially shifted, so that there is at least significant bias to the  estimated intercept in the
regression if J is misspecified.

A natural question in semiparametric estimation is whether there is a robust method for
estimating  that does not require that the distributions of � and  be fully parametric.  It should be
clear intuitively that approximating the unknown true J(�) function by a series of functions of �, such
as a low order polynomial in �, should be sufficient to approximately span the space containing J(�),
and that this in turn would be sufficient to eliminate for practical purposes any bias in estimation of

.  The question would remain at to how many terms to use in an approximation.
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CHAPTER 3.  GENERALIZED METHOD OF MOMENTS

1.  INTRODUCTION

This chapter outlines the large-sample theory of Generalized Method of Moments (GMM)
estimation and hypothesis testing.  The properties of consistency and asymptotic normality (CAN)
of GMM estimates hold under regularity conditions much like those under which maximum
likelihood estimates are CAN, and these properties are established in essentially the same way.
Further, the trinity of Wald, Lagrange Multiplier, and Likelihood Ratio test statistics from maximum
likelihood estimation extend virtually unchanged to this more general setting.  Our treatment
provides a unified framework that specializes to both classical maximum likelihood methods and
traditional linear models estimated on the basis of orthogonality restrictions.

Suppose data z are generated by a process that is parameterized by a k×1 vector .  Let l(z, )
denote the log likelihood of z, and let o denote the true value of  in the population.  Suppose there
is an m×1 vector of functions of z and , denoted g(z, ), that have zero expectation in the population
if and only if  equals o: 

Eg(z, ) � �g(z, )�exp(l(z, o))dz = 0 iff  = o.  
 

The E g(z, ) are generalized moments, and the analogy principle suggests that an estimator of o can
be obtained by solving for  that makes the sample analogs of the population moments small.
Identification normally requires that m 	 k.  If the inequality is strict, and the moments are not
degenerate, then there are over-identifying moments that can be used to improve estimation
efficiency and/or test the internal consistency of the model.  

In this setup, there are several alternative interpretations of z.  It may be the case that z is a
complete description of the data and l(z, ) is the "full information" likelihood.  Alternately, some
components of observations may be margined out, and l(z, ) may be a marginal "limited
information" likelihood.   Examples are the likelihood for one equation in a simultaneous equations
system, or the likelihood for continuous observations that are classified into discrete categories.
Also, there may be "exogenous" variables (covariates), and the full or limited information likelihood
above may be written conditioning on the values of these covariates.  From the standpoint of
statistical analysis, variables that are conditioned out behave like constants.  Then, it does not matter
for the discussion of hypothesis testing that follows which interpretation above applies, except that
when regularity conditions are stated it should be understood that they hold almost surely with
respect to the distribution of covariates.  

Several special cases of this general setup occur frequently in applications: First, if l(z, ) is a
full or limited information likelihood function, and g(z, ) = � l(z, ) is the score vector, then we
obtain maximum likelihood estimation.  Second, if z = (y,x,w) and g(z, ) = w�(y-x ) asserts
orthogonality in the population between instruments w and regression disturbances � = y - x o, then
GMM specializes to 2SLS, or in the case that w = x, to OLS.  These linear regression setups
generalize immediately to nonlinear regression orthogonality conditions based on the form g(z, ) =
w�(y-h(x, )), where h is a function that is known up to the parameter .  The last problem can be
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interpreted as coming from a non-linear regression model where by assumption a vector of m
exogenous variables w are orthogonal to the regression disturbances y - h(x, o).  This is an important
application of GMM, and as an exercise the reader should translate all of the more abstract
statements about GMM estimators into statements for this model.

Suppose an i.i.d.  sample z1,...,zn from the data generation process.  A GMM estimator of o is
the vector Tn that minimizes the generalized distance of the sample moments from zero, where this
generalized distance is defined by the quadratic form 

Qn( ) = (1/2)gn( )�Wngn( ),    where    gn( ) � g(zt, ),1
n �

n

t'1

and Wn is a m×m positive definite symmetric matrix that defines a "distance metric".  When m = k,
the matrix Wn does not enter the first-order-conditions for Tn (Verify), and could by default be the
m×m identity matrix.  When m > k, not all the components of gn(Tn) can be made zero
simultaneously, and the matrix Wn determines how deviations from zero are weighted and influences
the estimator.  Define the m×m covariance matrix of the moments,  � E g(z, o)g(z, o)�.  Efficient
weighting of a given set of m moments requires that Wn  converge to -1 as n � �.  Exercise 1 below
asks you to verify this statement.  A good candidate for Wn is n( n)

-1, where

n( ) = g(zt, )g(zt, )N, 1
n �

n

t'1

and n is a consistent preliminary estimate of o.  Define the m×k Jacobean matrix G � E � g(z, o),
and let 

Gn( ) = � g(zt, ).1
n �

n

t'1

Then the array Gn( n) evaluated at a consistent preliminary estimate n of o will approach G as n � �.
Hereafter, n and Gn will be used as shorthand for n( n) and Gn( n), respectively.

We will denote convergence in probability by �p, almost sure convergence by �as, and
convergence in distribution by �d.  The following regularity conditions guarantee that GMM
estimators have good asymptotic properties; see Newey and McFadden (1994):

(i) The domain  of  is compact, and o is in its interior.  
(ii) The log likelihood function l(z, ) is almost surely in z continuously differentiable with
respect to  in a neighborhood of o.  
(iii) The function g is measurable in z for each , and almost surely is continuous and
continuously differentiable in , with the derivative Lipschitz; i.e., there is a function (z) with
finite expectation such that for , �  , �� g(z, ) - � g(z, �)� � (z)�  - ��.  
(iv) Eg(z, ) = 0 if and only if  = o.  
(v)  is a positive definite m×m matrix, and n �p .
(vi) G is a m×k matrix of rank k, and Gn �p G.
(vii) There exists a function (z), with finite expectation, that dominates g(z, )g(z, )� and
� g(z, ); i.e., +� > E (z), �g(z, )g(z, )�� � (z), and �� g(z, )� � (z).  
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Under these regularity conditions, Newey and McFadden (1994, Theorems 2.6 and 3.4) show that
the unconstrained GMM estimator 

Tn = argmin 0 Qn( ) 

is consistent and asymptotically normal (CAN), with  

n1/2(Tn - o) �d N(0,B-1);

where B � G� -1G.  
It is useful to summarize the steps that lead to the CAN result.  First consider consistency.  For

each fixed , a law of large numbers implies that gn( ) �p Eg( ).   Similarly, Gn( ) �p E � g(z, ) and

n( ) �p E g(z, )g(z, )�.  Using the compactness of  and the smoothness and dominance
assumptions, these probability limits can be shown to hold uniformly in .  This implies that if

n �p o, then gn( n) �p Eg( o) = 0, Gn( n) �p G, n( n) �p , and Qn( ) �p (1/2)(Eg( ))� -1(Eg( )).
By construction, Qn(Tn) � Qn( o) �p 0.  Outside a specified small neighborhood of o, the probability
limit of Qn is uniformly bounded away from zero.  Therefore, Tn is a.s. eventually within the
specified neighborhood.  This establishes consistency.  

Next consider asymptotic normality.  A central limit theorem implies 

(1)                               - -1/2 n1/2 gn( o) � Un �d U ~ N(0,I).  

The mean value theorem applied to the sample moments about o gives

(2)                            n1/2 gn( ) = n1/2 gn( o) + Gn n
1/2( - o),

with Gn evaluated at points between  and o.  Substituting this expression in the GMM first-order
condition 0 = n1/2� Qn(Tn) � Gn� n

-1 n1/2 gn(Tn) and using the consistency of Tn to replace Gn and  n

by their respective asymptotic approximations G and , yields 

0 = -G� -1/2Un + B n1/2(Tn- o) + op , 

where op denotes terms that are asymptotically negligible, implying 

(3)                           n1/2(Tn- o) = B-1G� -1/2Un + op �d B
-1G� -1/2U ~ N(0,B-1) .

The asymptotic covariance matrix B-1 can be estimated using Gn( n) and n( n), where n is any
n1/2-consistent (preliminary) estimator of o (i.e., n1/2( n- o) is stochastically bounded.)  A practical
procedure for estimation is to first estimate o using the GMM criterion with an arbitrary n, such
as an m×m identity matrix.  This produces an initial n1/2-consistent estimator n.  Then use the
formulas above to estimate the asymptotically efficient Wn = n( n)

-1, and use the GMM criterion
with this distance metric to obtain the final estimator Tn.  

Differentiating the identity 0 � �g(z, )el(z, )dz, one has 



Page 42, Chapter 3-4

0 � �� g(z, ) exp(l(z, ))dz + �g(z, )� l(z, )�exp(l(z, ))dz, 

implying at o that  

 � -Eg(z, o)� l(z, o)� � E� g(z, o) � G.   

It will sometimes be convenient to estimate G by 

n = - g(zt, n)� l(zt, n)�. 
1
n �

n

t'1

In the maximum likelihood case g = � l, one has  =  = G, and the asymptotic covariance matrix
of the unconstrained estimator simplifies to -1.  

Exercise 1.  Use a Taylor’s expansion of the first-order-conditions for minimization of Qn( ) to
show that when Wn converges to a matrix W other than -1, the resulting GMM estimator Tn is
asymptotically normal with covariance matrix (G�WG)-1G�W WG(G�WG)-1.  Show that a quadratic
form in this matrix is minimized when W = -1.  (Hint: Consider a regression with m observations
and k parameters, y = G  + , that has E � = .  Then OLS applied to the transformed data -1/2y
= -1/2G  + -1/2  is BLUE, and OLS applied to any other transformation W1/2y = W1/2G  + W1/2

yields estimates of  that have a larger covariance matrix.)

2.  THE NULL HYPOTHESIS AND THE CONSTRAINED GMM ESTIMATOR

Suppose there is an r-dimensional null hypothesis on the data generation process, 

Ho:a( o) = 0, 

where a(�) is a r×1 vector of continuously differentiable functions.  Assume that the r×k matrix A
� � a( o) has rank r.  We will consider alternatives to the null of the form 

H1: a( o) � 0,  

or asymptotically local alternatives of the form 

H1n: a( o) = n-1/2 � 0. 

These alternatives are of interest because in large samples alternative hypotheses of interest are often
sufficiently "local" so that the asymptotic approximation will give good estimates of the power of
tests.  The null hypothesis may be linear or nonlinear.  A particularly simple case is Ho:  = o, or
a( ) �  - o, so the parameter vector  is completely specified under the null.  Other examples are
a( o) = 1o, a linear hypothesis, and a( o) = ( 10/ 20 - 30/ 40), a non-linear hypothesis.  In general there
will be k-r parameters to be estimated when one imposes the null.  One can define a constrained
GMM estimator by optimizing the GMM criterion subject to the null hypothesis: 
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Tan = argmin 0 Qn( )    subject to     a( ) = 0.  

Newey and McFadden (1994, Theorem 9.1) establish that Tan is consistent under the regularity
conditions above when either the null hypothesis or an asymptotically local alternative to the null
holds.

Define a Lagrangian for Tan: Ln( , ) = Qn( ) + a( )� .  In this expression,  is the r×1 vector of
undetermined Lagrangian multipliers; these will be non-zero when the constraints are binding.  The
first-order conditions for solution of this problem are 

 = .  
0

0

n1/2 � Qn(Tan) � � a(Tan)�n
1/2

an

n1/2 a(Tan)

The Lagrangian multipliers an are random variables with an asymptotic distribution:  The
consistency of Tan implies � Qn(Tan) �p G� -1Eg(z, o) = 0.  Further, � a(Tan) �p A, implying A� an =
-� Qn(Tan) + op �p 0, and since A is of full rank, an �p 0.  The following paragraph outlines the
argument for asymptotic normality, and relates the asymptotic distributions of Tn, Tan, and an.  The
asymptotic normality argument parallels that already given in (1)-(3) for the unconstrained estimator.
Using the mean value theorem and then approximating Gn by G and n by , one has

n1/2gn(Tan) = n1/2gn( o) + Gn n
1/2(Tan- o) = -G� -1/2Un + G n1/2(Tan- o) + op, 

and 

n1/2a(Tan) = n1/2a( o) + A n1/2(Tan- o) + op �  + A n1/2(Tan- o) + op.

Substituting these in the first-order conditions yields

(4)                            =  + op.
 

0

0

G´ &1/2Un

�
�

B A�

A 0

n 1/2(Tan � o)

n 1/2
an

From the formula for partitioned inverses,  

(5)                        = , 
B A�

A 0

&1 B &1/2MB &1/2 B &1A�(AB &1A´)&1

(AB &1A´)&1AB &1 (AB &1A´)&1

where M = I - B-1/2A�(AB-1A�)-1AB-1/2 is a k×k idempotent matrix of rank k-r.  Applying this to (4)
yields 

(6)             =  + G� -1/2Un + op.  
n 1/2(Tan � o)

n 1/2
an

�B &1A�(AB &1A�)&1

�(AB &1A�)&1

B &1/2MB &1/2

(AB &1A�)&1AB &1
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Then, the asymptotic distribution of n1/2(Tan- o) under a local alternative, or the null when  = 0, is
N(-B-1A�(AB-1A�)-1 ,B-1/2MB-1/2).

Writing out M = I - B-1/2A�(AB-1A�)-1AB-1/2 yields 

(7)                  n1/2(Tan- o) =
 B-1G� -1/2Un - B

-1A�(AB-1A�)-1AB-1G� -1/2Un 
                                                  - B-1A�(AB-1A�)-1  + op.   

The first term on the right-hand-side of (7) and the right-hand-side of (3) are identical, to order op.
Then, they can be combined to conclude that 

(8)                  n1/2(Tn-Tan) = B-1A�(AB-1A�)-1AB-1G� -1/2Un + B-1A�(AB-1A�)-1  + op,

so that n1/2(Tn-Tan) is asymptotically normal with mean B-1A�(AB-1A�)-1  and covariance matrix
B-1/2(I-M)B-1/2 � B-1A�(AB-1A�)-1AB-1.  Note that the asymptotic covariance matrices satisfy
acov(Tn-Tan) = acov(Tn) - acov(Tan), or the variance of the difference equals the difference of the
variances.  This proposition is familiar in a maximum likelihood context where the variance in the
deviation between an efficient estimator and any other estimator equals the difference of the
variances.  We see here that it also applies to relatively efficient GMM estimators that use available
moments and constraints optimally.  

The results above and some of their implications are summarized in Table 1.  Each statistic is
distributed as a linear transformation of a common random vector Un that is asymptotically standard
normal.  Recall that B = G� -1G is a positive definite k×k matrix, and let B-1 � acov(Tn).  Recall that
M = I - B-1/2A�(AB-1A�)-1AB-1/2 is a k×k idempotent matrix of rank k-r.  

Table 1
Statistic Formula Asymptotic 

Covariance Matrix
n1/2(Tn- o) B-1G� -1/2Un + op B-1

n1/2(Tan- o) -B-1A�(AB-1A�)-1  + B-1/2MB-1/2G� -1/2Un + op B-1/2MB-1/2

n1/2(Tn-Tan) B-1A�(AB-1A�)-1  + B-1A�(AB-1A�)-1AB-1G� -1/2Un + op B-1A�(AB-1A�)-1AB-1

 n1/2
an (AB-1A�)-1  + (AB-1A�)-1AB-1G� -1/2Un + op (AB-1A�)-1

 n1/2a(Tn)  + AB-1G� -1/2Un + op AB-1A�
 n1/2� Qn(Tan) A�(AB-1A�)-1  + A�(AB-1A�)-1AB-1G� -1/2Un + op A�(AB-1A�)-1A

3.  THE TEST STATISTICS

The test statistics for the null hypothesis fall into three major classes, sometimes called the
trinity.  Wald statistics are based on deviations of the unconstrained estimates from values consistent
with the null.  Lagrange Multiplier (LM) or Score statistics are based on deviations of the
constrained estimates from values solving the unconstrained problem.  Distance metric statistics are
based on differences in the GMM criterion between the unconstrained and constrained estimators.
In the case of maximum likelihood estimation, the distance metric statistic is asymptotically
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equivalent to the likelihood ratio statistic.  There are several variants for Wald statistics in the case
of the general non-linear hypothesis; these reduce to the same expression in the simple case where
the parameter vector is completely determined under the null.  The same is true for the LM statistic.
There are often significant computational advantages to using one member or variant of the trinity
rather than another.  On the other hand, they are all asymptotically equivalent.  Thus, at least to
first-order asymptotic approximation, there is no statistical reason to choose between them.  This
pattern of first-order asymptotic equivalence for GMM estimates is exactly the same as for maximum
likelihood estimates.  

Figure 1 illustrates the relationship between distance metric (DM), Wald (W), and Score (LM)
tests.  In the case of maximum likelihood estimation, this figure is inverted, the criterion is log
likelihood rather than the distance metric, and the DM test is replaced by the likelihood ratio test.

FIGURE 1. 
GMM TESTS

The “Optimum” and “Null” points on the  axis give the unconstrained (Tn) and constrained (Tan)
estimators, respectively.  The GMM criterion function is plotted, along with quadratic
approximations to this function through the respective arguments Tn and Tan.  The Wald statistic (W)
can be interpreted as twice the difference in the height at Tn and Tan of the quadratic approximation
through the optimum; the height d in the figure.  The Lagrange Multiplier (LM) statistic can be
interpreted as twice the difference in the height at Tn and Tan of the quadratic approximation through
the null; the difference a - b in the figure  The Distance Metric (DM) statistic is twice the difference
in the height at Tn and Tan of the GMM criterion, the height c in the figure.  Note that if the criterion
function were exactly quadratic, then the three statistics would be identical. 
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The test statistics we consider for the general non-linear hypothesis a( o) = 0 are given in Table
2.  In this table, recall that acov(Tn) = B and acov(Tan) = B-1/2MB-1/2.  In Section 7, we consider the
important special cases, including maximum likelihood and nonlinear least squares.  In particular,
when the hypothesis is that a subset of the parameters are constants, there are some simplifications
of the statistics, and some versions are indistinguishable.

Table 2.  Test Statistics
Wald Statistics 

   W1n na(Tn)�[AB-1A�]-1a(Tn)
   W2n n(Tn-Tan)�{acov(Tn) - acov(TAn)}�(Tn -Tan)

  = n(Tn-Tan)�A�(AB-1A�)-1A(Tn-Tan)
   W3n n(Tn-Tan)�B(Tn-Tan)

Lagrange Multiplier Statistics
   LM1n n an�AB-1A� an

   LM2n n� Qn(Tan)�{A�(AB-1A�)-1A�}�� Qn(Tan)
 = n� Qn(Tan)�B

-1A�(AB-1A�)-1AB-1� Qn(Tan)
   LM3n n� Qn(Tan)�B

-1� Qn(Tan)
Distance Metric Statistic 

   DMn 2n[Qn(Tan) - Qn(Tn)]

Newey and McFadden (1994, Theorem 9.2) establish that under the regularity conditions (i) to (vii),
the statistics are all asymptotically equivalent under the null hypothesis or under a local alternative,
converging in distribution to a chi-square with r degrees of freedom under the null, and converging
in distribution to a non-central chi-square with r degrees of freedom and a non-centrality parameter
�(AB-1A�)-1  under local alternatives to the null.  These results are obtained by combining the

expressions in Table 1.  Suppose q is an expression from the table with asymptotic covariance matrix
R and an asymptotic mean  under local alternatives to the null with the property that   lies in the
subspace spanned by R. The Appendix to this chapter shows that the matrix R can be written in the
form R = S1/2TS1/2, where S is symmetric and positive definite and T is idempotent with rank equal
to the rank of R, that the Moore-Penrose generalized inverse of R is R� = S-1/2TS-1/2, and that the
condition imposed on the mean implies that T S-1/2  =  S-1/2 .  The transformation S-1/2q is then
asymptotically normal with mean S-1/2  and covariance matrix T, and consequently the statistic q�S-1q
is asymptotically distributed noncentral chi-square with r degrees of freedom, and noncentrality
parameter �S-1  under local alternatives to the null.  The transformation TS-1/2q has mean  T S-1/2

=  S-1/2, and the asymptotic covariance of (I - T)S-1/2q is zero, so that S-1/2q and TS-1/2q are
asymptotically equivalent.  

To illustrate the argument, consider W1n.  Under the local alternative a( o) = n-1/2, row five of
Table 1 gives q =  + AB-1G� -1/2U normal with mean  and a nonsingular r×r covariance matrix R
= AB-1A�.  Then the noncentrality parameter is �R-1  � �(AB-1A�)-1 .  Similarly, the statistics W2n

and W3n are obtained by noting that q =  -B-1A�(AB-1A�)-1  + B-1A�(AB-1A�)-1AB-1G� -1/2U is normal
with covariance matrix  R = B-1A�(AB-1A�)-1AB-1 = B-1/2[B-1/2A�(AB-1A�)-1AB-1/2 ]B-1/2, where the
matrix in brackets is idempotent of rank r.  Then, both q�R�q and q�S-1q are noncentral chi-square
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with degrees of freedom r and noncentrality parameter �(AB-1A�)-1 .  The first of these expressions
is asymptotically equivalent to W2n, and the second to W3n.  Similar arguments establish the
properties of the LM statistics.  

To demonstrate the asymptotic equivalence of DMn to the earlier statistics, make a Taylor’s
expansion of the sample moments for Tan about Tn, n

1/2gn(Tan) = n1/2gn(Tn) + Gn n
1/2(Tan - Tn) + op, and

substitute this in the expression for DMn to obtain 

DMn = 2n{Qn(Tan) - Qn(Tn)}
      = 2 n1/2(Tan - Tn)�Gn� n

-1 n1/2gn(Tn) + n1/2(Tan - Tn)�Gn� n
-1Gn n

1/2(Tan - Tn) + op

  = n(Tan-Tn)�B(Tan-Tn) + op � W3n + op, 
 

with the last equality holding since Gn� n
-1 n1/2gn(Tn) = 0.  

The Wald statistic W1n asks how close are the unconstrained estimators to satisfying the
constraints; i.e., how close to zero is a(Tn)?  This variety of the test is particularly useful when the
unconstrained estimator is available and the matrix A is easy to compute.  For example, when the
null is that a subvector of parameters equal constants, then A is a selection matrix that picks out the
corresponding rows and columns of B-1, and this test reduces to a quadratic form with the deviations
of the estimators from their hypothesized values in the wings, and the inverse of their asymptotic
covariance matrix in the center.  In the special case Ho:  = o, one has A = I.

The Wald test W2n is useful if both the unconstrained and constrained estimators are available.
Its first version requires only the readily available asymptotic covariance matrices of the two
estimators, but for r < k requires calculation of a generalized inverse.  Algorithms for this are
available, but are often not as numerically stable as classical inversion algorithms because near zero
and exact zero characteristic roots are treated very differently.  The second version involves only
ordinary inverses, and is potentially quite useful for computation in applications.  

The Wald statistic W3n treats the constrained estimators as if they were constants with a zero
asymptotic covariance matrix.  This statistic is particularly simple to compute when the
unconstrained and constrained estimators are available, as no matrix differences or generalized
inverses are involved, and the matrix A need not be computed.  The statistic W2n is in general larger
than W3n in finite samples, since the center of the second quadratic form is acov(Tn)

-1 and the center
of the first quadratic form is {acov(Tn) - acov(Tan)}�, while the tails are the same.  Nevertheless, the
two statistics are asymptotically equivalent.

The approach of Lagrange multiplier or score tests is to calculate the constrained estimator Tan,
and then to base a statistic on the discrepancy from zero at this argument of a condition that would
be zero if the constraint were not binding.  The statistic LM1n asks how close the Lagrangian
multipliers an, measuring the degree to which the hypothesized constraints are binding, are to zero.
This statistic is easy to compute if the constrained estimation problem is actually solved by
Lagrangian methods, and the multipliers are obtained as part of the calculation.  The statistic LM2n

asks how close to zero is the gradient of the distance criterion, evaluated at the constrained estimator.
This statistic is useful when the constrained estimator is available and it is easy to compute the
gradient of the distance criterion, say using the algorithm to seek minimum distance estimates.  The
second version of the statistic avoids computation of a generalized inverse.  
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The statistic LM3n bears the same relationship to LM2n that W3n bears to W2n.  This flavor of the
test statistic is particularly convenient to calculate, as it can be obtained by two auxiliary regressions
starting from the constrained estimator Tan:   
  

a.  Regress � l(zt,Tan)� on g(zt,Tan), and retrieve fitted values � l*(zt,Tan)�.  

b.  Regress 1 on � l*(zt,Tan), and retrieve fitted values �t.  Then LM3n = �t
2 .  1

n �
n

t'1

For MLE, g = � l and the first regression is redundant, so that this procedure reduces to OLS.  
Another form of the auxiliary regression for computing LM3n arises in the case of non-linear

instrumental variable regression.  Consider the model yt = h(xt, o) + �t with E(�t�wt) = 0 and E(�t
2�wt)

= 2, where wt is a vector of instruments.  Define  zt = (yt,xt,wt) and g(zt, ) = wt[yt-h(xt, )].  Then
Eg(z, o) = O and Eg(z, o)g(z, o)� = 2Eww�.  The GMM criterion Qn( ) for this model is 

( wt(yt - h(xt, ))�( wtwt�)
-1( wt(yt-h(xt, ))/2 2; 1

n �
n

t'1

1
n �

n

t'1

1
n �

n

t'1

the scalar 2 does not affect the optimization of this function.  Consider the hypothesis a( o) = O, and
let Tan be the GMM estimator obtained subject to this hypothesis.  One can compute LM3n by the
following method: 

a.  Regress � h(xt,Tan) on wt, and retrieve the fitted values � �t.  
b.  Regress the residual ut = yt - h(xt,Tan) on � �t, and retrieve the fitted values ût.

Then LM3n = n ût
2� ut

2 � nR2, with R2 the uncentered multiple correlation coefficient.�
n

t'1
�

n

t'1

Note that this is not in general the same as the standard R2 produced by OLS programs, since the
denominator of that definition is the sum of squared deviations of the dependent variable about its
mean.  When the dependent variable has mean zero, the centered and uncentered definitions
coincide.  

The approach of the distance metric test is based on the discrepancy between the value of the
distance metric, evaluated at the constrained estimate, to the minimum attained by the unconstrained
estimate.  This estimator is particularly convenient when both the unconstrained and constrained
estimators can be computed, and the estimation algorithm returns the goodness-of-fit statistics.  In
the case of linear or non-linear least squares, this is the familiar test statistic based on the sum of
squared residuals from the constrained and unconstrained regressions.  

4. TWO-STAGE GMM ESTIMATION

A common econometric problem is to do estimation when some parameters have already been
estimated from a previous stage, often on the same data.  One common case is where the problem
contains constructed variables whose construction depended on parameters estimated in a previous
round.  In general, the use of consistent estimates from a previous round will not cause a problem
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with consistency in later stages, but it will add noise to the problem that appears in the asymptotic
covariance matrix of the later-stage estimators.

There are a few cases, such as feasible GLS with normal disturbances, where no correction of
the asymptotic covariance matrix is needed.  This is due in the GLS case to a block diagonality in
the information matrix between regression coefficients and parameters in the covariance matrix.
There is a simple rule, due to Whitney Newey, for determining whether previous stage estimation
will add something to the asymptotic covariance matrix in the current stage: There will be a
contribution if and only if consistency in the first stage is necessary for consistency in the second
stage.

When a correction is required, the following generic GMM framework can be used to establish
the form of this correction.  Suppose one observes variables (x,y,z), where x is exogenous, and (y,z)
are variables whose behavior is being modeled.  Let f(y,z�x, , ) be the joint density of the
observations, conditioned on x, with parameter vectors  and .  Assume that it can be written

f(y,z�x, , ) = fc(z�x,y, )fm(y�x, , )
or

f(y,z�x, , ) = fc(z�x,y, , )fm(y�x, ).

This is the standard decomposition of a joint density into a conditional density times a marginal
density, and the only restriction we are imposing is that we can parameterize (or reparameterize) the
problem so that either the conditional density or the marginal density does not depend on the
parameter .  This corresponds to the usual situation in two-stage methods, where at the first stage
one looks at limited information that involves a subset of the full parameter vector.

One concrete example of this setup is sequential estimation of the parameters in a two-level
nested logit model, in which fc is the likelihood of choice at the lower level, conditioned on choice
of a upper level branch, and fm is the likelihood of choice among the upper level branches.  In this
application, the model can be parameterized so that upper branch parameters do not appear in fc.  A
second concrete example is two-step estimation of the Tobit model, in which y is an indicator for
whether the response is zero or positive, z is the quantitative level of the response, fc is the likelihood
of the quantitative response conditioned on whether it is zero or not, and fm is the likelihood of the
indicator.  In this example, the problem can be parameterized so that parameters that enter the
quantitative response likelihood do not enter the likelihood for the indicator.

Suppose in the first stage one estimates the parameter vector  using moments

0 = Enh(an;x,y,z),

where En denotes empirical expectation (or sample average).  A necessary condition for consistency
is Eh( ;x,y,z) = 0 if and only if  = o.  Limited information maximum likelihood: h( ;x,y,z) =
� lc(z�x,y, ), where lc = log fc; or h( ;x,y,z) = � lm(y�x, ), where lm = log fm, is an important case.

Suppose in the second stage one estimates a parameter vector  using moments

0 = Eng(bn,an;x,y,z),
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where an is inserted from the previous stage.  Again, important cases are maximum likelihood:
g( , ;x,y,z) = � lm(y�x, , ) or g( , ;x,y,z) = � lc(y�z,x, , ), with  treated as if it were known.  In
the first of these cases, the moments g do not depend on z.  Whether or not g depends on z turns out
to make a substantial difference in the final covariance formula.  The case of constructed variables
is handled by writing them as functions of the parameters  that enter their construction.  The
original parameters of the problem may be estimated, perhaps in combination with other parameters,
in both the first and second stages.  The classification into  and  may require reparameterization.
The following rules may help: If first-stage estimates of original parameters are used solely as
starting values for second-stage estimation of the same parameters, then classify these as 
parameters, as these first-stage estimates are only a computational device and have no influence on
the final solution of the second-stage moments.  If first stage  estimates of original parameters are
used for other purposes, such as construction of estimated variables, and are then reestimated in the
second stage, then they should appear in both  and  as separate parameters.  Of course, original
parameters estimated only at the first stage go into , and original parameters estimated only at the
second stage go into .

Make a Taylor’s expansion of both the first-stage and the second-stage moment conditions
around the true o and o, and suppress the x,y,z arguments to simplify notation:

 = n1/2  - n1/2(an - o) - n1/2(bn - o) + op,
0

0

Enh( o)

Eng( o, o)

A

B

0

C

where A = -plim En� h( o), B = -plim En� g( o, o), and C = -plim En� g( o, o).

The term n1/2  is asymptotically normal, by a central limit theorem, with a covariance
Enh( o)

Eng( o, o)

matrix .  Solve the first block of equations and substitute them into the second block to
hh hg

gh »

obtain

0 = n1/2{Eng( o, o) + BA-1Enh( o)} - Cn1/2(bn - o) + op.

The term in braces on the right-hand-side of this expression has an asymptotic covariance matrix 

gg - BA-1
hg - ghA�-1B� + BA-1

hhA�-1B�.

Then, solving for n1/2(bn - o), one obtains the result that its asymptotic covariance matrix is

C-1{ gg - BA-1
hg - ghA�-1B� + BA-1

hhA�-1B�}C�-1
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All the terms of this covariance matrix could be estimated from sample analogs,  computed at the
consistent estimates.  The following table summarizes consistent estimators for the various
covariance terms; recall that En denotes empirical expectation (sample average):
 

Matrix Estimator
 C -En� g(bn,an)
 B -En� g(bn,an)
 A -En� h(an)

 hh Enh(an)h(an)�
 gh Eng(bn,an)h(an)�
 gg Eng(bn,an)g(bn,an)�

The terms gh and hh add to the asymptotic covariance matrix, relative to the case of o known.  If
B = 0, there is no correction; this is the "block diagonality" case where  can be estimated
consistently even if the estimator of  is not consistent.   If  is estimated from an independent data
set, then gh = 0, but one will still need a correction due to the contribution from hh.  Also, if g does
not depend on z, then gh = Ey*x{g�Ez*x,yh} = 0.  This is true, in particular, in the case that the second
stage estimator is marginal maximum likelihood in which z does not appear and  is treated as given.

The identities 0 � ��h exp(l)dzdy and 0 � ��g exp(l)dzdy can be differentiated to obtain the
conditions 

    A � -E� h = Eh�� l , B � -E� g = Eg�� l , C � -E� g = Eg�� l . 

If g does not depend on z, then Eg�� lc  = Ey*x(g�Ez*y,x� lc) = 0, implying B = Eg�(� lm)�.  Sample
averages of these outer products estimate the corresponding matrices consistently.  

Simplification occurs when the first stage is conditional maximum likelihood that does not
depend on , and the second stage is marginal maximum likelihood that treats the first stage
parameter estimates as fixed.  Then, A = E� lc�(� lc)� = hh ,  B = E� lm�(� lm)�, C = E� lm�(� lm)�
= gg, and hg = E� lc(� lm)� = 0, so that the covariance matrix is C-1 + C-1BA-1B�C-1.

Similarly, when the first stage is marginal maximum likelihood that does not depend on , and
the second stage is conditional maximum likelihood treating  as fixed, one has A = E� lm�(� lm)�
= hh , B = E� lc�(� lc)�, C = E� lc�(� lc)� = gg, and hg = E� lc(� lm)� = 0, and the covariance
matrix C-1 + C-1BA-1B�C-1.

The terms in these covariance matrix expressions involve sample averages of squares and
cross-products of scores (gradients) of first and second stage log likelihoods.   These should all be
obtainable as intermediate output from a maximum likelihood program, except for terms involving
the gradient of the second-stage likelihood with respect to .  The latter would be simple to obtain
in a program like TSP, which does automatic analytic differentiation, or could be obtained by
numerical differentiation. 

EXERCISE: Consider the problem of Heckman two-stage estimation of a Tobit model, y = x  +
(x / )/ (x / ) +  for y > 0, where E( �y > 0 & x) = 0, and where the inverse Mills ratio is

calculated from a first-stage probit on the same data.   Reparameterize  = /  and  = ( , ).  In
this case, h in the generic notation is the score of the marginal log likelihood for the probit, which
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is influenced only by , and g is the set of OLS orthogonality conditions, which depend on both
 and  through the condition y = x  + (x )/ (x ).  Work out the corrected asymptotic

covariance matrix for  and .

EXERCISE: Consider the two-level nested multinomial logit model, with first stage estimation
applied to the lower level of the choice tree, and used to compute summary variables ("inclusive
values") that are then treated as variables in the second stage estimation.

5.  ONE-STEP THEOREMS 

Under standard regularity conditions, GMM estimators are locally linear, which means that
within a suitable neighborhood of the estimator, the first-order conditions for these estimators are
in large samples approximately linear, with higher-order terms being asymptotically negligible.  This
has an important practical implication: if one can get an initial estimator n that is within the suitable
neighborhood, then one can get to the full GMM estimator, or at least an asyptotically equivalent
flavor of it, in one linear step.  This has the computational advantage that at this stage no iterative
computation is required, and the step can usually be carried out by a simple least squares regression.
This also has a useful statistical advantage: the asymptotic covariance matrix of the one-step
estimator will be the same as that of the GMM estimator, with its attendant efficiency properties,
rather than the possibly much more complex covariance matrix of the initial estimator.  For example,
the initial estimator might be the result of multiple-stage estimation, as described in the previous
section, with a covariance matrix of the form given in that section.  However, one linear step starting
from that estimator gives a result that is asymptotically equivalent to solving the full joint GMM
problem.  Alternately, one might start from initial GMM estimators, and in one step obtain a result
that is asymptotically equivalent to full maximum likelihood estimation.  Within the context of
hypothesis testing with GMM estimates, it is possible to go in one linear step from any suitable
initially consistent estimator to estimators that are asymptotically equivalent to either the
unconstrained or constrained GMM estimators.  

The first result based on these ideas is estimation of an expectation that depends on estimated
parameters.  Suppose one wishes to estimate Ezm(z, o), where m is a vector of functions of random
variables z and a parameter vector  that has true value o.  If n is any consistent estimator of o, the
sample average of m(zt, ) converges in probability to Ezm(z, ) uniformly in , and Ezm(z, ) is
continuous in , then

   m(zt, n) �p Ezm(z, o).
1
n �

n

t'1

This works because

Prob(� m(zt, n) - Ezm(z, n)� > �) 1
n �

n

t'1
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� Prob(sup � m(zt, ) - Ezm(z, )� > �) � 01
n �

n

t'1

and Ezm(z, n) � Ezm(z, o).  Suppose one strengthens the requirement on n to the condition that it
be n1/2-consistent, meaning that n1/2( n - o) is stochastically bounded, or for each � > 0 there exists
M > 0 such that 

Prob(�n1/2( n - o)� > M) < � for all n.

Suppose that m(z, ) satisfies a Lipschitz condition at o; i.e., there exists a function L(z) with a finite
expectation such that �m(z, ) - m(z, o)� � L(z)��  - o�.   Then the result holds without requiring
uniform convergence in probability for sample averages of m(z, ).

The preceding result is useful for calculation of Wald or Lagrange Multiplier test statistics,
which require estimation of G( o), ( o), and/or A( o).  The arrays Gn( ), n( ), and An( ) are
uniformly convergent, and the result establishes for any initial consistent estimator n that Gn( n) �p

G( o), n( n) �p ( o), and An( n) �p A( o).  Then, using these estimates preserves the asymptotic
equivalence of the tests under the null and local alternatives.  In particular, one can evaluate terms
entering the definitions of these arrays at Tn, Tan, or any other consistent estimator of o.  In sample
analogs that converge to these arrays by the law of large numbers, one can freely substitute sample
and population terms that leave the probability limits unchanged.  For example, if zt = (yt,xt) and n

is any consistent estimator of o, then  can be estimated by (1) an analytic expression for

Eg(z, )g(z, )�, evaluated at n, (2) a sample average  g(zt, n)g(zt, n)�, or (3) a sample1
n �

n

t'1

average of conditional expectations g(y,xt, )g(y,xt, )� evaluated at  = n.  It should1
n �

n

t'1
Ey|xt

be noted however that these first-order equivalences do not hold in finite samples, or even to higher
orders of n1/2.  Thus, there may be clear choices between these when higher orders of approximation
are taken into account.  

The second result, called the one-step theorem, considers the first-order condition associated
with a GMM criterion function, 0 = Gn� n 

-1
 gn( ).  Suppose one has an initial n1/2-consistent

estimator n for o.  A Taylor’s expansion of the first-order condition about n yields

Gn� n 
-1 gn( ) = Gn� n

-1gn( n) + Gn� n
-1Gn(  - n) + O((  - n)

2).

Then, a one-step approximation to the unconstrained GMM estimator is

Ton = n - (Gn� n
-1Gn)

-1Gn� n
-1gn( n).

A Taylor’s expansion around o of the GMM first-order condition, evaluated at n, yields 
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n1/2Gn� n
-1gn( n) = n1/2Gn� n

-1gn( o) + Gn� n
-1Gn�n

1/2( n - o) + op.

Combine this with the condition -Gn� n
-1gn( n) = Gn� n

-1Gnn
1/2(Ton - n) to conclude that

 -n1/2Gn� n
-1gn( o) = Gn� n

-1Gnn
1/2(Ton - o) + op,

and the condition 

 -n1/2Gn� n
-1gn( o) = Gn� n

-1Gnn
1/2(Tn - o) + op

to conclude that

0 = Gn� n
-1Gnn

1/2(Ton - Tn) + op,

so that Ton and Tn are asymptotically equivalent.
The one-step theorem can also be applied to the constrained GMM estimator.   Suppose the null

hypothesis, or a local alternative, a( o) = �n-1/2, is true.   Define one-step constrained estimators from
the Lagrangian first-order conditions: 

 =  -  .
Toan

oan

n

0

B A�

A 0

&1 � Qn( n)

�a( n)

Note in this definition that  = 0 is a trivial initially consistent estimator of the Lagrangian multipliers
under the null or local alternatives, and that the arrays B and A can be estimated at n.  The one-step
theorem again applies, yielding n-1/2(Toan-Tan) �p 0 and n-1/2( oan- an) �p 0.  Then, these one-step
equivalents can be substituted in any of the test statistics of the trinity without changing their
asymptotic distribution.  

A regression procedure for calculating the one-step expressions is often useful for computation.
The adjustment from n yielding the one-step unconstrained estimator is obtained by a two-stage least
squares regression of the constant one on � l(zt, n), with g(zt, n) as instruments; i.e.,
 

a.  Regress each component of � l(zt, n) on g(zt, n) in the sample t = 1,...,n, and retrieve fitted
values � l*(zt, n); 
b.  Regress 1 on � l*(zt, n); and adjust n by the amounts of the fitted coefficients.  

Step (a) yields � l*(zt, n)� = g(zt, n) n
-1

n, and step (b) yields coefficients  

 = � l*(zt, n) 
 �

n

t'1
[� l ((zt, n)][� l ((zt, n)]�

&1

�
n

t'1

 = ( n� n n)
-1

n� ngn( n).
 

This is the adjustment indicated by the one-step theorem.  
Computation of one-step constrained estimators is conveniently done using the formulas
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Toan = Ton - B

-1A�(AB-1A�)-1a(Ton) 
 � n +  - B-1A�(AB-1A�)-1[a( n) + A ]  

oan = -(AB-1A�)-1a(Ton) � -(AB-1A�)-1[a( n) + A ] 
 

with A and B evaluated at n.  To derive these formulas from the first-order conditions for the
Lagrangian problem, replace � Qn( n) by the expression -( n � n

-1 n �
 )(Ton - n) from the one-step

definition of the unconstrained estimator, replace a( n) by a(Ton) + A(Ton - n), and use the formula
for a partitioned inverse.  

6.  SPECIAL CASES

Maximum Likelihood.  We have noted that maximum likelihood estimation can be treated as
GMM estimation with moments equal to the score, g = � l.  The statistics in Table 2 remain the
same, with the simplification that B =  ( = G = ).  The likelihood ratio statistic 2n[Ln(Tn) - Ln(Tan)],

where Ln( ) = l(zt, ), is shown by a Taylor’s expansion about Tn to be asymptotically1
n �

n

t'1

equivalent to the Wald statistic W3n, and hence to all the statistics in Table 2.  Note that LR and DM
occupy comparable places in the trinity for maximum likelihood and GMM estimation respectively.

Suppose one sets up an estimation problem in terms of a maximum likelihood criterion, but that
one does not in fact have the true likelihood function.  Suppose that in spite of this misspecification,
optimization of the selected criterion yields consistent estimates.  One place this commonly arises
is when panel data observations are serially correlated, but one writes down the marginal likelihoods
of the observations ignoring serial correlation.  These are sometimes called pseudo- likelihood
criteria.  The resulting estimators can be interpreted as GMM estimators, so that hypotheses can be
tested using the statistics in Table 2.  Note however that now G � , so that B = G� -1G must be
estimated in full, and one cannot do tests using a likelihood ratio of the pseudo-likelihood function.

Least Squares.  Consider the nonlinear regression model y = h(x, ) + �, and suppose E(y�x) =

h(x, ) and E((y-h(x, ))2�x) = 2. The least squares criterion Qn( ) = (yt - h(zt, ))2 is1
2n �

n

t'1

asymptotically equivalent to GMM estimation with g(z, ) = (y-h(x, ))� h(x, ) and a distance metric

n = [� h(x, o)][� h(x, o)]�.  For this problem, B =  = G.  If h(zt, ) = zt�  is linear, one
2

2n �
n

t'1

has g(zt, ) = ut( )zt, where ut( ) = yt - zt�  is the regression residual, and n = ztzt�. 
1
n �

n

t'1

Instrumental Variables.  Consider the regression model yt = h(zt, o) + �t where �t  may be
correlated with � h(zt, o).  Suppose there are instruments w such that E(�t�wt) = 0.  For this problem,
one has the moment conditions g(yt,zt,wt, ) = (yt - h(zt, ))f(wt) satisfying Eg(yt,zt,wt, o) = 0 for any
vector of functions f(w) of the instruments, so the GMM criterion becomes 
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Qn( ) = .  1
n �

n

t'1
(yt � h(zt, ))f(wt)

´
1
n �

n

t'1
f(wt)f(wt)´

&1
1
n �

n

t'1
(yt � h(zt, ))f(wt)

Suppose that it were feasible to construct the conditional expectation of the gradient of the regression
function conditioned on w, qt = E(� h(zt, o)�wt).  This is the optimal vector of functions of the
instruments, in the sense that the GMM estimator based on f(w) = q will yield estimators with an
asymptotic covariance matrix that is smaller in the positive definite sense than any other distinct
vector of functions of w.  A feasible GMM estimator with good efficiency properties may then be
obtained by first obtaining a preliminary consistent estimator n employing a simple practical distance
metric, second regressing � h(zt, n) on a flexible family of functions of wt, such as low-order
polynomials in w, and third using fitted values from this regression as the vector of functions f(wt)
in a final GMM estimation.  Simplifications of this problem result when h(z, ) = z�  is linear in ;
in this case, the feasible procedure above is simply 2SLS, and no iteration is needed.

Simple hypotheses.  An important practical case of the general nonlinear hypothesis a( o) = 0 is
that a subset of the parameters are zero.  (A hypothesis that parameters equal constants other than
zero can be reduced to this case by reparameterization.)  Assume � = ( �, �) where  is of dimension
r and  is of dimension k-r, and Ho:  = 0.  The first-order conditions for solution of this problem are
0 = � Qn(Tan), 0 = � Qn(Tan) + an, implying an = -� Qn(Tan), and A = [0 Ir] is a r×k matrix whose first
k-r columns are zero.   Let C � B-1 be the asymptotic covariance matrix of n1/2(Tn - o), and AB-1AN

= C  the submatrix of C for .  Taylor's expansions about Tn of the first-order conditions imply
n1/2(T1,n-T1,an) = -B B  n1/2T2,n + op and n1/2

an = [B -B B -1B ]n1/2T2,n + op = |n�C
-1T2,n + op.  Then

the Wald statistics are  

             W1n = nT2,n�C
-1T2,n, W2n = n C -1 , 

T1,n�T1,an

T2,n

´ B

B
B B

T1,n�T1,an

T2,n

                                       W3n = n B .
T1,n�T1,an

T2,n

´ T1,n�T1,an

T2,n

You can check the asymptotic equivalence of these statistics by substituting the expression for
n1/2(T1,n-T1,an).  The LM statistic, in any version, becomes LMn = n� Qn(Tan)�C � Qn(Tan).  Recall that
B, hence C, can be evaluated at any consistent estimator of o.  In particular, the constrained
estimator is consistent under the null or under local alternatives.  The LM testing procedure for this
case is then to (a) compute the constrained estimator T1,an subject to the condition  = 0, (b) calculate
the gradient and hessian of Qn with respect to the full parameter vector, evaluated at T1,an and  = 0,
and (c) form the quadratic form above for LMn from the  part of the gradient and the  submatrix
of the inverse of the hessian.  Note that this does not require any iteration of the GMM criterion with
respect to the full parameter vector.  

It is also possible to carry out the calculation of the LMn test statistic using auxiliary regressions.
This could be done using the auxiliary regression technique introduced earlier for the calculation of
LM3n in the case of any nonlinear hypothesis, but a variant is available for this case that reduces the
size of the regressions required.  The steps are as follows: 
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a.  Regress � l(zt,Tan)� and � l(zt,Tan)� on g(zt,Tan), and retrieve the fitted values � l*(zt,Tan)� and
� l*(zt,Tan)�.  
b.  Regress � l*(zt,Tan) on � l*(zt,Tan), and retrieve the residual u(zt,Tan).  
c.  Regress the constant 1 on the residual u(zt,Tan), and calculate the sum of squares of the fitted
values of 1.  This quantity is LMn.   

In the case of maximum likelihood estimation, Step (a) is redundant and can be omitted.  

7.  TESTS FOR OVERIDENTIFYING RESTRICTIONS

Consider the GMM estimator based on moments g(zt, ), where g is m×1,  is k×1, and  m > k,
so there are over-identifying moments.  The criterion 

Qn( ) = (1/2)gn( )� n
-1gn( ), 

 
evaluated at its minimizing argument Tn for any n �p , has the property that 2nQn � 2nQn(Tn) �d

2(m-k) under the null hypothesis that Eg(z, o) = 0.  This statistic then provides a specification test
for the over-identifying moments in g.  It can also be used as an indicator for convergence in
numerical search for Tn.  

To demonstrate this result, recall that - -1/2 n1/2gn( o) = Un �d U ~ N(0,I) and n1/2(Tn - o) =
B-1G� -1/2Un + op.  Then, a Taylor's expansion yields 

-1/2 n1/2gn(Tn) = -Un + -1/2GB-1G� -1/2Un + op = -RnUn + op, 

where Rn = I - -1/2G(G� -1G)-1G� -1/2 is idempotent of rank m - k.  Then 

2nQn(Tn) = Un�RnUn + op �d 
2(m-k) .  

Suppose that instead of estimating  using the full list of moments, one uses a linear combination
Lg(z, ), where L is r×m with k � r < m.  In particular, L may select a subset of the moments.  Let Tan

denote the GMM estimator obtained from these moment combinations, and assume the identification
conditions are satisfied so Tan is n1/2-consistent.  Then the statistic S = ngn(Tan)� n

-1/2Rn n
-1/2gn(Tan)

�d 
2(m-k) under Ho, and this statistic is asymptotically equivalent to the statistic 2nQn(Tn).   This

result holds for any n1/2-consistent estimator n of o, not necessarily the optimal GMM estimator for
the moments Lg(z, ), or even an initially consistent estimator based on only these moments.  The
distance metric in the center of the quadratic form S does not depend on L, so that the formula for
the statistic is invariant with respect to the choice of the initially consistent estimator.  This implies
in particular that the test statistics S for over-identifying restrictions, starting from different subsets
of the moment conditions, are all asymptotically equivalent.  However, the presence of the
idempotent matrix Rn in the center of the quadratic form S is critical to its statistical properties.  Only
the GMM distance metric criterion using all moments, evaluated at Tn, is asymptotically equivalent
to S.  Substitution of another consistent estimator n in place of Tn yields an asymptotically equivalent
version of S, but 2nQn( n) is not asymptotically chi-square distributed.
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The test for overidentifying restrictions can be recast as a LM test by artificially embedding the
original model in a richer model.  Partition the moments  

g(z, ) = ,  
g 1(z, )

g 2(z, )

where g1 is kx1 with G1 = E� g1(z, o) of rank k, and g2 is (m-k)x1 with G2 = E� g2(z, o).  Embed this
in the model 

g*(z, , ) =  

g 1(z, )

g 2(z, )�

where  is a (m-k) vector of additional parameters.  The first-order-condition for GMM estimation
of this expanded model is 

 =  

0

0

G1n G2n

0 Im&k

n 0

0 Im&k

gn(Tan)

gn(Tan) � n

The second block of conditions are satisfied by n = gn(Tan), no matter what Tan, so Tan is determined
by O = Gn ngn(Tan).  This is simply the estimator obtained from the first block of moments, and
coincides with the earlier definition of Tan.  Thus, unconstrained estimation of the expanded model
coincides with restricted estimation of the original model.  Next consider GMM estimation of the
expanded model subject to Ho:  = O.  This constrained estimation obviously coincides with GMM
estimation using all moments in the original model, and yields Tn.  Thus, constrained estimation of
the expanded model coincides with unrestricted estimation of the original model.  

The Distance Metric test statistic for the constraint  = 0 in the expanded model is DMn =
2n[Qn(Tn,0) - Qn(Tn, n)] � 2nQn(Tn), where Qn denotes the criterion as a function of the expanded
parameter list.  One has Qn(Tn,0) � Qn(Tn) from the coincidence of the constrained expanded model
estimator and the unrestricted original model estimator, and one has Qn(Tan, n) = 0 since the number
of moments equals the number of parameters.  Then, the test statistic 2nQn(Tn) for overidentifying
restrictions is identical to a distance metric test in the expanded model, and hence asymptotically
equivalent to any of the trinity of tests for Ho:  = O in the expanded model.  

We give four examples of econometric problems that can be formulated as tests for
over-identifying restrictions: 

Example 1.  If y = x +� with E(�|x) = 0, E(�2|x) = 2, then the moments

g1(z, ) =  
x(y�x )

(y�x )2 � 2

can be used to estimate  and 2.  If � is normal, then these GMM estimators are MLE.   Normality
can be tested via the additional moments that give skewness and kurtosis,



     11 Paul Ruud contributed substantially to this section.
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g2(x, ) = .  
(y�x )3/ 3

(y�x )4/ 4 � 3

Example 2.  In the linear model y = xb+� with E(�|x) = 0 and E(�t�s|x) = 0 for t�s, but with
possible heteroskedasticity of unknown form, one gets the OLS estimates b of  and V(b) = s2(X�X)-1

under the null hypothesis of homoskedasticity.  A test for homoskedasticity can be based on the
population moments 0 = E vecu[x�x(�2- 2)], where "vecu" means the vector formed from the upper
triangle of the array.  The sample value of this moment vector is 

vecu ,1
n�

n

t'1
xt�xt (yt�xt )2 � s 2

the difference between the White robust estimator and the standard OLS estimator of vecu[X� X].

Example 3.  If l(z, ) is the log likelihood of an observation, and Tn is the MLE, then an
additional moment condition that should hold if the model is specified correctly is the information
matrix equality 

0 = E � l(z, o) + E� l(z, o)� l(z, o)�. 
  

The sample analog is White’s information matrix test, which then can be interpreted as a GMM test
for over-identifying restrictions.
  

Example 4.  In the nonlinear model y = h(x, ) + � with E(�|x) = 0, and Tn a GMM estimator
based on moments w(x)(y-h(x, )), where w(x) is some vector of functions of x, suppose one is
interested in testing the stronger assumption that � is independent of x.  A necessary and sufficient
condition for independence is E[w(x) - Ew(x)]f(y- h(x, o)) = 0 for every function f and vector of
functions w for which the moments exist.  A specification test can be based on a selection of such
moments.   

8. SPECIFICATION TESTS IN LINEAR MODELS11

GMM tests for over-identifying restrictions have particularly convenient forms in linear models.
Three standard specification tests will be shown to have this interpretation.  We will use projections
and a few of their properties in the following discussion; a more detailed discussion of projections
is given in the Appendix to this chapter.  Let PX = X(X�X)�X denote the projection matrix from 
n

onto the linear subspace � spanned by a n×p array X; note that it is idempotent.  (We use a
Moore-Penrose generalized inverse in the definition of PX to handle the possibility that X is less than
full rank; see the Appendix.)  Let QX = I - PX denote the projection matrix onto the linear subspace
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orthogonal to �.  If � is a subspace generated by an array X and � is a subspace generated by an
array W = [X Z] that contains �, then PXPW = PWPX = PX and QXPW = PW - PX.

Omitted Variables Test: Consider the regression model y = X  + �, where y is n×1, X is n×k,
E(��X) = 0, and E(����X) = 2I.  Suppose one has the hypothesis Ho: 1 = 0, where 1 is a p×1
subvector of , and let X* denote the n×(k-p) array of variables whose coefficients are not
constrained under the null hypothesis.  Define u = y - Xb to be the residual associated with an
estimator b of .  The GMM criterion is then 2nQ = u�X(X�X)-1X�u/ 2.  The projection matrix PX �
X(X�X)-1X� that appears in the center of this criterion can obviously be decomposed as PX � PX* +
(PX - PX*).  Under Ho, u = y - X2b2 and X�u can be interpreted as k = p + q over-identifying moments
for the q parameters 2.  Then, the GMM test statistic for over-identifying restrictions is the minimum

value 2nQn* in b2 of u�PXu/ 2.  But PXu = PX* u + (PX - PX*)y and u� PX*u = 0 (at the OLSminb2

estimator under Ho that makes u orthogonal to X2).  Then 2nQn = y�(PX - PX*)y/ 2.  The unknown
variance 2 in this formula can be replaced by any consistent estimator s2, in particular, the estimated
variance of the disturbance from either the restricted or the unrestricted regression, without altering
the asymptotic distribution, which is 2(q) under the null hypothesis.

The statistic 2nQn has three alternative interpretations.  First, 

2nQn = y�PXy/ 2 - y�PX* y/ 2 = ,
SSRX2

� SSRX

2

which is the difference of the sum of squared residuals from the restricted regression under Ho and
from the unrestricted regression, normalized by 2.  This is a large-sample version of the usual
finite-sample F-test for Ho.  Second, note that the fitted value of the dependent variable from the
restricted regression is �o = PX* y, and from the unrestricted regression is �u = PXy, so that

2nQn = (�o��o - �u��u)/
2 = (�o - �u)�(�o - �u)/

2 = ��o -�u�
2/ 2. 

Then, the statistic is calculated from the distance between the fitted values of the dependent variable
with and without Ho imposed.  Note that it can be computed from fitted values without any
covariance matrix calculation.  Third, let bo denote the GMM estimator restricted by Ho and bu denote
the unrestricted GMM estimator.  Then, bo consists of the OLS estimator for 2 and the hypothesized
value 0 for 1, while bu is the OLS estimator for the full parameter vector.  Note that �o = Xbo and
�u = Xbu, so that �o - �u = X(bo - bu).  Then

  2nQn = (bo - bu)�(X�X/ 2)(bo - bu) = (bo - bu)�V(bu)
-1(bo - bu).

 

This is the Wald statistic W3n.  From the equivalent form W2n of the Wald statistic, this can also be
written as a quadratic form 2nQn = b1,u�V(b1,u)

-1b1,u, where b1,u is the subvector of unrestricted
estimates for the parameters that are zero under the null hypothesis. 
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Two other important cases of specification tests in linear models are discussed in the following
chapters.  Endogeneity tests are discussed in the chapter on instrumental variables, and tests for over-
identifying restrictions are discussed in the chapter on simultaneous equations.

APPENDIX

Projections:  Consider a Euclidean space 
n of dimension n, and suppose X is a n×p array with
columns that are vectors in this space.  Let � denote the linear subspace of 
n that is spanned or
generated by X.; and i.e., the space formed by all linear combinations of the vectors in X.  Every
linear subspace can be identified with an array such as X.  The dimension of the subspace is the rank
of X.  (The array X need not be of full rank, although if it is not, then a subarray of linearly
independent  columns also generates �.)  A given X determines a unique subspace, so that X
characterizes the subspace.  However, any set of vectors contained in the subspace that form an array
with the rank of the subspace, in particular any array XA with rank equal to the dimension of X, also
generates �.  Then, X is not a unique characterization of the subspace it generates.

The projection of a vector y in 
n into the subspace � is defined as the point v in � that is the
minimum Euclidean distance from y.  Since each vector v in � can be represented as a linear
combination X  of an array X that generates �, the projection is characterized by the value of  that
minimizes (y-X )�(y-X ).  The solution to this problem is the OLS estimator � = (X�X)�X�y and v
= X� = X(X�X)�X�y.  In these formulas, we use (X�X)� rather than (X�X)-1; the former denotes the
Moore-Penrose generalized inverse, and is defined even if X is not of full rank (see below).   The
array PX = X(X�X)�X� is termed the projection matrix for the subspace �; it is the linear
transformation in 
n that maps any vector in the space into its projection v in �.  The matrix PX is
idempotent (i.e., PXPX = PX and PX = PX�), and every idempotent matrix can be interpreted as a
projection matrix.  These observations have two important implications: First, the projection matrix
is uniquely determined by X, so that starting from a different array that generates �, say an array S
= XA, implies PX = PS.  (One could use the notation P

;
 rather than PX to emphasize that the

projection matrix depends only on the subspace, and not on any particular set of vectors that generate
�.)  Second, if a vector y is contained in �, then the projection into � leaves it unchanged, PXy = y.

Define QX = I - PX = I - X(X�X)-1X�; it is the projection to the subspace orthogonal to that
spanned by X.  Every vector y in 
n is uniquely decomposed into the sum of its projection PXy onto
� and its projection QXy onto the subspace orthogonal to �.  Note that PXQX = 0, a property that
holds in general for two projections onto orthogonal subspaces.

If � is a subspace generated by an array X and � is a subspace generated by an array W = [X
Z] that contains X, then � � �.  This implies that PXPW = PWPX = PX; i.e., a projection onto a
subspace is left invariant by a further projection onto a larger subspace, and a two-stage projection
onto a large subspace followed by a projection onto a smaller one is the same as projecting directly
onto the smaller  one.  The subspace of � that is orthogonal to � is generated by QXW; i.e., it is the
set of linear combinations of the residuals, orthogonal to X, obtained by regressing W on X.  Note
that any y in 
n has a unique decomposition PXy + QXPWy + QWy into the sum of projections onto
three mutually orthogonal subspaces, �, the subspace of � orthogonal to �, and the subspace
orthogonal to �.  The projection QXPW can be rewritten QXPW = PW - PX = PWQX = QXPWQX, or
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since QXW = QX[X  Z] = [0  QXZ], QXPW =  =  = QXZ(Z�QXZ)�Z�QX.  This establishesPQXW PQXZ

that PW and QX commute.  This condition is necessary and sufficient for the product of two
projections to be a projection; equivalently, it implies that QXPW is idempotent since (QXPW)(QXPW)
= QX(PWQX)PW = QX(QXPW)PW = QXPW.

Generalized Inverses:  Some test statistics are conveniently defined using generalized inverses.
This section gives a constructive definition of a generalized inverse, and lists some of its properties.
A k×m matrix A� is a Moore-Penrose generalized inverse of a m×k matrix A if it has three
properties: 

     (i) AA�A = A, 
     (ii) A�AA� = A� 
     (iii) AA� and A�A are symmetric 

There are other generalized inverse definitions that have some, but not all, of these properties; in
particular A+ will denote any matrix that satisfies (i), or AA+A = A. 

First, a method for constructing the generalized inverse is described, and then some of the
implications of the definition are developed.  The construction is called the singular value
decomposition (SVD) of a matrix, and is of independent interest as a tool for finding the eigenvalues
and eigenvectors of a symmetric matrix, and for calculation of inverses of moment matrices of data
with high multicollinearity; see Press et al (1986) for computational algorithms and programs.

Lemma 1.  Every real m×k matrix A of rank r can be decomposed into a product A = UDV�  
where D is a r×r diagonal matrix with positive non-increasing elements down the diagonal, and U
and V are column-orthonormal matrices of respective dimension m×r and k×r; i.e., U�U = Ir = V�V.

  Proof: The m×m matrix AA� is symmetric and positive semidefinite.  Then, there exists a m×m
orthonormal matrix W, partitioned W = [W1 W2] with W1 of dimension m×r, such that W1�(AA�)W1

= G is diagonal with positive, non-increasing diagonal elements, and W2�(AA�)W2 = 0, implying
A�W2 = 0.  Define D from G by replacing the diagonal elements of G by their positive square roots.
Note that W�W = I = WW� � W1 W1� + W2W2�.   Define U = W1 and V� = D-1U�A.  Then, U�U = Ir

and V�V = D-1U�AA�UD-1 = D-1GD-1 = Ir.   Further, A = (Im-W2W2�)A = UU�A = UDV�.  This
establishes the decomposition.  �

Note that if A is symmetric, then U is the array of eigenvectors of A corresponding to the
non-zero roots, so that A�U = UD1, with D1 the r×r diagonal matrix with the non-zero eigenvalues
in descending magnitude down the diagonal.  In this case, V = A�UD-1 = UD1D

-1.  Since the elements
of D1 and D are identical except possibly for sign, the columns of U and V are either equal (for
positive roots) or reversed in sign (for negative roots). 
 

Lemma 2.  The Moore-Penrose generalized inverse of a m×k matrix A (which has a SVD A =
UDV�) is the matrix AG = VD-1U, where V is k×r, D is r×r, and U is r×m.  Let A+ denote any matrix,
including AG, that satisfies AA+A = A.   These matrices satisfy:

(1) A+ = A-1 if A is square and non-singular.  
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(2) The system of equations Ax = y has a solution if and only if y = AA+y, and the linear
subspace of all solutions is the set of vectors x = A+y + [I - A+A]z for all z  
k.  
(3) AA+ and A+A are idempotent.  
(4) If A is idempotent, then A = AG .  
(5) If A = BCD with B and D nonsingular, then A� = D-1 C-B-1, and any matrix A+ = D-1C+B-1

satisfies AA+A = A.  
(6) (A�)G = (AG)� 
(7) (A�A)G = AG(AG)� 
(8) (AG)�= A = AA�(AG)� = (AG)�A�A.  

(9) If A = Ai with Ai�Aj = 0 and AiAj� = 0 for i � j, then AG =  Ai
G.  �

i
�

i

Lemma 3.  If A is square, symmetric, and positive semidefinite of rank r, then 
(1) There exist Q positive definite and R idempotent of rank r such that A = QRQ  and
A� = Q-1RQ-1.
(2) There exists a k×r column-orthonormal matrix U such that U�AU = D is non-singular
diagonal and AG = U(U�AU)-1U�.  
(3) A has a symmetric square root B = A1/2, and AG = BGBG.  

  Proof: Let W = [U W2] be an orthogonal matrix diagonalizing A.  Then, U�AU = D, a diagonal

matrix of positive eigenvalues, and AW2 = 0.  Define Q = W W�, R = WW�, and B =
D 1/2 0

0 Im&r

UD1/2U�.  �

Lemma 4.  Suppose y ~ N( ,A), with A of rank r, and let A = S1/2TS1/2 be a decomposition of A
in terms of a positive definite matrix S and an idempotent matrix T of rank r. Suppose  is contained
in the space spanned by A; i.e., TS-1/2  = S-1/2 ., Then y�S-1y and y�AGy are identical, and are
distributed noncentral chi-square with r degrees of freedom and noncentrality parameter �AG . 

Proof: Let W = [U W2] be an orthonormal matrix that diagonalizes A, as in the proof of Lemma 3,
with U�AU = D, a positive diagonal r×r matrix, and W�AW2 = 0, implying AW2 = 0.  Then, the

nonsingular transformation z = W�y has mean  and covariance matrix
D &1/2 0

0 I

D &1/2U )A

0

, so that z1 = D-1/2U�y is distributed N(D-1/2U�A ,Ir), z2 = W2y = 0, implying W�y = [D1/2z1

I 0

0 0

0].  It is standard that z�z has a noncentral chi-square distribution with r degrees of freedom and
noncentrality parameter �AUD-1U�A  = �A .  The condition A = AA+A implies
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U�AU = U�AWW�A+WW�AU, or D = [D|0]W�A+W[D 0]� = D(U�A+U)D.  Hence, U�A+U = D-1.
Then 

y�A+y = y�WW�A+WW�y = [z1�D
1/2 0](W�A+W)[D1/2 z1�0]� 

= z1�D
1/2(U�A+U)D1/2z1 = z1�z1.  �
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CHAPTER 4.  INSTRUMENTAL VARIABLES

1. INTRODUCTION

Consider the linear model y = X  + �, where y is n×1, X is n×k,  is k×1, and � is n×1.  Suppose
that contamination of X, where some of the X variables are correlated with �, is suspected.  This can
occur, for example, if � contains omitted variables that are correlated with the included variables,
if X contains measurement errors, or if X contains endogenous variables that are determined jointly
with y.

OLS Revisited: Premultiply the regression equation by X� to get 

(1)                                          X�y = X�X  + X��. 

One can interpret the OLS estimate bOLS as the solution obtained from (1) by first approximating X��
by zero, and then solving the resulting k equations in k unknowns,

(2)                                         X�y = X�XbOLS, 

for the unknown coefficients.  Subtracting (1) from (2), one obtains the condition

(3)                                         X�X(bOLS - ) = X��, 

and the error in estimating  is linear in the error caused by approximating X�� by zero.  If X�X/n
�p A positive definite and X��/n �p 0, (3) implies the result that bOLS �p .  What makes OLS
consistent when X��/n �p 0 is that approximating X�� by zero is reasonably accurate in large samples.
On the other hand, if one has instead X��/n �p C � 0, then bOLS is not consistent for , and instead
bOLS �p  + A-1C.

Instrumental Variables: Suppose there is a n×j array of variables W, called instruments, that
have two properties: (i) These variables are uncorrelated with �; we say in this case that these
instruments are clean.  (ii) The matrix of correlations between the variables in X and the variables
in W is of maximum possible rank (= k); we say in this case that these instruments are fully
correlated.  Call the instruments proper if they satisfy (i) and (ii).  The W array should include any
variables from X that are themselves clean.  To be fully correlated, W must include at least as many
variables as are in X, so that j 	 k.  Another way of stating this necessary condition is that the
number of instruments in W that are excluded from X must be at least as large as the number of
contaminated variables that are included in X.

Instead of premultiplying the regression equation by X� as we did for OLS, premultiply it by
R�W�, where R is a j×k weighting matrix that we get to choose.  (For example, R might select a
subset of k from the j instrumental variables, or might form k linear combinations of these variables.
The only restriction is that R must have rank k.) This gives
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(4)                                         R�W�y = R�W�X  + R�W��. 

The idea of an instrumental variables (IV) estimator of  is to approximate R�W�� by zero, and solve

(5)                                        R�W�y = R�W�X bIV

for bIV = [R�W�X]-1R�W�y.  Subtract (4) from (5) to get the IV analog of the OLS relationship (3),

(6)                                        R�W�X(bIV - ) = R�W��. 

If R�W�X/n converges in probability to a nonsingular matrix and R�W��/n �p 0, then bIV �p .  Thus,
in problems where OLS breaks down due to correlation of right-hand-side variables and the
disturbances, you can use IV to get consistent estimates, provided you can find proper instruments.

The idea behind (5) is that W and � are orthogonal in the population, a generalized moment
condition.  Then, (5) can be interpreted as the solution of a generalized method of moments problem,
based on the sample moments W�(y - X ).  The properties of the IV estimator could be deduced as
a special case of the general theory of GMM estimators.  However, because the linear IV model is
such an important application in economics, we will give IV estimators an elementary self-contained
treatment, and only at the end make connections back to the general GMM theory.

2. OPTIMAL IV ESTIMATORS

If there are exactly as many instruments as there are explanatory variables, j = k, then the IV
estimator is uniquely determined, bIV = (W�X)-1W�y, and R is irrelevant.  However, if j > k, each R
determines a different IV estimator.  What is the best way to choose R? An analogy to the
generalized least squares problem provides an answer: Premultiplying the regression  equation by
W� yields a system of j > k equations in k unknown ’s, W�y = W�X  + W��.  Since there are more
equations than unknowns, we cannot simply approximate all the W�� terms by zero simultaneously,
but will have to accommodate at least j-k non-zero residuals.  But this is just like a regression
problem, with j observations, k explanatory variables, and disturbances  = W��.  Suppose the
disturbances � have a covariance matrix 2 , and hence the disturbances  = W�� have a non-scalar
covariance matrix 2W� W.  If this were a conventional regression satisfying E( �W�X) = 0, then
we would know that the generalized least squares (GLS) estimator of  would be BLUE; this
estimator is

(7)                            bGLSIV = [X�W(W� W)-1W�X]-1X�W(W� W)-1W�y.   

This corresponds to using the weighting matrix R = (W� W)-1W�X.  In truth, the conditional
expectation of  given W�X is not necessarily zero, but clean instruments will have the property that
(W�X)��/n �p 0 because W and � are uncorrelated in the population.  This is enough to make the
analogy work, so that (7) gives the IV estimator that has the smallest asymptotic variance among
those that could be formed from the instruments W and a weighting matrix R.

If one makes the usual assumption that the disturbances � have a scalar covariance matrix,  = I,
then the best IV estimator reduces to
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(8)                            b2SLS = [X�W(W�W)-1W�X]-1X�W(W�W)-1W�y. 

This corresponds to using the weighting matrix R = (W�W)-1W�X.  But this formula provides another
interpretation of (8).  If you regress each variable in X on the instruments, the resulting OLS
coefficients are (W�W)-1W�X, the same as R.  Then, the best linear combination of instruments WR
equals the fitted value X* = W(W�W)-1W�X of the explanatory variables from a OLS regression of
X on W.  Further, you have X�W(W�W)-1W�X = X�X* = X*�X* and X�W(W�W)-1W�y = X*�y, so that
the IV estimator (8) can also be written

(9)                             b2SLS = (X*�X)-1X*�y = (X*�X*)-1X*�y. 

This provides a two-stage least squares (2SLS) interpretation of the IV estimator:  First, a OLS
regression of the explanatory variables X on the instruments W is used to obtain fitted values X*, and
second a OLS regression of y on X* is used to obtain the IV estimator b2SLS.  Note that in the first
stage, any variable in X that is also in W will achieve a perfect fit, so that this variable is carried over
without modification in the second stage.

The 2SLS estimator (8) or (9) will no longer be best when the scalar covariance matrix
assumption E��� = 2I fails, but under fairly general conditions it will remain consistent.  The best
IV estimator (7) when E��� = 2  can be reinterpreted as a conventional 2SLS estimator applied to
the transformed regression Ly = LX  +  using the instruments (L�)-1W, where L is a Cholesky array
that satisfies L L� = I.   When  depends on unknown parameters, it is often possible to use a
feasible generalized 2SLS procedure (FG2SLS): First estimate  using (8) and retrieve the residuals
u = y - Xb2SLS.  Next use these residuals to obtain an estimate * of .   Then find a Cholesky
transformation L satisfying L *L� = I, make the transformations y = Ly, X = LX, and W = (L�)-1W,
and do a 2SLS regression of y on X using W as instruments.  This procedure gives a feasible form
of (7), and is also called three-stage least squares (3SLS).

3. STATISTICAL PROPERTIES OF IV ESTIMATORS

IV estimators can behave badly in finite samples.  In particular, they may fail to have moments.
Their appeal relies on their behavior in large samples, although an important question is when
samples are large enough so that the asymptotic approximation is reliable.  We first discuss
asymptotic properties, and then return to the issue of finite-sample properties.  

We already made an argument that IV estimators are consistent, provided some limiting
conditions are met.  We did not show that IV estimators are unbiased, and in fact they usually are
not.  An exception where bIV is unbiased is if the original regression equation actually satisfies
Gauss-Markov assumptions.  Then, no contamination is present, IV is not really needed, and if IV
is used, its mean and variance can be calculated in the same way this was done for OLS, by first
taking the conditional expectation with respect to �, given X and W.  In this case, OLS is BLUE, and
since IV is another linear (in y) estimator, its variance will be at least as large as the OLS variance.

We show next that IV estimators are asymptotically normal under some regularity conditions,
and establish their asymptotic covariance matrix.  This gives a relatively complete large-sample
theory for IV estimators.  Let 2  be the covariance matrix of �, given W, and assume that it is finite
and of full rank.  Make the assumptions:
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[1] rank(W) = j 	 k
[2a] W�W/n �p H, a positive definite matrix
[2b] W� W/n �p F, a positive definite matrix
[3] X�W/n �p G, a matrix of rank k
[4] W��/n �p 0
[5] n-1/2W���d N(0, 2F)

Assumption [1] can always be met by dropping linearly dependent instruments, and should be
thought of as true by construction.  Assumption [1] implies that W�W/n and W� W/n are positive
definite; Assumption [2] strengthens these to hold in the limit.   Proper instruments have X�W/n of
rank k from the fully correlated condition and E(W��/n) = 0 by the clean condition.  Assumption [3]
strengthens the fully correlated condition to hold in the limit.  Assumption [4] will usually follow
from the condition that the instruments are clean by applying a weak law of large numbers.   For
example, if the � are independent and identically distributed with mean zero and finite variance,
given W, then Assumption [2a] plus the Kolmogorov WLLN imply Assumption [4].  Assumption
[5] will usually follow from Assumption [2b] by applying a central limit theorem.  Continuing the
i.i.d. example, the Lindeberg-Levy CLT implies Assumption [5].  There are WLLN and CLT that
hold under much weaker conditions on the �’s, requiring only that their variances and correlations
satisfy some bounds, and these can also be applied to derive Assumptions [4] and [5].  Thus, the
statistical properties of IV can be established in the presence of many forms of heteroskedasticity and
serial correlation.

Theorem: Assume that [1], [2b], [3] hold, and that an IV estimator is defined with a weighting
matrix Rn that may depend on the sample n, but which converges to a matrix R of rank k.  If [4]
holds, then bIV �p .  If both [4] and [5] hold, then

(10)                         n1/2(bIV - ) �d N(0, 2(R�G�)-1R�FR(GR)-1). 

Suppose Rn = (W�W)-1W�X and [1]-[5] hold.  Then the IV estimator specializes to the 2SLS
estimator b2SLS given by (8) which satisfies b2SLS �p  and 

(11)                        n1/2(b2SLS - ) �d N(0, 2(GH-1G�)-1(GH-1FH-1G�)(GH-1G�)-1). 

Suppose Rn = (W� W)-1W�X and [1]-[5] hold.  Then the IV estimator specializes to the  GLSIV
estimator bGLSIV given by (7) which satisfies bGLSIV �p  and 

(12)                           n1/2(bGLSIV - ) �d N(0, 2(GF-1G�)-1). 

Further, the GLSIV estimator is the minimum asymptotic variance estimator; i.e.,
2(R�G�)-1R�FR(GR)-1 - 2(GF-1G�)-1 is positive semidefinite.  If  = I, then the 2SLS and GLSIV

estimators are the same, and the 2SLS estimator has limiting distribution (12) and is
asymptotically best among all IV estimators that use instruments W.
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The first part of this theorem is proved by dividing (6) by n and using assumptions [2], [3], and
[4], and then dividing (6) by n1/2 and applying assumptions [2], [3], and [5].  Substituting the
definitions of R for the 2SLS and GLSIV versions then gives the asymptotic properties of these
estimators.  Finally, a little matrix algebra shows that the GLSIV estimator has minimum asymptotic
variance among all IV estimators: Start with the matrix I - F-1/2G�(GF-1G�)-1GF-1/2 which equals its
own square, so that it is idempotent, and therefore positive semidefinite.  Premultiply this idempotent
matrix by (R�G�)-1R�F1/2, and postmultiply it by the transpose of this matrix; the result remains
positive semidefinite, and equals (R�G�)-1R�FR(GR)-1 - (GF-1G�)-1.  This establishes the result.

In order to use the large-sample properties of bIV for hypothesis testing, it is necessary to find
a consistent estimator for 2.  The following estimator works:  Define IV residuals 

                      u = y - XbIV = [I - X(R�W�X)-1R�W�]y = [I - X(R�W�X)-1R�W�]�,

the Sum of Squared Residuals SSR = u�u, and s2 = u�u/(n-k).  If ���/n �p 
2, then s2 is consistent for

2.  To show this, simply write out the expression for u�u/n, and take the probability limit:

(13)                       plim u�u/n = plim ���/n - 2 plim [��W/n]R([X�W/n]R)-1[X��/n] 
                                   + [��W/n]R([X�W/n]R)-1[X�X/n](R�[W�X/n])-1R�[W��/n]

                      = 2 - 2�0�R�(GR)-1C + 0�R�(GR)-1A(R�G�)-1R��0 = 2. 

We could have used n-k instead of n in the denominator of this limit, as it makes no difference in
large enough samples.  The consistency of the estimator s2 defined above holds for any IV estimator,
and so holds in particular for the 2SLS or GLSIV estimators.  Note that this consistent estimator of

2 substitutes the IV estimates of the coefficients into the original equation, and uses the original
values of the X variables to form the residuals.  When working with the 2SLS estimator, and
calculating it by running the two OLS regression stages, you might be tempted to estimate 2 using
a regression program printed values of SSR or the variance of the second stage regression, which is
based on the residuals û = y - X*b2SLS.  It tuns out that this estimator is not consistent for 2:  A few
lines of matrix manipulation shows that û�û/n �p 

2 + �[A - GF-1G�] .  The second term is positive
semidefinite, so this estimator is asymptotically biased upward.

Suppose E��� = 2I, so that 2SLS is best among IV estimators using instruments W.  The sum
of squared residuals SSR = u�u, where u = y - Xb2SLS, can be used in hypothesis testing in the same
way as in OLS estimation.  For example, consider the hypothesis that 2 = 0, where 2 is a r×1
subvector of .  Let SSR0 be the sum of squared residuals from the 2SLS regression of y on X with

2 = 0 imposed, and SSR1 be the sum of squared residuals from the unrestricted 2SLS regression of
y on X.  Then, [(SSR0 - SSR1)/m]/[SSR1/(n-k)] has an approximate F-distribution under the null with
m and n-k degrees of freedom.  There are several cautions to keep in mind when considering use of
this test statistic.  This is a large sample approximation, rather than an exact distribution, because
it is derived from the asymptotic normality of the 2SLS estimator.  Its actual size in small samples
could differ substantially from its nominal (asymptotic) size.  Also, the large sample distribution of
the statistic assumed that the disturbances � have a scalar covariance matrix.  Otherwise, it is
mandatory to do a FGLS transformation before computing the test statistic above.  For example, if
y = X  + � represents a stacked system of equations such as structural equations in a simultaneous
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equations system, or if � exhibits serial correlation, as may be the case in time-series or panel data,
then one should estimate  consistently using 2SLS, retrieve the residuals u = y - Xb2SLS and use them
to make an estimate * of  = E���, make the transformations y = Ly, X = LX,  = L�, and W =
(L�)-1W where L is a Cholesky matrix such that L *L� is proportional to an identity matrix, and
finally apply 2SLS to the regression y = X  +  with W as instruments and carry out the hypothesis
testing using this model.  The reason for the particular transformation of W is that one has W�  =
W��, so that the original property that the instruments were uncorrelated with the disturbances is
preserved.  The 3SLS procedure just described corresponds to estimating  using a feasible version
of the GLSIV estimator.

What are the finite sample properties of IV estimators? Because you do not have the condition
E(��X) = 0 holding in applications where IV is needed, you cannot  get simple expressions for the
moments of bIV = [R�W�X]-1R�W�y =  + [R�W�X]-1R�W�� by first taking expectations of �
conditioned on X and W.  In particular, you cannot conclude that bIV is unbiased, or that it has a
covariance matrix corresponding to its asymptotic covariance matrix.  In fact, bIV can have very bad
small-sample properties.  To illustrate, consider the case where the number of instruments equals the
number of observations, j = n.  (This can actually arise in dynamic models, where often all lagged
values of the exogenous variables are legitimate instruments.  It can also arise when the candidate
instruments are not only uncorrelated with �, but satisfy the stronger property that E(��w) = 0.  In
this case, all functions of w are also legitimate instruments.)  In this case, W is a square matrix, and
 

b2SLS = [X�W(W�W)-1W�X]-1X�W(W�W)-1W�y 
= [X�WW-1W�-1W�X]-1X�WW-1W�-1W�y = [X�X]-1X�y = bOLS. 

We know OLS is inconsistent when E(��X) = 0 fails, so clearly the 2SLS estimator is also biased
if we let the number of instruments grow linearly with sample size.  This shows that for the IV
asymptotic theory to be a good approximation, n must be much larger than j.  One rule-of-thumb for
IV is that n - j should exceed 40, and should grow linearly with n in order to have the large-sample
approximations to the IV distribution work well.

Considerable technical analysis is required to characterize the finite-sample distributions of IV
estimators analytically; the names associated with this problem are Nagar, Phillips, and Mariano.
However, simple numerical examples provide a picture of the situation.  Consider first a regression
y = x  + � where there is a single right-hand-side variable, and a single instrument w, and assume
x, w, and � have the simple joint distribution given in the table below, where  is the correlation of
x and w,  is the correlation of x and �, and 0 � ,  and  + 2  < 1:

x w � Prob
1 1 1 (1+ )/8
-1 1 1 (1- )/8
1 -1 1 (1- +2 )/8
-1 -1 1 (1+ -2 )/8
1 1 -1 (1+ )/8
-1 1 -1 (1- )/8
1 -1 -1 (1- -2 )/8
-1 -1 -1 (1+ +2 )/8
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These random variables then satisfy Ex = Ew = E� = 0, Ex� = , Exw = , and Ew� = 0, and their

products have the joint distribution

xw w� x� Prob
1 1 1 (1+ + )/4
-1 -1 1 (1- + )/4
-1 1 -1 (1- - )/4
1 -1 -1 (1+ - )/4

Least squares is biased if  � 0, and IV is consistent if  � 0.   Suppose n = 2.  Then the exact
distribution of the relevant random variables is

�xw �w� �x� bOLS- bIV- Prob
2 2 2 1 1 (1+ + )2/16 
0 0 2 1 0 ((1+ )2- 2)/8
0 2 0 0 +� (1-( + )2)/8
2 0 0 0 0 ((1+ )2- 2)/8
-2 -2 2 1 1 (1- + )2/16
-2 0 0 0 0 ((1- )2- 2)/8
0 -2 0 0 -� (1-( - )2)/8
-2 2 -2 -1 -1 (1- - )2/16
0 0 -2 -1 0 ((1- )2- 2)/8
2 -2 -2 -1 -1 (1+ - )2/16

Note first that there is a positive probability that bIV is not defined; hence, technically it has no finite
moments.  Collecting terms from this table, the exact CDF of bOLS -  and bIV -  satisfy

c Prob(bOLS- �c) Prob(bIV- �c)
-� 0 (1-( - )2)/8
-1 (1- )2/4 (1- (1- ))/4
0 (1- )(3+ )/4 (3- (1- ))/4
1 1 ( + )2/2

+� 1 1

Also, Prob(�bIV- � > �bOLS- �) = (1- 2- 2)/4.  Then for this small sample there is a substantial
probability that the IV estimator will be further away from the true value than the OLS estimator.
As an exercise, carry through this example for n = 3, and show that in this case bIV will always exist,
but there continues to be a large probability that bOLS is closer to  than bIV.  As n increases, the
probability that bOLS is closer than bIV shrinks toward zero, but there is always a positive probability
that the IV estimator is worse than the OLS estimator, and for n odd a positive probability that the
IV estimator is infinite, so it never has any finite moments.

The second example is the one-variable model y = x  + � with one instrument w where (x,w,�)
are jointly normal with zero means, unit variances, Ewx = , Ex� = , and Ew� = 0.  A difficult
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technical analysis can be used to derive the exact distribution of the IV estimator in terms of a
non-central Wishart distribution.  However, for purposes of getting an idea of how IV performs, it
is much simpler to do a small computer simulation.  For the values  = .2 and  = .8, the table below
gives the results of estimating a true value  = 1 in 1000 samples of sizes n = 5, 10, 20, or 40.
Because the denominator in the IV estimator is small with some probability, the IV estimator tends
to produce large deviations that lead to a large mean square error (MSE).  In this example, the
probability that the IV estimator is closer to  than the OLS estimator exceeds 0.5 only for samples
of size 20 or greater, and the IV estimator has a smaller MSE only for samples of size 40 or larger.
The smaller  or , the larger the sample size needed to make IV better than OLS in terms of MSE.

Sample Mean Bias Mean Bias MSE MSE Frequency of
Size in bOLS in bIV of bOLS of bIV bIV as good as bOLS

(1000 samples) (1000 samples) (1000 samples) (1000 samples) (1000 samples)

5 0.18 -0.15 0.25 63.5 39.6%
10 0.19 -0.04 0.15 0.70 45.7%
20 0.20 -0.02 0.09 0.10 54.6%
40 0.20 -0.00 0.07 0.04 69.2%

In practice, in problems where sample size minus the number of instruments exceeds 40, the
asymptotic approximation to the distribution of the IV estimator is reasonably good, and one can use
it to compare the OLS and IV estimates.  To illustrate, continue the example of a regression in one
variable, y = x  + �.   Suppose as before that x and � have a correlation coefficient  � 0, so that OLS
is biased, and suppose that there is a single proper instrument w that is uncorrelated with � and has
a correlation  � 0 with x.  Then, the OLS estimator is asymptotically  normal with mean  + 

g
/ x

and variance 
g

2/n x
2.  The 2SLS estimator is asymptotically normal with mean  and variance

g

2/n x
2
 

2.  The mean squares of the two estimators are then, approximately,

                                 MSEOLS = ( 2 + 1/n)
g

2/ x
2

                                 MSE2SLS = 
g

2/n x
2

 
2.

Then, 2SLS has a lower MSE than OLS when

                                1 < 2 2n/(1- 2) � (b2SLS-bOLS)
2/(V(b2SLS)-V(bOLS)),

or approximately n > (1 - 2)/ 2 2.  When  = 0.8 and  = 0.2, this asymptotic approximation suggests
that a sample size of about 14 is the tip point where bIV should be better than b in terms of MSE.
However, the asymptotic formula underestimates the probability of very large deviations arising from
a denominator in bIV that is near zero, and as a consequence is too quick to reject bOLS.  The
right-hand-side of this approximation to the ratio of the MSE is the Hausman test statistic for
exogeneity, discussed below; for this one-variable case, one should reject the null hypothesis of
exogeneity when the statistic exceeds one.  Under the null, the statistic is approximately chi-square
with one degree of freedom, so that this criterion corresponds to a type I error probability of 0.317.
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4. RELATION OF IV TO OTHER ESTIMATORS 

The 2SLS estimator can be interpreted as a member of the family of Generalized Method of
Moments (GMM) estimators.  You can verify by differentiating to get the first-order condition that
the 2SLS estimator of the equation Ly = LX  + L� using the instruments (L�)-1W, where E��� = 2

and L is a Cholesky matrix satisfying L L� = I, solves

(14)                                  Min  (y-X )�W(W� W)-1W�(y-X ). 

In this quadratic form objective function, W�(y-X ) is the moment that has expectation zero in the
population when  is the true parameter vector, and (W� W)-1 is a "distance metric" in the center
of the quadratic form.  Define P = (L�)-1W(W� W)-1W�(L)-1, and note that P is idempotent, and thus
is a projection matrix.  Then, the GMM criterion chooses  to minimize the length of the vector L(y-
X ) projected onto the subspace spanned by P.  The properties of GMM hypothesis testing
procedures follow readily from the observation that L(y-X ) has mean zero and  a scalar covariance
matrix.  In particular, Min  (y-X )�W(W� W)-1W�(y-X )/ 2 is asymptotically chi-squared
distributed with degrees of freedom equal to the rank of P.

It is possible to give the 2SLS estimator a pseudo-MLE interpretation.   Premultiply the
regression equation by W�L-1 to obtain W�y = W�X  + W��.  Now treat W�� as if it were normally
distributed with mean zero and j×j covariance matrix 2W� W, conditioned on W�X.  Then, the log
likelihood of the sample would be

 L = - (j/2) log 2  - (j/2) (½) log 2 - (½) log det(W� W) 
- (1/2 2)(W�y-W�X )�(W� W)-1(W�y-W�X ). 

The first-order condition for maximization of this pseudo-likelihood is the same as the condition
defining the 2SLS estimator.  

5. TESTING EXOGENEITY

Sometimes one is unsure whether some potential instruments are clean.  If they are, then there
is an asymptotic efficiency gain from including them as instruments.  However, if they are not,
estimates will be inconsistent.  Because of this tradeoff, it is useful to have a specification test that
permits one to judge whether suspect instruments are clean or not.  To set the problem, consider a
regression y = X  + �, an array of proper instruments Z, and an array of instruments W that includes
Z plus other variables that may be either clean or contaminated.

Several superficially different problems can be recast in this framework: 
 

(1) The regression may be one in which some right-hand-side variables are known to be
exogenous and others are suspect, Z is an array that contains the known exogenous variables and
other clean instruments, and W contains Z and the variables in X that were excluded from Z
because of the possibility that they might be dirty.  In this case, 2SLS using W reduces to OLS,
and the problem is to test whether the regression can be estimated consistently by OLS.  
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(2) The regression may contain known endogenous and known exogenous variables, Z is an array
that contains the known exogenous variables and other clean instruments, and W is an array that
contains Z and additional suspect instruments from outside the equation.  In this case, one has
a consistent 2SLS estimator using instruments Z, and a 2SLS estimator using instruments W that
is more efficient under the hypothesis that W is exogenous, but inconsistent otherwise.   The
question is whether to use the more inclusive array of instruments.  
(3) The regression may contain known endogenous, known exogenous, and suspect
right-hand-side variables, Z is an array that contains the known exogenous variables plus other
instruments from outside the equation, and W is an array that contains Z plus the suspect
variables from the equation.  The question is whether it is necessary to instrument for the suspect
variables, or whether they are clean and can themselves be used as instruments.
In the regression y = X  + �, you can play it safe and use only the Z instruments.  This gives bQ

= (X�QX)-1X�Qy, where Q = (L�)-1Z(Z� Z)-1Z�(L)-1.  Alternately, you use W, including the suspect
instruments, taking a chance with inconsistency to gain efficiency.  This gives 

                          bP = (X�PX)-1X�Py, where P = (L�)-1W(W� W)-1W�(L)-1.

If the suspect instruments are clean and both estimators are consistent, then bQ and bP should be close
together, as they are estimates of the same ; further, bP is efficient relative to bQ, implying that the
covariance matrix of (bQ - bP) equals the covariance matrix of bQ minus the covariance matrix of bP.
However, if the suspect instruments are contaminated, bP is inconsistent, and (bQ - bP) has a nonzero
probability limit.  This suggests a test statistic of the form 

(15)                                   (bQ - bP)�[V(bQ) - V(bP)]�(bQ - bP), 

where [�]� denotes a generalized inverse, could be used to test if W is clean.  This form is the
exogeneity test originally proposed by Hausman.  Under the null hypothesis that W is clean, this
statistic will be asymptotically chi-square with degrees of freedom equal to the rank of the
covariance matrix in the center of the quadratic form.

Another formulation of an exogeneity test is more convenient to compute, and can be shown (in
one manifestation) to be equivalent to the Hausman test statistic.  This alternative formulation has
the form of an omitted variable test, with appropriately constructed auxiliary variables.  We describe
the test in the case E��� = 2I and leave as an exercise the extension to the case .E��� = 2 .

First do an OLS regression of X on Z and retrieve fitted values X* = QX, where Q = Z(Z�Z)-1Z�.
(This is necessary only for variables in X that are not in Z, since otherwise this step just returns the
original variable.)  Second, using W as instruments, do a 2SLS regression of y on X, and retrieve the
sum of squared residuals SSR1.  Third, do a 2SLS regression of y on X and a subset of m columns
of X* that are linearly independent of X, and retrieve the sum of squared residuals SSR2.  Finally,
form the statistic [(SSR1 - SSR2)/m]/[SSR2/(n-k)].  Under the null hypothesis that W is clean, this
statistic has an approximate F-distribution with m and n-k degrees of freedom, and can be interpreted
as a test for whether the m auxiliary variables from X* should be omitted from the regression.  When
a subset of X* of maximum possible rank is chosen, this statistic turns out to be asymptotically
equivalent to the Hausman test statistic.  Note that if W contains X, then the 2SLS in the second and
third steps reduces to OLS.
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We next show that this test is indeed an exogeneity test.  Consider the 2SLS regression 

                                                 y = X  + X1
*  + , 

where X1
* is a subset of X* = QX such that [X,X1

*] is of full rank.  The 2SLS estimates of the
parameters in this model, using W as instruments, satisfy

     =  =  . 
bP

cP

X�PX X�QX1

X1�QX X1�QX1

&1 X�Py

X1�Qy 0
�

X�PX X�QX1

X1�QX X1�QX1

&1 X�P�

X1�Q�

But X�Q�/n �p plim(X�Z/n)�(plim(Z�Z/n))-1�plim(Z��/n) = 0 by assumptions [1]-[4] when Z is clean.
Similarly, X�P�/n �p GH-1�plim(W��/n) = 0 when W is clean, but X�P�/n �p GH-1�plim(W��/n) � 0
when W is contaminated.  Define

      = . 
X�PX/n X�QX1/n

X1�QX/n X1�QX1/n

&1 A11 A12

A21 A22

From the formula for a partitioned inverse,

A11 = (X�[P - QX1(X1�QX1)
-1X 1�Q]X/n)-1

A22 = (X 1�Q[I - X(X�PX)-1X�]QX1/n)-1

A21 = -(X 1�QX1)
-1X 1�QX�A11 = -A22(X 1�QX)(X�PX)-1 = A12 �

   Hence,

(16)                      cP = A22�{X1�Q�/n - (X1�QX)(X�PX)-1�X�P�/n}. 

If W is clean and satisfies assumptions [4] and [5], then cP �p 0 and n1/2cP is asymptotically normal.
On the other hand, if W is contaminated, then cP has a non-zero probability limit.  Then, a test for
 = 0 using cP is a test of exogeneity.  

The test above can be reinterpreted as a Hausman test involving differences of bP and bQ.  Recall
that bQ =  + (X�QX)-1X�Q� and bP =  + (X�PX)-1X�P�.  Then

(17)               (X�QX)(bQ - bP) = {X�Q�/n - (X�QX)(X�PX)-1�X�P�/n}. 

Then in particular for a linearly independent subvector X1 of X,

   A22(X1�QX)(bQ - bP) = A22{X1�Q�/n - (X1�QX)(X�PX)-1�X�P�/n} = cP.
 

Thus, cP is a linear transformation of (bQ - bP).  Then, testing whether cP is near zero is equivalent to
testing whether a linear transformation of (bQ - bP) is near zero.  When X1 is of maximum rank, this
equivalence establishes that the Hausman test in its original form is the same as the test for cP.

6. EXOGENICITY TESTS ARE GMM TESTS FOR OVERIDENTIFICATION

The Hausman Exogeneity Test.  Consider the regression model y = X  + �, and suppose one
wants to test the exogeneity of p variables X1 in X.  Suppose R is an array of instruments, including
X2; then Z = PRX1 are instruments for X1.  Let W = [Z X] be all the variables that are orthogonal to
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� in the population under the null hypothesis that X and � are uncorrelated.  As in the omitted
variables problem, consider the test statistic for over-identifying restrictions, 2nQn = minbu�PWu/ 2,
where u = y - Xb.  Decompose PW = PX + (PW - PX).  Then u�(PW - PX)u = y�(PW - PX)y and the

minimizing b sets u�PXu = 0, so that 2nQn = y�(PW - PX)y/ 2.  Since PW - PX = , one also hasPQXW

2nQn = y� y.  This statistic is the same as the test statistic for the hypothesis that thePQXW

coefficients of Z are zero in a regression of y on X and Z; thus the test for over-identifying
restrictions is an omitted variables test.  One can also write 2nQn = ��W - �X�

2/ 2, so that a
computationally convenient equivalent test is based on the difference between the fitted values of
y from a regression on X and Z and a regression on X alone.  Finally, we will show that the statistic
can be written

2nQn = (b1,2SLS - b1,OLS)[V(b1,2SLS) - V(b1,OLS)]
-1(b1,2SLS - b1,OLS). 

In this form, the statistic is the Hausman test for exogenicity in the form developed by Hausman and
Taylor, and the result establishes that the Hausman test for exogeneity is equivalent to a GMM test
for over-identifying restrictions.

Several steps are needed to demonstrate this equivalence.  Note that b2SLS = (X�PMX)-1X�PMy,
where M = [Z X2].  Write

b2SLS - bOLS = (X�PMX)-1X�PMy - (X�X)-1X�y 
= (X�PMX)-1[X�PM - X�PMX(X�X)-1X�]y 

= (X�PMX)-1X�PMQXy.   

Since X2 is in M, PMX2 = X2, implying X�PMQX =  =  = . 
X1�PMQX

X2�PMQX

X1�PMQX

X2�QX

X1�PMQX

0

Also, X�PMX =  = .  Then  = (X�PMX)(b2SLS

X1�PMX1 X1�PMX2

X2�PMX1 X2�PMX2

X1�PMX1 X1�X2

X2�X1 X2�X2

X1�PMQXy

0

- bOLS) � .   From the second block of equations, one obtains
X1�PMX1 X1�X2

X2�X1 X2�X2

b1,2SLS � b1,OLS

b2,2SLS � b2,OLS

the result that the second subvector is a linear combination of the first subvector.  This implies that
a test statistic that is a function of the full vector of differences of 2SLS and OLS estimates can be
written equivalently as a function of the first subvector of differences.  From the first block of
equations, substituting in the solution for the second subvector of differences expressed in terms
of the first, one obtains

[X1�PMX1 - X1�X2(X2�X2)
-1X2�X1](b1,2SLS - b1,OLS) = X1�PMQXy 

The matrix on the left-hand-side can be rewritten as X1�PM PMX1, so that QX2
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b1,2SLS - b1,OLS = (X1�PM PMX1)
-1X1�PMQXy. QX2

Next, we calculate the covariance matrix of b2SLS - bOLS, and show that it is equal to the
difference of V(b2SLS) = 2(X�PMX)-1 and V(bOLS) = 2(X�X)-1.  From the formula b2SLS - bOLS =
(X�PMX)-1X�PMQXy, one has V(b2SLS - bOLS) = 2(X�PMX)-1X�PMQXPMX(X�PMX)-1.
On the other hand,

V(b2SLS) - V(bOLS) = 2(X�PMX)-1{X�PMX - X�PMX(X�X)-1X�PMX}(X�PMX)-1

= 2(X�PMX)-1{X�PM[I - X(X�X)-1X�]PMX}(X�PMX)-1 
= 2(X�PMX)-1X�PMQXPMX(X�PMX)-1. 

Thus, V(b2SLS - bOLS) = V(b2SLS) - V(bOLS).  This is a consequence of the fact that under the null
hypothesis OLS is efficient among the class of linear estimators including 2SLS.  Expanding the
center of this expression, and using the results PMX2 = X2 and hence QXPMX2 = 0, one has

X�PMQXPMX = . 

X1�PMQXPMX1 0

0 0

Hence, V(b2SLS) - V(bOLS) is of rank p; this also follows by noting that b2,2SLS - b2,OLS could be written
as a linear transformation of b1,2SLS - b1,OLS.

Next, use the formula for partitioned inverses to show for N = M or N = I that the northwest

corner of is .  Then, 
X1�PNX1 X1�X2

X2�X1 X2�X2

&1

(X1�PNQX2
PNX1)

&1

V(b1,2SLS - b1,OLS) = 2(X1�PM PMX1)
-1X1�PMQXPMX1(X1�PM PMX1)

-1. QX2
QX2

Using the expressions above, the quadratic form can be written

(b1,2SLS - b1,OLS)V(b1,2SLS - b1,OLS)
-1(b1,2SLS - b1,OLS)

= y�QXPMX1(X1�PMQXPMX1)
-1X1�PMQXy/ 2. 

Finally, one has, from the test for over-identifying restrictions,

2nQn = y�(PW - PX)y/ 2 = / 2y�PQXWy

� y�QXPMX1(X1�PMQXPMX1)
-1X1�PMQXy/ 2, 

so that the two statistics coincide.

A Generalized Exogenicity Test: Consider the regression y = X1 1 + X2 2 + X3 3 + �, and the
null hypothesis that X1 is exogenous, where X2 is known to be exogenous, and X3 is known to be
endogenous.  Suppose N is an array of instruments, including X2, that are sufficient to identify the
coefficients when the hypothesis is false.  Let W = [N X1] be the full set of instruments available
when the null hypothesis is true.   Then the best instruments under the null hypothesis are Xo = PWX
� [X1  X2  X3*], and the best instruments under the alternative are Xu = PNX � [X1*  X2  X3*].  The
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test statistic for over-identifying restrictions is 2nQn = y�( - )y/ 2, as in the previous cases.PXo
PXu

This can be written 2nQn = (  - )/ 2, with the numerator the difference in sum ofSSRXo
SSRXu

squared residuals from a OLS regression of y on Xu and a OLS regression of y on Xo.  Also, 2nQn

= �  - �2/ 2, the difference between the fitted values of y from a regression on Xu and a�Xo
�Xu

regression on Xo.  Finally,

2nQn = - ) - )]� - ), (b2SLSo
b2SLSu

)�[V(b2SLSu
V(b2SLSo

(b2SLSo
b2SLSu

an extension of the Hausman-Taylor exogeneity test to the problem where some variables are suspect
and others are known to be exogenous.  One can show that the quadratic form in the center of this
quadratic form has rank equal to the rank of X1, and that the test statistic can be written equivalently
as a quadratic form in the subvector of differences of the 2SLS estimates for the X1 coefficients, with
the ordinary inverse of the corresponding submatrix of differences of variances in the center of the
quadratic form.  

7. INSTRUMENTAL VARIABLES IN TIME-SERIES MODELS

The treatment of IV estimation up to this point applies in principle to observations made either
in cross section or over time.  For example, if the observations correspond to time periods and
E(����W) = 2  with  either known or estimated, the 2SLS estimator (2) or the two-stage feasible
generalized least squares estimator (10) with  estimated using residuals obtained by application of
(2), can be applied to problems where the structure of  comes from serial correlation. However, for
time series applications it is useful to examine in more detail the structure of W and the orthogonality
conditions used in forming IV estimators.  In particular, one should  ask how conventional sources
of contamination in explanatory variables such as omitted variables or measurement error and
conventional sources of serial correlation such as behavioral lags in adjustment are likely to affect
the serial correlation structure of disturbances and the correlation of contemporaneous disturbances
with explanatory variables for various transformations of the model.

Start with the example of a linear model with measurement error in explanatory variables, and
suppose that in the absence of this measurement error problem the disturbance in the equation would
follow an AR1 process.  Let zt denote the ideal variables without measurement error, and xt = zt +

t denote the observed explanatory variables.  Then, the model can be written

yt = zt  + �t with �t = �t-1 + t, 
or

(18)     yt = xt  + t - t   + t-1 + 2
t-2 + ...,

where the t are i.i.d. innovations and 2 < 1.  This model can also be written

(19)     yt = yt-1  + xt  - xt-1  + ( t - t  + t-1 ).



     12The situation in which all the variables in a model follow the same AR process does has some chance of arising in
stationary state equilibria, because equilibrium pressures may force all variables to move nearly in lock-step along a dynamic
path determined by the largest root of the system.
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The form (19) removes the serial correlation in the ideal equation disturbance, but in doing so
introduces a moving average of the measurement errors.  Only in the unlikely case that all
components of t follow an AR1 process with the same  as the �t process will serial correlation be
fully removed.12  Application of OLS to either (18) or (19) will then in general result in inconsistent
estimates.  The issue for application of IV methods is whether proper instruments can be found.  In
(18), the variables in xt that are measured with error would require instrumenting.  If the zt are
serially correlated, and the t are not, then xt-1, xt-2,... are potential clean instruments for xt.  However,
if there is serial correlation in the measurement errors, one would need to find proper instruments
from outside the model.  In (19), all of the explanatory variables yt-1, xt, and xt-1 are contaminated,
but if the zt  are correlated with a sufficiently long lag and the t are uncorrelated, then xt-2, xt-3, xt-4,...
are potential clean instruments.  It is important to not introduce x’s with too high lags as instruments,
because this requires truncating the sample in order to observe the instruments for each date used
in the estimation, and the good statistical properties of the IV method begins to break down as the
number of instruments ceases to be small relative to the remaining sample size.

Omitted variables leads to models similar to (18) and (19).  In this case, interpret the disturbance
in the model yt= xt  + �t as including the omitted variables.  If these omitted variables are themselves
serially correlated, then they will induce serial correlation in �t, perhaps adding to serial correlation
in a disturbance component that arises for reasons other than omitted variables.  A transformation
of the model in this case may be able to remove serial correlation in the disturbance, but does not
remove the contamination.  The issue will be to find proper instruments.  If the included x’s are
themselves serially correlated and the final disturbance is AR1, then the equation yt = yt-1  + xt  -
xt-1  + �t - �t-1 obtained by partial differencing will have yt-1, xt-1, xt-2,... as potential clean
instruments.  For this to work, the AR1 specification for �t must be correct, and xt must not have the
same AR1 process.

The preceding examples illustrate several important points about the use of IV methods in
time-series models.  First, there is likely to be an interaction between the source of the contamination
and the nature of the serial correlation in the model.  Second, the process followed by the explanatory
variables will determine what variables are clean (i.e., uncorrelated with the contemporaneous
disturbance) and  what variables might be available as instruments.  Third, choice of instruments is
not clear-cut, and may involve the question of what variables are potential clean instruments and how
many potential instruments to introduce given the fairly poor  small sample properties of IV.  The
use of lags of yt or xt as instruments exacerbates the sample size problem, since it decreases the
operating sample size as the number of instruments rises.  Further, lagged variables may fail to be
proper instruments, either because assumptions of zero correlation are not robust and fail due to a
more complex pattern of serial correlation than the econometrician assumes, or because these lagged
variables are not correlated with the variables they are instrumenting.  Together, these observations
suggest that careful consideration of  the nature of contamination and serial correlation is needed in
time-series applications of IV, and that this method be used with caution.



     13The usual limiting regularity conditions are assumed to hold, as in Section 3, and the parameter  is assumed to be
identified in the sense the mapping from  to  is one-to-one for  in its range.
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8. INSTRUMENTAL VARIABLES IN NONLINEAR MODELS

The method of instrumental variables in its most commonly used 2SLS form is applied to
models linear in variables and in parameters, y = X  + �.  If there are proper instruments W for X
and if E(��W) = 2I, then the 2SLS estimator (2) is consistent for  and efficient among all IV
estimators using these instruments; see the theorem in Section 3.  However, the orthogonality
conditions invoked to justify the IV method  do not necessarily extend to nonlinear transformations,
because expectations are not preserved.  For example, economic applications may postulate a zero
correlation between variables for behavioral reasons, such as the rational expectations  hypothesis
that intertemporally optimized consumption is a random walk whose  innovations are uncorrelated
with history.  This is not sufficient to guarantee that innovations in a nonlinear transformation of
consumption are uncorrelated with  history.  To investigate what happens without linearity, consider
three cases of nonlinearity:

(a) Models nonlinear in parameters only:  y = x ( ) + �
(b) Models nonlinear in variables only:  y = f(x)  + �
(c) Models nonlinear in both variables and parameters:  y = h(x, ) + �

A case such as (a) might arise for example when partial differencing is done to handle AR1 serial
correlation.  In this case, y = x  +  and  = -1 +  with  i.i.d., and transformation yields y = y-1

+ x  - x-1  + , a model that has i.i.d. disturbances, but the parameters  and  appearing in
nonlinear combination.  Suppose in the model (a) that one first does an OLS regression of x on
proper instruments w, and retrieves fitted values x*, and second does a nonlinear least squares
regression for the model y = x* ( ) + �*.  Examine the first-order conditions for the last  regression,
and show as an exercise that orthogonality of the instruments and the disturbances in the original
regression implies consistency, just as in the fully linear case.13 , It is the linearity of the first-order
condition in the instruments and in � that guarantees that the initial condition that the instruments
be uncorrelated with � continues to suffice.

Next consider the case y = f(x)  + � with nonlinear transformation of the explanatory  variables
but linearity in parameters.  If instruments w are available that are uncorrelated with � and fully
correlated with f(x), then GMM estimation using the criterion function

(20)  � � ,�
N

i'1
wi(yi � f(xi) )

’

�
N

i'1
wiwi�

&1

�
N

i'1
wi(yi � f(xi) )

will be consistent; see Chapter 3.  Solution of this GMM problem can be given a 2SLS
interpretation:  First do an OLS regression of f(xi) on wi, and retrieve fitted values f*, then do an OLS
regression of yi on f*.  Then, the form and computation of the IV estimator are not affected by
nonlinearity in variables.  However, there are substantial issues regarding specification of the
instruments.  In particular, given an initial set of "raw" instruments z, should they be given nonlinear
transformations to improve the efficiency of the IV estimator?  An initial issue is  whether postulated
orthogonality of z and � will be preserved for nonlinear transformations of z.  This will depend on
the economic application and the nature of z.  If the application can guarantee only that z is
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uncorrelated with �, this property will not in general be preserved under nonlinear transformation,
and the only clean instruments w will be the untransformed z.  However, if the application can
guarantee that z is statistically independent of �, then any nonlinear transformation of z will be
uncorrelated with �, and is a potential clean instrument.   For the remainder of this section, assume
that z and � are statistically independent.

What transformations of z make good instruments?  In some cases it is feasible to apply the
nonlinear transformation f to zi, and tempting to use f(zi) to instrument f(xi).  For example, if xi is
a variable measured with error, and zi is an independent measurement of the same variable, then
provided one is persuaded that the error in zi is statistically independent of �i, f(zi) seems to be a
reasonable instrument for f(xi); e.g., log(zi) seems to be a natural instrument for log(xi).   This is a
practical thing to do, and will often give a more precise IV estimator than one that just uses the raw
instruments.  However, it will not in general yield the most efficient possible IV estimator.  The
reason for this is the proposition that expectations are not preserved under nonlinear transformations.

The best instruments are given by the conditional expectation of f(xi) given zi:  w
* � (zi) =

E(f(xi)�zi).  To see this, first observe that the asymptotic covariance matrix for the IV estimator using
instruments wi that are any specified transformations of zi is

 2[(Ew�f(x))�(Ew�w)-1(Ew�f(x))]-1.  But Ew�f(x) =  Ezw�Ex*zf(x) = Ezw�w*.  

The asymptotic covariance matrix of this IV estimator can be  written

 2[(Ew�w*)�(Ew�w)-1(Ew�w*)]-1.  

If w = w*, this covariance matrix reduces to  2(Ew*�w*)-1.  It is a standard exercise to show that w
= w* minimizes the asymptotic variance.  Let F = Ew*�w*, G = Ew�w*, and H = Ew�w.  Then the
quadratic form

          [I  -G�H-1]� �[I  -G�H-1]� = F - G�H-1G
F G�

G H

is positive semidefinite, which implies that [G�H-1G]-1 - F-1 is positive semidefinite.  From this result,
the IV estimator using the instruments w* is called the best nonlinear 2SLS estimator (BN2SLS). 

In general, the BN2SLS estimator is not practical in applications because computation of the
conditional expectation Ex*zf(x) is intractable.  Obviously, in any application where direct
computation of Ex*zf(x) is tractable, it should be used.  In the remaining cases, it is possible to
approximate Ex*wf(x).  A method proposed by Kelejian (1971) and Amemiya (1974) is to make an
approximation in terms of low-order polynomials in the raw instruments z; i.e., regress f(xi) on zi,
squares and cross-products of components of zi, third-order interactions, and so forth.  One
interpretation of this procedure is that one is making a series approximation using the leading terms
in a Taylor’s expansion of Ex*wf(x), or in other words the low order conditional moments of x given
w.  This method can be implemented in the LSQ procedure in TSP by expanding the list of specified
instruments in the command to include the desired low-order polynomials in the raw instruments.
Viewed more generally, the expression Ex*zf(x) can be written as

(21)     Ex*zf(x) = f(x)�g(x�z)�dx � (z),�x
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where g(x,z) is the joint density of x and z, and g(x�z) is the conditional density of x given z.  If
g(x�z) is known (or can be estimated consistently as a parametric function), but analytic computation
of the integral is intractable, it may be possible to use simulation methods, drawing a
"pseudo-sample" xij from g(x�zi) for j = 1,...,J and estimating Ex*zf(x) as the mean of f(xij) in this
pseudo-sample.  If the pseudo-sample size J grows at a sufficient rate with sample size (typically,
faster than N1/2), then IV using this approximation will have the same asymptotic  covariance matrix
as BN2SLS.  If the conditional density is itself not known or tractable, it may be possible to estimate
it nonparametrically, say using a kernel estimator; see Chapter 7.  Alternately, viewing (z) as a
nonparametric function of  z, the problem can be approached as a nonparametric regression f(xi) =

(zi) + i, and  estimated by a variety of nonparametric procedures; again see Chapter 7.  In
particular, one approach to nonparametric regression is series approximation, where (zi) is
approximated by a linear combination of initial terms in a series approximation.  In particular, the
Kelejian-Amemiya method falls within this class,  and nonparametric estimation theory provides a
guide to choice of the truncation level as a function of sample size.  The bottom line is that by
simulation or nonparametric procedures, one may be able to "adaptively" achieve the asymptotic
covariance matrix of the BN2SLS estimator without having to solve an intractable problem of
determining Ex*zf(x) analytically.  Existing software may not be sufficiently "adaptive" to
automatically achieve the BN2SLS asymptotic efficiency  level, so that it is up to the user to specify
instruments in a form that achieves this adaptation.  In practice, the issue of adaptiveness has no real
bite in determining a good set of instruments in a given finite data set, and the properties of the
asymptotic approximation may not tell you much about the actual finite-sample distribution of your
estimators.  Bootstrap methods, discussed in Chapter 7, may be one useful way to give a better
approximation to finite-sample distributions and guide choice among estimators using different sets
of instruments.

Finally, consider models that are nonlinear in both variables and parameters, y = h(x, ) + �.
First observe that if there are proper raw instruments z, then minimizing the GMM criterion

(22)  N� -1��
N

i'1
zi(yi � h(xi, )) �

N

i'1
zizi� �

N

i'1
zi(yi � h(xi, ))

in  will produce a consistent initial estimator N for .  There is an iterative procedure that can be
used to calculate N.  From starting values (0), suppose one has reached (r).  Linearize the model
about (r), obtaining

(23)  yi - h(xi,
(r)) = f(r)(xi)�(  - (r)) + i,

where f(r)(xi) = � h(xi,
(r)) and i is a disturbance that includes the remainder from the linear

approximation.  Apply conventional 2SLS to this model, with the instruments zi.  The estimated
coefficients provide the adjustments that produce the next iterate (r+1).  For a suitably chosen starting
point, the iterates (r) will converge to a limit at N.  It may be necessary to consider alternative
starting values to obtain convergence to the minimand of the GMM criterion.

Start from the consistent initial estimator N, and the linearized model (23) evaluated at N, with
fN(x) = � h(xi, N).  Treating N as a vector of constants, (23) now has the same form as the model that
is nonlinear in variables but linear in parameters that was discussed above.  As in the previous case,
estimate this model using 2SLS and an approximation to the best instruments Ex*zfN(x); this will
approximate the BN2SLS estimator.  This procedure, with the best instruments approximated by
user-specified combinations of the raw instrumental variables, is used by the LSQ command in TSP.
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It is possible to iterate the procedure described in this paragraph, but the first application of the
procedure is already asymptotically equivalent to the BN2SLS estimator (provided the
approximation to the best instruments is adaptive), and there is no further gain in (first-order)
asymptotic efficiency from iteration.
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CHAPTER 5.  SYSTEMS OF REGRESSION EQUATIONS

1.  MULTIPLE EQUATIONS

Consider the regression model setup

   ynt = xnt n + unt,

where n = 1,...,N, t = 1,...,T, xnt is 1×k, and n is k×1.  This is a version of the standard regression
model where the observations are indexed by the two indices n and t rather than by a single index.
Applications where this setup occurs are

� n indexes equations, with different dependent variables, and t indexes observation units.
Example:  y1t,...,ynt are the input demands of firm t.  In this example, there are likely to be
parameters in common across equations.
� n indexes observation units, t indexes time, and the data come from a time-series of
cross-sections.  Example: ynt is the income of household n in the Census Public Use Sample in
year t.
� n indexes observation units, t indexes time, and the data come from a longitudinal panel of
time series observations on each observation unit.   Examples: ynt is hours supplied by the head
of household n in year t in the Panel Study of Income Dynamics; or ynt is the excess return on
stock market asset n on day t in the CRISP financial database.

These problems may contain the usual litany of econometric problems: (1) a non-scalar covariance
matrix due to heteroskedasticity across observation units, serial correlation over time, or covariance
across equations within an observation unit; and (2) the potential for correlation of explanatory
variables and disturbances when x includes lagged dependent variables.  They also provide an
opportunity for a richer analysis of covariance patterns, since observations across units can be used
to identify covariance patterns over time, and observations across time can be used to identify
heteroskedasticities across units.

2.  STACKING THE DATA

For analysis (and computation), it is useful to organize the observations in vectors in which all
the observations for n = 1 are stacked on top of all the observations for n = 2, etc.  Use the notation:

   yn = , Xn = , un = , 

yn1

yn2

:

ynT

xn1

xn2

:

xnT

un1

un2

:

unT
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y =  = X =  = ,  = , u = 

y1

y2

:

yn

y11

:

y1T

:

yN1

:

yNT

X1

0

:

0

0

X2

:

0

...

...

:

...

0

0

:

XN

x11

:

x1T

:

0

:

0

...

...

...

...

...

...

...

0

:

0

:

xN1

:

xNT

1

2

:

k

u1

u2

:

un

Then, the system can be written

yn = xn n + un , n = 1,...,N

or in stacked form,

(1)                                              y = X  + u .

The vector yn is of dimension T×1, the array Xn is of dimension T×k, the vector y is of dimension
NT×1, the array X is of dimension NT×Nk.  We wrote down the system assuming the number of
parameters k was the same in each equation, but this is not necessary.  One could have Xn of
dimension T×kn and X of dimension NT×(k1+..+kn).  If there are parameters in common across
different equations, then the corresponding explanatory variables will be stacked in the same column
rather than placed in different columns, and the overall number of columns in X reduced accordingly.

Suppose the observations are independent and identically distributed for different t, but the
covariances E(untumt) = nm are not necessarily zero.  Let  = ( nm) be the N×N array of covariances
of the observations for each t.  The covariance matrix of the stacked disturbance vector u is then

E(uu�) = ,

11IT

21IT

:

N1IT

12IT

22IT

:

N2IT

...

...

:

...

1NIT

2NIT

:

NNIT

where IT denotes a T×T identity matrix.

Define the Kronecker Product A�B of a n×m matrix A and a p×q matrix B:

A�B = .

a11B

a21B

:

an1B

a12B

a22B

:

an2B

...

...

:

...

a1mB

a2mB

:

anmB

Then, A�B is (np)×(mq).  Kronecker products have the following properties:
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(A�B)(C�D) = (AC)�(BD) when the matrices are commensurate
(A�B)-1 = (A-1)�(B-1) when A and B are square and nonsingular
(A�B)� = (A�)�(B�)
trace(A�B) = (trace(A))�(trace(B)) when A and B are square
det(A�B) = (det(A))p(det(B))n when A is n×n and B is p×p

Applying the Kronecker product notation to the covariance matrix of u, E(uu�) = �IT.

3.  ESTIMATION

The problem of estimating the stacked model y = X  + u when the covariance matrix of the
disturbances is �IT and  is known is a straightforward GLS problem, provided there are no
additional complications of correlation of explanatory variables and disturbances.  Using the rule for
inverses of Kronecker products, the GLS estimator is

b = (X�( -1�IT)X)-1X�( -1�IT)y .

Computationally, the most practical way to do this regression is to calculate a triangular Cholesky
matrix L such that L�L = -1.  Then, the transformed model

(2)                                          (L�IT)y = (L�IT)X  + (L�IT)u

satisfies Gauss-Markov conditions (Verify), and the BLUE estimator of  is OLS applied to this
equation.  The data transformations can be carried out separately for each t, and recursively for n =
1,...,N.

When  is unknown, one can do FGLS estimation: First apply OLS to (1) and retrieve fitted
residuals û.  Then, estimate the elements nm of  from the average (over T) of the squares and
cross-products of the fitted residuals,

   snm= ûntûmt .
1
T �

T

t'1

Finally, apply OLS to (2), with L a Cholesky factor of the estimated -1.
The problem of estimating  in (1) when there are no cross-equation restrictions on the n is

called the seemingly unrelated regressions problem.  Summarizing, the n can be estimated
consistently equation-by-equation using OLS; in most cases, this is inefficient compared to GLS; and
FGLS is asymptotically fully efficient.  There is one case in which there is no efficiency gain from
use of GLS rather than OLS: Suppose no cross-equation restrictions on parameters and common
explanatory variables across equations; i.e., X1 = X2 = ...  = XN.  Then, X = IN�X1, and the GLS
estimator is

b = ((IN�X1�)(
-1�IT)(IN�X1))

-1(IN�X1�)(
-1�IT)y .

As an exercise, use the Kronecker product rules to show that this formula reduces to the OLS
estimator bn = (X1�X1)

-1X1�yn for each n.  Intuitively, the reason OLS is efficient in this case is that
the OLS residuals in, say, the first equation are automatically orthogonal to the (common) exogenous
variables in each of the other equations, so that there is no additional information on the first
equation parameters to be distilled from the cross-equation orthogonality conditions.  Put another
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way, GLS can be interpreted as OLS applied to linear combinations of the original equations, with
the linear combinations obtained from the Cholesky factorization of the covariance matrix of the
disturbances.  But these linear combinations of the common exogenous variables leaves one with
the same exogenous variables, and the orthogonality conditions satisfied by the GLS estimates are
the same as the orthogonality conditions satisfied by OLS on the first equation in the original system.

4.  AN EXAMPLE

Suppose a firm t utilizes N = 3 inputs, and has a Diewert unit cost function,

   Ct = ij  ,�
N

i'1
�
N

j'1
pitpjt

where pit is input i price, and the ’s are nonnegative parameters with ij = ji. By Shephard’s lemma,
the unit input demand functions are given by the derivatives of the unit cost function with respect
to the input prices:

znt = nj  .�
N

j'1
pjt/pnt

Written in stacked form, these equations become 

 = + ,

Z1

Z2

Z3

1T

0T

0T

( p2/p1)T

( p1/p2)T

0T

( p3/p1)T

0T

( p1/p3)T

0T

1T

0T

0T

( p3/p2)T

( p2/p3)T

0T

0T

1T

11

12

13

22

23

33

u1

u2

u3

where 1T denotes a T×1 vector of 1's and  denotes a T×1 vector with componentsp1/p2 T

.  Note that the parameter restrictions across equations lead to variables appearing stackedp1t/p2t

in the same column.  The disturbances can be interpreted as coming from random variations across
firms around the respective "average"  parameters 11, 22, 33.  The interesting econometric feature
of this setup is that even if there is considerable multicollinearity in prices so that OLS equation by
equation is imprecise, this multicollinearity is broken when the data are stacked.  Then, there is likely
to be a substantial efficiency gain from estimating the equations in stacked form with the
cross-equation restrictions imposed, even at the first OLS stage before the additional efficiency gain
from the second-stage FGLS is achieved.
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5.  PANEL DATA

The application of systems of regressions equations to panel data, where n indexes observation
units that are followed over time periods t, is very important in economics.   A typical model for
panel data is

   ynt = xnt  + n + unt  for n = 1,...,N and t = 1,...,T .

In this model, the  parameters are not subscripted by n or t; this implies they are the same for every
unit and every time period.  (This is not as restrictive as it might appear, because variation in
parameters over time or with some characteristics of the units can be reintroduced by including in
the x’s interactions with time dummies or with unit dummies.) The n are termed individual effects.
They may be treated as intercept terms that vary across units.  The model with this interpretation is
called a fixed effects (FE) model.  Alternately, the n may be interpreted as components of the
disturbance that vary randomly across units.  The model with the second interpretation is called a
random effects (RE) model.  Often, the assumption is made that once the individual effects are
isolated, the remaining disturbances unt are independent and identically distributed across n as well
as t.  Alternately, the unt could be serially correlated; this requires another layer of calculation for
GLS.

The questions that arise in analysis of the panel data model are (a) under what conditions the
model parameters can be estimated consistently, in either the fixed effects or the random effects
interpretation; (b) what is the form of consistent or efficient estimators; and (c) whether the random
effects or the fixed effects model is "better" in applications.  I first analyze the fixed effects case,
then the random effects case, and after this return to these questions to see what can be said.  

6.  FIXED EFFECTS 

The fixed effects model can be rewritten by stacking the T observations on unit n,

(3)                                yn = xn  + 1T n + un ,

where 1T is a T×1 vector of ones.  Equation (3) is a special case of a general system of regression
equations, and can be approached in the same way.  Stacking the unit data, first unit followed by
second unit, etc., gives the stacked model

(4)                                y = X  + D  + u ,

where D = [d1 d2 ...  dN] is a NT×N array whose columns are dummy variables such that dm is one
for observations from unit m, and zero otherwise, and  is a N×1 vector with components n.
(Exercise: Verify that this setup follows from the general stacking pattern shown in Section 2.)

In (4), note first that any column of X that does not change over t, within the observations for
a unit, is linearly dependent on the columns of D.  Then, when there are fixed effects, there is no
possibility of identifying the separate effects of X variables that are time-invariant.  Suppose we
remove any such columns from X, so that only time-varying variables are left.  For good measure,
we can also remove from X the within-unit means of the X variables, so that X now denotes
deviations from within-unit means.  The model (3) can be rewritten as a relationship in unit means
plus relationships in deviations from within unit means:
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(5)                                       �yn = n + �un 
(6)                                       Yn = Xn  + �n,

where y�n and �n are unit means, Yn is a vector of deviations of the unit n observations from the unit
mean, and Xn  is an array of deviations that has zero unit means by construction.  Stack these models
further, with the unit one data followed by the unit two data, etc., to obtain

(7)                                      =  + .

Y1

Y2

:

YN

X1

X2

:

XN

�1

�2

:

�N

The deviations in (7) eliminate the fixed effects.  Then, (7) can be estimated by OLS, which is
consistent for  as N � +� or T � +� or both.  (Note that (7) has one redundant observation for each
observation unit, since the within group deviations must sum to zero.  One can eliminate any one of
the observations in each unit, or alternately leave it in the regression and remember that the number
of observations is really N(T-1) rather than NT.) The regression (7) is called the within regression.
One can estimate the fixed effect for each unit n using the formula �n = y�n; this is called the between
regression.  The fixed effects are estimated consistently only if T � +�.

The particularly simple formula above for the fixed effects estimates came from normalizing
the x’s to have zero within-unit means.  In the general case where the x’s can have non-zero unit
means, the fixed effect estimators become �n = y�n - x�nb, where b is the vector of estimates from (7).

Exercise 1: Using the projection notation QD = I - D(D�D)-1D�, note that the OLS estimator of
 in (4) is b = (X�QDX)-1X�QDy.  Show that this is the same as the within estimator of .

7.  RANDOM EFFECTS

Suppose the ’s in (3) are treated as components of the disturbance, so that (3) can be rewritten
as y = X  + , where nt = n + unt.  Then, an OLS regression of y on X yields a consistent estimator
of  as NT � +�, provided the x’s and the disturbances are uncorrelated.  The covariance matrix of
the stacked disturbances is now E( �) = IN� , where  is the T×T matrix of covariances of the
disturbances n + unt for given n, with the form

(8)                  =  � 21N1N� + u
2IN .

2� u
2

2

:
2

2

2� u
2

:
2

...

...

:

...

2

2

:
2� u

2
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Efficiency of estimation can be improved by GLS.  Verify as an exercise that L = (IN - 1N1N�),
1

u

with  = (1 - u/ ), satisfies L L� = IN.  Then, GLS is the same as OLS applied to1
T

2
u�T 2

the transformed data (IN�L)y = (IN�L)X  + (IN�L) .  In practice,  is unknown and FGLS must be
used.  Intuition for how to estimate 2 and u

2 can be obtained from an analogy to population
moments.  Let n

* denote the unit mean of nt.  We know that E nt
2 = u

2 + 2 and that E n
*2 = u

2/T
+ 2.  Solve these two equations for u

2 and 2: 

(9)                    u
2 = (E nt

2 - E n
*2)  and  2 = (T E n

*2 - E nt
2)/(T-1).

T
T�1

Then, substituting sample moments of fitted OLS disturbances in place of the population moments
will give consistent estimates of the variance components.  The steps to do FGLS are then to first
regress y on X and retrieve the fitted residuals vnt, and second, estimate Evnt

2 and Evn
*2 by the

respective formulas

 and          
1

NT �
N

n'1
�

T

t'1
v 2

nt
1
N �

N

n'1

1
T�

T

t'1
vnt

2

Third, substitute these expressions in (9) to estimate the variance components and substitute the
results into the L matrix, carry out the data transformations unit by unit, and run OLS on the
transformed stacked data to get the FGLS estimates.  The variance component estimates above are
the same as in Greene except for degrees of freedom adjustments.  (Since only consistency of the
estimates of 2 and u

2 matter for the efficiency of the FGLS estimator, unbiasedness is no particular
virtue.  Finite sample monte carlo results on the value of degrees of freedom adjustments are not
compelling.  Thus, in most cases, it is probably not worth making these adjustments.)  The estimator
of 2 can go negative in finite samples.  The usual recommendation in this case is to set the
estimator to zero and assume there are no individual effects.  Show as a (difficult) exercise that if
the ’s and u’s are normal and uncorrelated with each other, then the estimators above are the
maximum likelihood estimators for the variances.  

Suppose that instead of starting from the original stacked data, we had started from the within
regression model
(10)                                            Y = X  + *,

which contains the stacked deviations from unit means, and constitutes N(T-1) observations if
redundant observations are excluded; and the between regression model

(11)                                            y� = x�  + �, 

which contains the N stacked unit means.  Provided the coefficients are identified (e.g., each variable
is time-varying so that no columns of X are identically zero), one could estimate  consistently by
applying OLS to either (10) or (11) separately.  Greene shows that the OLS estimator can be
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interpreted as a weighted combination of the within and between OLS estimators, and that the GLS
estimator can be interpreted as a different weighted combination that gives less weight to the
between model.  For comparison, the fixed effects estimator of  was given by the within regression
only.  

8.  FIXED EFFECTS VERSUS RANDOM EFFECTS

In the (unusual) case that you need estimates of the individual effects, you have no choice but
to estimate the fixed effects model; even then, you need T � +� to estimate the ’s consistently.  The
fixed effects model has the advantage that the estimates of  are consistent even if X is correlated
with the individual effects, provided of course that X and the individual effects are uncorrelated with
u.  Its major drawbacks are that it uses up quite a few degrees of freedom, and makes it impossible
to identify the effects of time-invariant explanatory variables.  The random effects model economizes
on degrees of freedom, and permits consistent estimation of the effects of all explanatory variables,
including ones that are time-invariant, provided that all these explanatory variables are uncorrelated
with the disturbances.  (This is an advantage only if you have a convincing story to support the
identifying assumption that there is zero correlation of these variables and the ’s.)

As T � +�, the FE and RE estimators merge, and the FE estimator can be interpreted as
estimation of the RE model by conditioning on the realized values of the ’s.  From this, one can see
how to test the RE model specification by examining the correlation of  and X.  One way to do this
is to regress the fitted  on X, and carry out a conventional F test that the coefficients in this
regression are all zero.  Unless T is very large, or the assumption that  is uncorrelated with X
particularly implausible, it is usually better to work with the RE model.

9.  SPECIFICATION TESTING

Standard regression model hypothesis testing of linear hypotheses on model coefficients, using
Wald, LR, or SSR test statistics, carries over to the case of systems of regressions.  This is most
transparent when the FGLS estimators are given by OLS applied to data that is transformed to give
a (asymptotically) scalar covariance matrix.  This setup allows one to test not only hypotheses about
coefficients in one equation, but also hypotheses connecting coefficients across equations, or in the
panel context, across time.

For tests on covariance parameters, such as a test for homoskedasticity across equations, or a
test for serial correlation, two useful ways to get suitable test statistics are to proceed by analogy with
single-indexed regression problems, and to derive LM statistics under the assumption that
disturbances are normal.  One example is a Durbin-Watson like test for serial correlation in panel
data, using the estimated coefficient from a regression of vnt on vn,t-1 for n = 1,...N and t = 2,...,T.

Exercise 2:  Consider the panel data model in which T � +�.  If the disturbances are
uncorrelated with the right-hand-side variables, then both the FE and RE model estimates will be
consistent and the RE estimates will be efficient.  On the other hand, if there is correlation between
the disturbances and the right-hand-side variables, only the FE estimates will be consistent.  From
these observations, suggest a simple specification test for the hypothesis that the disturbances are
uncorrelated with the right-hand-side variables.  Use (10) and (11) to show that this test is equivalent
to a test for over-identifying restrictions.
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Exercise 3:  One of the ways a panel data model might come about is from a regression model
ynt = xnt nt + unt, where the nt are random coefficients that vary with n (or t).  When does this model
reduce to the standard panel data model with random n effects?  What are the generalizations of the
standard RE and FE estimators when nt =  + n + t?

10. VECTOR AUTOREGRESSION

The generic systems of equations model (1) with n indexing dependent variables and t indexing
time, and with the right-hand-side variables various lags of the dependent variables, is called a vector
autoregression (VAR) model.  The model may include current and lagged exogenous variables, but
is often applied to macroeconomic data where all the variables in the analysis are treated as
dependent variables.  To write out the lag structure, form the date-t vectors

     yt =  , Xt =  , ut =  ,

y1t

y2t

:

yNt

x1t 0 � 0

0 x2t � 0

: : :

0 0 � xNt

u1t

u2t

:

uNt

and then

(12)     yt = Xt  + A1yt-1 + ... + AJyt-J + ut,

where the Aj are N×N arrays of lag coefficients.  The VAR assumption is that with inclusion of
sufficient lags, the disturbances in (12) are i.i.d. innovations that are statistically independent of
Xt,yt-1,yt-2,... .  In this case, the variables Xt,yt-1,yt-2,... are said to be strongly predetermined in (12).
The Xt are often assumed, further, to be strongly exogenous; i.e., ut is statistically independent of
Xt and all leads and lags of Xt.

The dynamics of the system (12) are most easily analyzed by defining  

yt =     and      A =  ,

yt

yt&1

:

yt&J%1

A1 A2 �� AJ&1 AJ

IJ 0J �� 0J 0J

: : : :

0J 0J �� IJ 0J

and rewriting the system in the form

yt  =  + Ayt-1 + .

Xt

0

:

0

ut

0

:

0

The system (12) with the strongly exogenous forcing variables Xt and the disturbances uy omitted,
is a stable difference equation if all the characteristic roots of A are less than one in modulus.  The
long-run dynamics of a stable system will be dominated by the largest (in modulus) characteristic



Page 94, Chapter 5-10

root of A, and will have the feature that the impact on yt of a shock in the disturbance in a specified
period eventually damps out.  Further, the most slowly decaying component in each variable in yt

will damp out at the same rate.  (There is an exception if the characteristic vector associated with the
largest characteristic root lies in a subspace spanned by a subset of the  variables.)  In the stable case,
i.i.d. innovations, combined with strongly exogenous variables that have a stationary distribution,
will produce yt with a stationary distribution.  In particular, the covariance matrix of yt will not vary
with t, so that the yt are homoskedastic.  The estimation and hypothesis testing procedures discussed
in Section 3 will then apply, with the predetermined and strongly exogenous variables treated the
same. There will in general be contemporaneous correlation, so that (12) has the structure of a
seemingly unrelated regressions problem for which GLS can be used to obtain BLUE estimates of
the coefficients.  If the strictly exogenous variables are the same in every equation, there are no
exclusion restrictions in the lag coefficients, and no restrictions on coefficients across equations,
GLS estimation reduces to OLS applied to each equation separately, as before.

If A has one or more roots of modulus one or greater, then the impact of past disturbances does
not damp out, the system (12) is unstable, and the variance of yt  rises with t.  The occurrence of
modulus one (unit) roots seems to be fairly common in macroeonomic time series.  Statistical
inference in such systems is quite different than in stable systems.  In particular, detection and testing
for unit roots, and the  corresponding characteristic roots that determine cointegrating relationships
among the variables, require a special statistical analysis.  The topic of testing for unit roots and
cointegrating relationships is discussed extensively by Stock "Unit Roots,  Structural Breaks, and
Trends," and Watson "Vector Autoregression and Cointegration," both in R. Engle and D.
McFadden, eds., Handbook of Econometrics IV, 1994.

11. SYSTEMS OF NONLINEAR EQUATIONS

The systems of equations linear in variables and parameters, with additive disturbances, that
were introduced at the beginning of this chapter, can be extended easily to systems that retain the
assumption of additive disturbances, but are nonlinear in variables and/or parameters:

(13)     ynt = hn(xnt, n) + unt,

where n = 1,...,N, t = 1,...,T, and n is kn×1.  Assume for the following discussion that the
disturbances unt are independent for different t.  If the xnt are strongly predetermined, implying that
E(unt�xnt) = 0, then each equation in (13) can be estimated by nonlinear least squares.  This can be
interpreted as a "limited  information" or "marginal" GMM estimation procedure in which
information from the equations for the remaining variables is not used.  Chapter 3 discusses the
statistical properties of nonlinear least squares estimators.  

In general, there will be an efficiency gain from taking into account the covariance structure of
the disturbances unt for different n.  This can be done practically in TSP by using the LSQ command
applied to all the equations in the model.  This procedure then applies nonlinear least squares to each
equation separately, retrieves fitted residuals, uses these residuals to estimate the covariance matrix
of the disturbances at each t, and then does feasible generalized nonlinear least squares employing
the estimated covariance matrix.
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CHAPTER 6.  SIMULTANEOUS EQUATIONS

1. INTRODUCTION

Economic systems are usually described in terms of the behavior of various economic agents,
and the equilibrium that results when these behaviors are reconciled.  For example, the operation of
the market for Ph.D. economists might be described in terms of demand behavior, supply behavior,
and equilibrium levels of employment and wages.   The market clearing process feeds back wages
into the behavioral equations for demand and supply, creating simultaneous or joint determination
of the equilibrium quantities.  This causes econometric problems of correlation between explanatory
variables and disturbances in estimation of behavioral equations.

Example 1.  In the market for Ph.D. economists, let q = number employed, w = wage rate, s =
college enrollment, and m = the median income of lawyers.  Assume that all these variables are in
logs.  The behavioral, or structural, equation for demand in year t is

(1)                               qt = 11 + 12st + 13wt + �1t ;

this equation states that the demand for economists is determined by college enrollments and by the
wage rate for economists.  The behavioral equation for supply is

(2)                               qt = 21 + 22mt + 23wt + 24qt-1 + �2t ;

this equation states that the supply of economists is determined by the wage rate, the income of
lawyers, which represents the opportunity cost for students entering graduate school, and lagged
quantity supplied, which reflects the fact that the pool of available economists is a stock that adjusts
slowly to market innovations.  Equations (1) and (2) together define a structural simultaneous
equations system.  The disturbances �1t and �2t reflect the impact of various unmeasured factors on
demand and supply.  For this example, assume that they are uncorrelated over time.  Assume that
college enrollments st and lawyer salaries mt are exogenous; meaning that they are determined
outside this system, or functionally, that they are uncorrelated with the disturbances �1t and �2t.  Then,
(1) and (2) are a complete system for the determination of the two endogenous or dependent
variables qt and wt.  

Suppose you are interested in the parameters of the demand equation, and have data on the
variables appearing in (1) and (2).  How could you obtain good statistical estimates of the demand
equation parameters?  It is useful to think in terms of the “experiment” run by Nature, and the
experiment that you would ideally like to carry out to form the estimates.

Figure 1 shows the demand and supply curves corresponding to (1) and (2), with w and q
determined by market equilibrium.  Two years are shown, with solid curves in the first year and
dashed curves in the second.  The equilibrium wage and quantity are of course determined by the
condition that the market clear.  If both the demand and supply curves shift between periods due to
random disturbances, then the locus of equilibria will be a scatter of points (in this case, two) which
will not in general lie along either the demand curve or the supply curve.  In the case illustrated, the
dotted line which passes through the two observed equilibria has a slope substantially different than
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the demand curve.  If the disturbances mostly shift the demand curve and leave the supply curve
unchanged, then the equilibria will tend to map out the supply curve.  Only if the disturbances mostly
shift the supply curve and leave the demand curve unchanged will the equilibria tend to map out the
demand curve.  These observations have several consequences.  First, an ordinary least squares fit
of equation (1) will produce a line like the dotted line in the figure that is a poor estimate of the
demand curve.  Only when most of the shifts over time are coming in the supply curve so that the
equilibria lie along the demand curve will least squares give satisfactory results.  Second, exogenous
variables shift the demand and supply curve in ways that can be estimated.  In particular, the variable
m that appears in the supply curve but not the demand curve shifts the supply curve, so that the locus
of w,q pairs swept out when only m changes lies along the demand curve.  Then, the ideal
experiment you would like to run in order to estimate the slope of the demand curve is to vary m,
holding all other things constant.  Put another way, you need to find a statistical analysis that mimics
the ideal experiment by isolating the partial impact of the variable m on both q and w. 

The structural system (1) and (2) can be solved for qt and wt as functions of the remaining variables

(3)                      wt =  
( 11� 21) � 12st � 22mt � 24qt&1 � (�1t��2t)

23 � 13

(4)            qt = 
( 11 23� 21 13) � 23 12st � 13 22mt � 13 24qt&1 � ( 23�1t� 13�2t)

23 � 13

Equations (3) and (4) are called the reduced form.  For this solution to exist, we need 23 - 13

non-zero.  This will certainly be the case when the elasticity of supply 23 is positive and the
elasticity of demand 13 is negative.  Hereafter, assume that the true 23 - 13 > 0.  Equations (3) and
(4) constitute a system of regression equations, which could be rewritten in the stacked form
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(5)              =  + , or y = Z  +  ,

w1

w2

:

wT

q1

q2

:

qT

1

1

:

1

0

0

:

0

s1

s2

:

sT

0

0

:

0

m1

m2

:

mT

0

0

:

0

q0

q1

:

qT&1

0

0

:

0

0

0

:

0

1

1

:

1

0

0

:

0

s1

s2

:

sT

0

0

:

0

m1

m2

:

mT

0

0

:

0

q0

q1

:

qT&1

11

12

13

14

21

22

23

24

11

12

:

1T

21

22

:

2T

where the ’s are the combinations of behavioral coefficients, and the ’s are the combinations of
disturbances, that appear in (3) and (4).  The system (5) can be estimated by GLS.  In general, the
disturbances in (5) are correlated and heteroskedastic across the two equations.  However, exactly
the same explanatory variables appear in each of the two equations.  If the correlation pattern is the
same in each equation, so that E it js = ij ts, or E � = R� , then GLS using this covariance structure
collapses to GLS applied separately to each equation.  When there is no correlation across t, GLS
collapses to OLS.

Suppose you are interested in estimating the parameters of the behavioral demand equation (1).
For OLS applied to (1) to be consistent, it is necessary that the disturbance �1t be uncorrelated with
the right-hand-side variables, which are st and wt.  This condition is met for st, provided it is indeed
exogenous.  However, from (3), an increase in �1t increases wt, other things being equal, and in (1)
this results in a positive correlation of the RHS variable wt and the disturbance �1t.  

Instrumental variables estimation is one alternative for the estimation of (1).  In this case, one
needs to introduce at least as many instrumental variables as there are RHS variables in (1), and these
variables need to be uncorrelated with �1t and fully correlated with the RHS variables.  The list of
instruments should include the exogenous variables in (1), which are the constant, 1, and st.  Other
candidate instruments are the exogenous and predetermined variables elsewhere in the system, mt

and qt-1.
Will IV work?  In general, to have enough instruments, there must be at least as many

predetermined variables excluded from (1) and appearing elsewhere in the system as there are
endogenous variables on the RHS of (1).  When this is true, (1) is said to satisfy the order condition
for identification.  In the example, there is one RHS endogenous variable, wt, and two excluded
exogenous and predetermined variables, mt and qt-1, so the order condition is satisfied.  If there are
enough instruments, then from the general theory of IV estimation, the most efficient IV estimator
is obtained by first projecting the RHS variables on the space spanned by the instruments, and then
using these projections as instruments.  In other words, the best combinations of instruments are
obtained by regressing each RHS variable in (1) on the instruments 1, st, mt, and qt-1, and then using
the fitted values from these regressions as instruments.  But the reduced form equation (3) is exactly
this regression.  Therefore, the best IV estimator is obtained by first estimating the reduced form
equations (3) and (4) by OLS and retrieving fitted values, and then estimating (1) by OLS after
replacing RHS endogenous variables by their fitted values from the reduced form.  For this to yield
instruments that are fully correlated with the RHS variables, it must be true that at least one of the
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variables mt and qt-1 truly enters the reduced form, which will happen if at least one of the
coefficients 22 or 24 is nonzero.  This is called the rank condition for identification.

2. STRUCTURAL AND REDUCED FORMS

In general a behavioral or structural simultaneous equations system can be written

(6)                                 yt�B + zt�  = �t�,

where yt� = (y1t, .,yNt) is a 1×N vector of the endogenous variables, B is a N×N array of coefficients,
zt� = (zn1, .,zMt) is a 1×M vector of predetermined variables,  is a M×N array of coefficients, and �t�
is a 1×N vector of disturbances.  Let  denote the N×N covariance matrix of �t.  The reduced form
for this system is
(7)                                         yt� = zt�  + t�,

where  = - B-1 and t� = �t�B
-1, so that the covariance matrix of t is  = B�-1 B-1.   Obviously, for

(6) to be a well-defined system that determines yt, it is necessary that B be non-singular.

3. IDENTIFICATION

It should be clear that some restrictions must be imposed on the coefficient arrays B and , and
possibly on the covariance matrix , if the remaining coefficients are to be estimated consistently.
First, post-multiplying (6) by a nonsingular diagonal matrix leaves the reduced form solution (7)
unchanged, so that all versions of (6) that are rescaled in this way are observationally equivalent. 
Then, for estimation of (6) it is necessary to have a scaling normalization for each equation.  Second,
counting parameters, B, , and  contain N(N-1) + NM + N(N+1)/2  parameters, excluding the N
parameters determined by the scaling normalizations and taking into account the symmetry of .
However,  and  contain only NM + N(N+1)/2 parameters.  Therefore, an additional N(N-1)
restrictions on parameters are necessary to determine the remaining structural parameters from the
reduced form parameters.  

It is traditional in econometrics texts to work out detailed order and rank conditions for
identification.  These come from the structure of the B and  matrices and the condition that B +

 = 0 relating the reduced form coefficients to the structural parameters.  However, it is much
simpler to think of identification in terms of the possibility for IV estimation:  An equation (with
associated restrictions) is identified if and only if there exists a consistent IV estimator for the
parameters in the equation; i.e., if there are sufficient instruments for the RHS endogenous variables
that are fully correlated with these variables.  Even covariance matrix restrictions can be used in
constructing instruments.  For example, if you know that the disturbance in an equation you are
trying to estimate is uncorrelated with the disturbance in another equation, then you can use a
consistently estimated residual from the second equation as an instrument.  If you are not
embarrassed to let a computer do your thinking, you can even leave identification to be checked
numerically: an equation is identified if and only if you can find an IV estimator for the equation that
empirically has finite variances.  

Exercise 1.  Show that the condition above requiring N(N-1) restrictions on parameters will hold
if the order condition, introduced in the example of the market for economists, holds for each
equation.  In the general case, the order condition for an equation states that the number of excluded
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predetermined (including strictly exogenous) variables is at least as great as the number of included
RHS endogenous variables.  Add the number of excluded RHS endogenous variables to each side
of this inequality, and sum over equations to get the result.

4. 2SLS

For discussions of estimators for simultaneous equations systems, it is convenient to have
available the systems (6) and (7) stacked two different ways.   First, one can stack (6) and (7)
vertically by observation to get

(8)                                             YB + Z  = �
and
(9)                                             Y = Z  + ,

where Y, �, and  are T×N and Z is T×K.  With this stacking, one has E���/T =  and
E � /T = B-1 B�-1.  Note that post-multiplying (8) by a non-singular diagonal matrix leaves the
reduced form unchanged; hence this modification is observationally equivalent.  Then, we can
choose any convenient diagonal matrix as a normalization.  In particular, we can renumber the
equations and rescale them so that the dependent variable ynt appears with a coefficient of one in the
n-th equation.  This is equivalent to saying that we can write B = I - A, where A is a matrix with
zeros down the diagonal, and that the behavioral system (8) can be written

(10)                  Y = YA - Z  + � � [Y | Z]  � XC + �.
A

�

In this setup, Y and � are T×N, X is T×(N+K), and C is (N+K)×N.  Restrictions that exclude some
variables from some equations will force some of the parameters in C to be zero.  Rewrite the n-th
equation from (10), taking these restrictions into account, as

(11)                    yn = YnAn - Zn n + �n � XnCn + �n,

where this equation includes Mn endogenous variables and Kn predetermined variables on the RHS.
Then, yn is T×1, Yn is T×Mn, and Zn is T×Kn, and Xn is T×(Mn+Kn).

A second method of stacking which is more convenient for empirical work is to write down all
the observations for the first equation, followed by all the observations for the second equation, etc.
This amounts to starting from (11), and stacking the T observations for the first equation, followed
by the T observations for the second equation, etc.  Since the Cn differ across equations, the stacked
system looks like

(12)              =  +  � Xc + e.

y1

y2

:

yN

X1

0

:

0

0

X2

:

0

...

...

:

...

0

0

:

XN

c1

c2

:

cN

�1

�2

:

�N

Note that X in (12) is not the same as X in (10); X is NT×J, where J = J1 + .  + JN and Jn = Mn + Kn

is the number of RHS variables in the n-th equation.  The system (12) has the appearance of a system
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of regression equations.  Because of RHS endogenous variables, OLS will not be consistent, so that
we have to turn to IV methods.  In addition, there are GLS issues due to the correlation of
disturbances across equations.

Suppose you are interested in estimating a single equation from the system, say y1 =  Y1A1 - Z1 1

+ �1 � X1c1 + �1.  The IV method states that if you can find instruments W that are uncorrelated with
�1 and fully correlated with X1, then the best IV estimator, �1 =
[X1�W(W�W)-1W�X1]

-1X1�W(W�W)-1W�y1 is consistent.  But the potential instruments for this
problem are Z = [Z1 | Z-1], where Z-1 denotes the predetermined variables that are in Z, but not in Z1.
The order condition for identification of this equation is that the number of variables in Z-1 be at least
as large as the number of variables in Y1, or the number of excluded predetermined must be as large
as the number of included RHS endogenous.  The rank condition is that X1� W be of maximum rank.
For consistency, you need to have X1�W/T converging in probability to a matrix of maximum rank.

Exercise 2.  Show that the rank condition implies the order condition.  Show in the example of
the supply and demand for economists that the order condition can be satisfied, but the rank
condition can fail, so that the order condition is necessary but not sufficient for the rank condition.

The best IV estimator can be written �1 = [X1e�X1e]
-1X1e�y1, where X1e = W(W�W)-1W�X1  is the

array of fitted values from an OLS regression of X1 on the instruments W = Z; i.e., the reduced form
regression.  Then, the estimator has a two-stage OLS (2SLS) interpretation:

(1) Estimate the reduced form by OLS, and retrieve the fitted values of the endogenous variables.
(2) Replace endogenous variables in a behavioral equation by their fitted values from the reduced
form, and apply OLS.

Recall from the general IV method that the procedure above done by conventional OLS programs
will not produce consistent standard errors.  Correct standard errors can be obtained by first
calculating residuals from the 2SLS estimators in the original behavioral model, u1 = y1 - X1�2SLS,
estimating ^2 = u1�u1/(T-K1), and then estimating Ve(�2SLS) = ^2[X1�X1]

-1.

5. 3SLS

The 2SLS method does not exploit the correlation of the disturbances across equations.  You saw
in the case of systems of regression equations that using FGLS to account for such correlations
improved efficiency.  This will also be true here.  To motivate an estimator, write out all the moment
conditions available for estimation of each equation of the system:

(13)           =   + � [(IN�Z�)X]c + (IN�Z�)�.

Z�y1

Z�y2

:

Z�yN

Z�X1

0

:

0

0

Z�X2

:

0

...

...

:

...

0

0

:

Z�XN

c1

c2

:

cN

Z��1

Z��2

:

Z��N

The disturbances in the NK×1 system (13) have the covariance matrix �(Z�Z).  Then, by analogy
to GLS, the best estimator for the parameters should be
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(14)               �3SLS = X�(IN�Z)( -1�(Z�Z)-1)(IN�Z�)y X�(IN�Z)( &1�(Z�Z)&1)(IN�Z�)X &

                               = X�( -1�(Z(Z�Z)-1)Z�))y .X�( &1�(Z(Z�Z)&1Z�))X
&1

This estimator can be obtained in three OLS stages, hence its name:
(1-2) Do 2SLS on each equation of the system, and retrieve the residuals calculated at the 2SLS
estimators and the original (not the fitted) RHS variables.
(3) Estimate  from the residuals just calculated, and then do FGLS regression of y on X using
the GLS weighting matrix -1�(Z(Z�Z)-1)Z�).
The large-sample approximation to the covariance matrix for (14) is, from the usual GLS theory,

(15)                          V(�3SLS) = .X�( &1�(Z(Z�Z)&1Z�))X
&1

The FGLS third stage for the 3SLS estimator can be done conveniently by a OLS on transformed
data.  Let L be a lower triangular Cholesky factor of e

-1 and Q be a lower triangular Cholesky factor
of (Z(Z�Z)-1)Z�.  Then (L�Q)(L�Q)� = e

-1�(Z(Z�Z)-1)Z�).   Transform (L�Q)y = (L�Q)Xc +  and
apply OLS to this system to get the 3SLS estimators.

The main advantage of 3SLS over 2SLS is a gain in asymptotic efficiency.  The main
disadvantage is that the estimators for a single equation are potentially less robust, since they will
be inconsistent if the IV assumptions that Z is predetermined fail in any equation, not just a particular
one of interest.

6. TESTING FOR OVER-IDENTIFYING RESTRICTIONS

Consider an equation y = X  + u from a system of simultaneous equations, and let W denote the
array of instruments (exogenous and predetermined variables) in the system.  Let X* = PWX denote
the fitted values of X obtained from OLS estimation of the reduced form; where PW = W(W’W)�W’
is the projection operator onto the space spanned by W.  The equation is over-identified if the
number of instruments W exceeds the number of right-hand-side variables X.  From Chapter 3, the
GMM test statistic for over-identification is the minimum in  of 

2nQn( ) = u�PW u/ 2 = u�PX* u/ 2 + u�(PW - PX*)u/ 2,

where u = y - X .  One has u�(PW - PX*)u = y�(PW - PX*)y, and at the minimum in , u�PX*u = 0, so
that 2nQn = y�(PW - PX*)y/ 2.  Under Ho, this statistic is asymptotically chi-squared distributed with
degrees of freedom equal to the difference in ranks of W and X*.  This statistic can be interpreted
as the difference in the sum of squared residuals from the 2SLS regression of y on X and the sum
of squared residuals from the reduced form regression of y on W, normalized by 2.  A
computationally convenient equivalent form is 2nQn = ��W - �X*�

2/ 2, the sum of squares of the
difference between the reduced form fitted values and the 2SLS fitted values of y, normalized by 2.
Finally, 2nQn = y�QX*PWQX*y/ 2 = nR2/ 2, where R2 is the multiple correlation coefficient from
regressing the 2SLS residuals on all the instruments; this result follows from the equivalent formulas
for the projection onto the subspace of W orthogonal to the subspace spanned by X*.  This test
statistic does not have a version that can be written as a quadratic form with the wings containing
a difference of coefficient estimates from the 2SLS and reduced form regressions.  Note that if the
equation is just identified, with the number of proper instruments excluded from the equation exactly
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equal to the number of right-hand-side included endogenous variables, then there are no over-
identifying restrictions and the test has no power.  However, when the number of proper instruments
exceeds the minimum for just identification, this test amounts to a test that all the exclusions of the
instruments from the structural equation are valid. 

7. TIME-SERIES APPLICATIONS OF SIMULTANEOUS EQUATIONS MODELS

The example of the market for economists that introduced this chapter was a time- series model
that involved lagged dependent variables.  In the example, we assumed away serial correlation, but
in general serial correlation will be as issue to be dealt with in applications of simultaneous equations
models to time series.  The setup (6) for a linear simultaneous equations model can be expanded to
make dependence on lagged dependent variables explicit:

(16)     yt�B + yt-1�   + zt�  = �t�.

Recall that the variables yt-1 and zt in this model are predetermined if they are  uncorrelated with the
disturbance �t, and strongly predetermined if �t is statistically independent of yt-1 and zt.  In this
model, the strictly exogenous variables zt may include lags (and, if it makes economic sense, leads).
It is not restrictive to write the model as a first-order lag in yt, as higher-order lags can be
incorporated by including lagged values of the dependent variables as additional components of yt,
with identities added to the system of equations to link the variables at different lags.  (This was done
in Chapter 5 in discussing the stability of vector autoregressions.)

The reduced form for the system (16), also called the final form in time series applications, is

(17)               yt� = yt-1�  + zt�  + t�,

where  = - B-1,  = - B-1, and t� = �t�B
-1, so that the covariance matrix of t is  = B�-1 B-1.

Identification of the model requires that B be nonsingular, and that there be exclusion and/or
covariance restrictions that satisfy a rank condition.  Stability of the model requires that the
characteristic roots of  all be less than one in modulus.  If one started with a stable structural model
that had disturbances that were serially correlated with an autoregressive structure, then with suitable
partial differencing the model could be rewritten in the form (17), the disturbances t would be
innovations that are independent across t, and the explanatory variables in (17) would be strongly
predetermined.  Further, the dynamics of the system would be dominated by the largest modulus
characteristic root of .  In this stable case, estimation of the model can proceed in the manner
already discussed:  Estimate the reduced form, use fitted values of yt (along with zt and yt-1) as
instruments to obtain 2SLS estimates of each equation in (17), and finally use fitted covariances
from these equations (calculated at the 2SLS estimates) to carry out 3SLS.

If the final form (17) is not stable, and in particular  has one or more unit roots, then the
statistical properties of 2SLS or 3SLS estimates are quite different:  some estimates may converge
in asymptotic distribution at rate T rather than the customary T1/2, and the asymptotic distribution
may not be normal.  Consequently, one  must be careful in conducting statistical inference using
these estimates.  There is an extensive literature on analysis of systems containing unit roots; see the
chapter by Jim Stock in the Handbook of Econometrics IV.  When a system is known to contain a
unit root, then it may be possible to transform to a stable system by appropriate differencing.
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8. NONLINEAR SIMULTANEOUS EQUATIONS MODELS  

In principle, dependent variables may be simultaneously determined within a system of
equations that is nonlinear in variables and parameters.  One might, for example, consider a system

(18)     Fi(y1t,y2t,...,yNt;zit, ) = �it, i = 1,...,N

for the determination of (y1t,y2t,...,yNt) that depends on a K×1 vector of parameters , vectors of
exogenous variables zit, and disturbances �it.  Such systems might arise naturally out of economic
theory.  For example, consumer or firm optimization may be characterized by first-order conditions
that are functions of dependent decision variables and exogenous variables describing the economic
environment of choice, with the �it appearing due to errors in optimization by the economic agents,
arising perhaps because ex post realizations differ from ex ante expectations, or due to
approximation errors by the analyst.  For many plausible economic models, linearity of the system
(18) in variables and parameters would be the exception rather than the rule, with the common linear
specification justifiable only as an approximation.  The nonlinear system (18) is well-determined if
it has a unique solution for the dependent variables, for every possible configuration of the z's and
�'s, and for all 's in a specified domain.  If it is well-determined, then it has a reduced form

(19)     yit = fi(z1t,z2t,...,zNt,�1t,�2t,...,�Nt, ), i = 1,...,N.

This reduced form can also be written

(20)     yit = hi(z1t,z2t,...,zNt, ) + uit, i = 1,...,N

where 

 hi(z1t,z2t,...,zNt, ) = E{fi(z1t,z2t,...,zNt,�1t,�2t,...,�Nt, )�zt},

and uit is the disturbance with conditional mean zero that makes (20) hold.  In this form, (20) is a
system of nonlinear equations in the form considered in Chapter 5, and the treatment there can also
be applied to estimate the structural parameters from this reduced form.  (The specification (20)
guarantees that the reduced form disturbances have conditional expectation zero; but the additional
assumption that u's are statistically independent of z's, or even that they are homoskedastic, is  rarely
justifiable from economic theory.  Then statistical analysis based on this assumption may be invalid
and misleading for many application.)

Recall that in Chapter 4, estimation of a nonlinear equation with contaminated explanatory
variables was discussed, a best nonlinear 2SLS (BN2SLS) estimator was defined, and practical
approximations to the BN2SLS were discussed.  The equations in (18) would correspond directly
to this structure if in equation i, one had

(21)     Fi(y1t,y2t,...,yNt;zit, ) = yit - h(y1t,...,yi-1,t,yi+1,t,...,yNt,zit, ),

Absent this normalization, some other normalization is needed for identification in Fi, either on the
scale of the dependence of Fi on one variable, or in the scale of �it. This is no different in spirit than
the normalizations needed in a linear simultaneous equations specification.  Given an identifying



Page 104, Chapter 6-10

normalization, it is possible to proceed in essentially the same way as in Chapter 4.  Make a
first-order Taylor’s expansion of (18) about an initial parameter vector o to obtain

(22) Fi(y1t,y2t,...,yNt;zit, o) � - �( k- ok) + �it.�
K

k'1

�Fi(y1t,y2t,...,yNt;zit, o)

� k

Treat the expressions xitk = -�Fi(y1t,y2t,...,yNt;zit, o)/� k as contaminated explanatory variables, and the
expectations of xikt given z1t,...,zNt as the ideal best instruments.  Approximate these best instruments
by regressing the xitk on suitable functions of the z’s, as in Chapter 4, and then estimate (22) by this
approximation to best 2SLS.  Starting from an initial guess for the parameters, iterate this process
to convergence, using the estimated coefficients from (22) to update the parameter estimates.  The
left-hand-side of (22) is the dependent variable in these 2SLS regressions, with the imposed
normalization guaranteeing that the system is identified.  This procedure can be carried out for the
entire system (22) at one time, rather than equation by equation.  This will provide nonlinear 2SLS
estimates of all the parameters of the system.  These will not in general be best system estimates
because they do not take into account the covariances of the �’s across equations.  Then, a final step
is to apply 3SLS to (22), using the previous 2SLS estimates to obtain the feasible GLS
transformation.  The procedure just described is what the LSQ command in TSP does when applied
to a system of nonlinear equations without normalization, with instrumental variables specified.

When the nonlinear reduced form (20) can be obtained as an analytic or computable model, it
is possible to apply nonlinear least squares methods directly, either equation by equation as N2SLS
or for the system as N3SLS.  This estimation procedure is described in Chapter 5.  One caution is
that while the disturbances uit in (20) have conditional mean zero by construction, economic theory
will rarely imply that they are, in addition, homoskedastic, and the large sample statistical theory
needs to be reworked when heteroskedasticity of unknown form is present.  Just as in linear models,
consistency is generally not at issue, but standard errors will typically not be estimated consistently.
At minimum, one should be cautious and use robust standard error estimates that are consistent
under heteroskedasticity of unknown form.
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CHAPTER 7. ROBUST METHODS IN ECONOMETRICS

1. THE PARAMETERS OF ECONOMETRICS

Econometrics deals with complex multivariate relationships and employs non-experimental or
"field" data that are influenced by many factors.  Occasionally econometricians have data from
designed experiments in which treatments are randomized, and/or other factors are held constant, to
assure that there can be no confounding of the measured effects of treatments.  Almost as good are
“natural experiments”, also called “quasi-experiments”, in field data where a factor of direct interest
(or an instrument correlated with a factor of interest) has clearly operated in a manner that is
independent of confounding effects. The scientific value of such quasi-experiments is high, and
econometricians should actively seek designed or natural experiments that can illuminate economic
issues. That said, there remain important problems in economic theory and policy for which
experimental data are not available within the time frame in which answers are needed.  It is
imperative that econometricians deal with these problems using the best tools available, rather than
reverting to an orthodoxy that they are too "messy" for econometric treatment.  

Econometricians must make educated guesses about the structure of the data generation
processes in non-experimental data.  The studies that result rely on these structural assumptions can
be misleading if the assumptions are not realistic.  This has important implications for the conduct
of econometric analysis.  First, it is desirable to have large data sets in which the "signal" contained
in systematic relationships is strong relative to the "statistical noise".  Second, it is important to
"proof" econometric models, testing the plausibility of the specification both internally and against
other data and other studies, and avoiding complex or highly parametric formulations whose
plausibility is difficult to check.  Fourth, it is desirable to use statistical methods that are "robust" in
the sense that they do not force conclusions that are inconsistent with the data, or rely too heavily
on small parts of the data.

Most of classical econometric analysis, from linear regression models to maximum likelihood
estimation of non-linear models, lays out the assumptions under which the procedures will produce
good statistical results, and simply assumes that these postulates can be checked and will be checked
by users.  To some extent, the development of diagnostic and specification tests provides the capacity
to make these checks, and good econometric studies use these tests.  However, some basic
assumptions are difficult to check, and they are too often accepted in econometric studies without
serious examination.  Fortunately, in many economic applications, particularly using linear models,
the analysis is more robust than the assumptions, and sensibly interpreted will provide useful results
even if some assumptions fail.   Further, there are often relatively simple estimation alternatives that
provide some protection against failures, such as use of instrumental variables or
heteroskedasticity-consistent standard errors.  New developments in econometrics expand the menu
of procedures that provide protection against failures of classical assumptions.  This chapter
introduces three areas in which "robust" methods are available: the use of nonparametric and
semiparametric methods, the use of simulation methods and "indirect inference", and the use of
bootstrap methods.

Econometrics first developed from classical parametric statistics, with attention focused on linear
systems.  This was the only practical alternative in an era when computation was difficult and data
limited.  Linear parametric models remain the most useful tool of the applied econometrician.
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However, the assumption of known parametric functional forms and distributions interposes an
untidy veil between econometric analysis and the propositions of economic theory, which are mostly
abstract without specific dimensional or functional restrictions.  Buoyed by good data and computers,
contemporary econometricians have begun to attack problems which are not a priori parametric.
One major line of attack is to use general nonparametric estimation methods to avoid distributional
assumptions.  The second, closer to classical methods, is to use flexible forms to approximate
unknown functions, and specification tests to search for parsimonious representations.  The added
dimension in a modern rendition of the second approach is explicit recognition of the statistical
consequences of adding terms and parameters as sample sizes grow.

Many problems of econometric inference can be cast into some version of the following setup:
There is a random vector (Y,X)  
k×
m such that X has a (unknown) density g(x) and almost surely
Y has a (unknown) conditional density f(y�x).  There is a known transformation t(y,x) from 
k×
m

into the real line 
, and the conditional expectation of this transformation, (x) = E(t(Y,x)�X=x),
is the target of the econometric investigation.  Examples of transformations of interest are (1) t(y,x)
� y, in which case (x) = E(Y�X=x) is the conditional expectation of Y given x, or the regression
function of Y on x; (2) t(y,x) = yy�, in which case (x) = E(YY��X=x) is the array of second
conditional moments, and this function combined with the first example, E(YY��X=x) -
{E(Y�X=x)}{E(Y�X=x)}� is the conditional variance; and (3) t(y,x) = 1A(y), the indicator function
of the set A, in which case (x) is the conditional probability of the event A, given X = x.  Examples
of economic applications are Y a vector of consumer demands, and x the vector of income and
prices; or Y a vector of firm net outputs and x a vector of levels of fixed inputs and prices of variable
inputs.

Define the disturbance � = �(y,x) � t(y,x) - (x).  Then the setup above can be summarized as a
generalized regression model,

   t(y,x) = (x) + �,

where E(��x) = 0.  Econometric problems fitting this setup can be classified as fully parametric;
semiparametric; or nonparametric.  The model is fully parametric if the function  and the
distribution of the disturbance � are both known a priori to be in finite-parameter families.  The
model is nonparametric if both  and � have unknown functional forms, except possibly for shape
and regularity properties such as concavity or continuous differentiability.  The model is
semiparametric if it contains a finite parameter vector, typically of primary interest, but parts of 
and/or the distribution of � are not restricted to finite-parameter families.  This is a rather broad
definition of semiparametric, which includes for example linear regression under Gauss-Markov
conditions where the distribution of the disturbances is not restricted to a parametric family, and only
the first two moments are parametric.  Some econometricians prefer to reserve the term
semiparametric for situations where the problem can be characterized as one with a
finite-dimensional parameter vector that is the target of the analysis and an infinite-dimensional
vector of nuisance parameters (which might, for example, determine an unknown function), for it
is in this case that non-classical statistical methods are needed.

Where can an econometrician go wrong in setting out to analyze the generalized regression
relationship t(y,x) = (x) + �?  First, there is nothing in the formulation of this model per se that
assures that (x) has any causal or invariance properties that allow it to be used to predict the
distribution of values of t(y,x)  if the distribution of x shifts.  Put another way, the model will by
definition be descriptive of the conditional mean in the current population, but not necessarily
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predictive under policy changes that alter the distribution of x.  Because econometricians are often
interested in conditional relationships for purposes of prediction or analysis of policy scenarios, this
is potentially a severe limitation.   The prescription for "robust" causal inference is to use statistical
methods and tests that can avoid or detect joint or "wrong-way" causality (e.g., instrumental
variables, Granger invariance tests in time series, exogeneity tests); avoid claiming causal inferences
where confounding of effects is possible; and avoid predictions that require substantial extrapolation
from the data.  Second, when (x) is approximated by a parametric family, there will be a
specification error if the parametric family fails to contain (x).  Specification errors are particularly
likely if the parametric family leaves out variables or variable interactions that appear in the true
conditional expectation.  Third, the only property that is guaranteed for the disturbances � when (x)
is correctly specified is the conditional first moment condition E(��x) = 0.  There is no guarantee that
the conditional distribution of � given x is independent of x, or for that matter that the variance of
� is homoskedastic.  In addition, there is no guarantee that the distribution of � has thin enough tails
so that higher moments exist, or are sufficiently well behaved so that estimates are not unduly (and
unstably) influenced by a small number of high influence observations.  In these circumstances,
statistical methods that assume well-behaved disturbances can be misleading, and better results may
be obtained using methods that bound the influence of tail information.  At minimum, it is often
worth providing estimates of estimator dispersion that are consistent in the presence of various likely
problems with the disturbances.

In statistics, there is a fairly clear division between nonparametric statistics, which worries about
the specification of (x) or about tests of the qualitative relationship between x and t, and robust
statistics, which worries about the properties of �.  In econometrics, both problems appear, usually
together, and it is useful to refer to the treatment of both problems in economic applications as robust
econometrics.

Despite the leading place of fully parametric models in classical statistics, elementary
nonparametric and semiparametric methods are used widely without fanfare.   Histograms are
nonparametric estimators of densities.  Contingency tables for data grouped into cells are one
approach to estimating a regression function nonparametrically.  Linear regression models, or any
estimators that rely on a finite list of moment conditions, can be interpreted as semiparametric, since
they do not require complete specification of the underlying distribution function.

2.  HOW TO CONSTRUCT A HISTOGRAM

One of the simplest examples of a nonparametric problem is that of estimating an unknown
univariate unconditional density g(x), given a random sample of observations xi for i = 1,...,n.
Assume, by transformation if necessary, that the support of g is the unit interval.  An elementary
method of approximating g is to form a histogram:  First partition the unit interval into K segments
of length 1/K, so that segment k is (ck-1,ck] with ck = k/K for k = 0,...,K.  Then estimate g within a
segment by the share of the observations falling in this segment, divided by segment length.  If you
take relatively few segments, then the observation counts in each segment are large, and the variance
of the sample share in a segment will be relatively small.  On the other hand, if the underlying
density is not constant in the segment, then this segment average is a biased estimate of the density
at a point.  This bias is larger when the segment is longer.  Segment length can be varied to balance
variance against bias.  As sample size rises, the number of segments can be increased so that the
contributions of variance and bias remain balanced.

Suppose the density g has the following smoothness property:
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   �g(x�) - g(x)� � L�x� - x�,

where L is a positive constant.  Then the function is said to satisfy a Lipschitz condition.  If g is
continuously differentiable, then this property will be satisfied.  Let nk be the number of observations
from the sample that fall in segment k.  Then, the histogram estimator of g at a specified argument
x is

�(x) = Knk/n  for x  (ck-1,ck].

Compute the variance and bias of this estimator.  First, the probability that an observation falls in

segment k is the segment mean of g, pk = K� g(x)dx.  Then, nk has a binomial distribution with�
ck

ck&1

probability pk/K, so that it has mean npk/K and variance n(pk/K)(1 - pk/K).  Therefore, for xo 
(ck-1,ck], �(xo) has mean pk and variance (K/n)pk(1 - pk/K).  The bias is BnK(x) = pk - g(x).  The mean
square error of the estimator equals its variance plus the square of its bias, or

MSE(x) = (K/n)pk(1 - pk/K) + (pk - g(x))2.

A criterion for choosing K is to minimize the mean square error.  Looking more closely at the bias,
note that by the theorem of the mean, there is some argument zk in the segment (ck-1,ck] such that pk/K

= g(x)dx = g(zk) dx = g(zk)/K.  Then, using the Lipschitz property of g,�
ck

ck&1
�

ck

ck&1

�pk - g(x)� = �g(zk) - g(x)� � L�zk - x� � L/K,

Then, the MSE is bounded by 

MSE(x) � (K/n)pk(1 - pk/K) + L2/K2.

Approximate the term pk(1 - pk/K) in this expression by g(x), and then minimize the RHS in K.  The
(approximate) minimand is K = (2L2n/g(x))1/3, and the value of MSE at this minimand is
approximately (Lg(x)/2n)2/3.  Of course, to actually do this calculation, you have a belling-the-cat
problem that you need to know g(x).  However, there are some important qualitative features of the
solution.  First, the optimal K goes up in proportion to the cube root of sample size, and MSE
declines proportionately to n-2/3.  Compare this with the formula for the variance of parametric
estimators such as regression slope coefficients, which are proportional to 1/n.  Then, the histogram
estimator is consistent for g, since the mean square error goes to zero.  However, the cost of not
being able to confine g to a parametric family is that the rate of convergence is lower than in
parametric cases.  Note that when L is smaller, so that g is less variable with x, K is smaller.

If you are interested in estimating the entire function g, rather than the value of g at a specified
point x, then you might take as a criterion the Mean Integrated Square Error (MISE),
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MISE = E�(�(x) - g(x))2dx = E(�(x) - pk + pk - g(x))2dx�
K

k'1 �
ck

ck&1

=  E(Knk/n - pk)
2/K + (pk - g(x))2dx�

K

k'1
�
K

k'1 �
ck

ck&1

= (1/n)pk(1 - pk/K) + (g(zk) - g(x))2dx�
K

k'1
�
K

k'1 �
ck

ck&1

� K/n + L2�(zk - x)2dx � K/n + L2/3K2.�
K

k'1 �
ck

ck&1

The RHS of this expression is minimized at K = (2L2n/3)1/3, with MISE � (3L/2n)2/3.   Both
minimizing MSE at a specified x and minimizing MISE imply that the number of histogram cells
K grows at the rate n1/3.  When g(x) < 3, the optimal K for the MISE criterion will be smaller than
the optimal K for the MSE criterion; this happens because the MISE criterion is concerned with
average bias and the MSE criterion is concerned with bias at a point.  One practical way to
circumvent the belling-the-cat problem is to work out the value of K for a standard distribution; this
will often give satisfactory results for a wide range of actual distributions.  For example, the
triangular density g(x) = 2x on 0 � x � 1 has L = 2 and gives K = 2(n/3)1/3.   Thus, a sample of size
n = 81 implies K = 6, while a sample of size n = 3000 gives K = 20.

3.  KERNEL ESTIMATION OF A MULTIVARIATE DENSITY

One drawback of the histogram estimator is that it is estimating a continuous density by a step
function, and the constancy of this estimate within a cell and the steps between cells contribute to
bias.  There would seem to be an advantage to using an estimator that mimics the smoothness that
you know (believe?) is in the true density.  This section describes the commonly used kernel method
for estimating a multivariate density.

Suppose one is interested in estimating an unknown density g(x) for x = (x1,...,xm) in the domain
[0,1]m.  Suppose that g is not known to be in a parametric family, but is known to be strictly positive
on the interior of [0,1]m and is known to have the following smoothness property: g is continuously
differentiable up to order p (where p 	 0), and the order p derivatives satisfy a Lipschitz condition.
Some notation is needed to make this precise.  Let r = (r1,...,rm) denote a vector of non-negative
integers, and �r� = � rj.  Let gr(x) =  denote the mixed partial derivative of�*r* � r1 ��� �
g of order �r� with respect to the arguments in r.  The assumption is that gr(x) exists and is
continuous for all r satisfying �r� � p, and that there exists a constant L such that �gr(x) - gr(y)� � L�x
- y� for any r satisfying �r� = p.  In applications, the most common cases considered are p = 0, where
one is assuming g continuous and not too variable (e.g., Lipschitz), and p = 2, where one is assuming

g twice continuously differentiable.  Define zr � .  A function g that satisfies thez1
r1...zm

rm

smoothness condition above has a Taylor’s expansion (in h) that satisfies
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   g(x - hz) =  gr(x)�zr + �  �gr(x)�zr��L�z� �
p

q'0

(�h)q

q! �
*r*'q

h p%1

p! �
*r*'p

for some scalar   (-1,1).  

Exercise 1.  Verify that for m = 1, these smoothness conditions reduce to the requirement that
g be p-times continuously differentiable, with dpg(x)/dxp satisfying a Lipschitz condition, so the
Taylor’s expansion is a textbook expansion in derivatives up to order p.  

Exercise 2.  Show that in the case p = 0, the expansion reduces to g(x - hz) = g(x) + h�L�z�.

Suppose you have a random sample xi for i = 1,...,n drawn from the density g(x).   In
applications, it is almost always desirable to first do a linear transformation of the data so that the
components of x are orthogonal in the sample, with variances that are the same for each component.
Hereafter, assume that the x’s you are working with have this property.  Suppose that you estimate
g using a kernel estimator,

   �(x) = K  .  
1

nh m �
n

i'1

x � xi

h

The function K(z) is the kernel, and the scalar h is the bandwidth.  The kernel K is a function on
(-�,+�)m with the properties that � K(z)dz = 1, and for some integer s with 0 � s � p, �zr�K(z)dz =
0 for �r� � s and �zr�K(z)dz = kr for �r� = s+1, where the kr are constants that are finite and not all
zero.  In words, K is a "density-like" function which integrates to one, but which is not necessarily
always non-negative.  All the moments of this function up through order s vanish, and moments of
order s + 1 exist and some do not vanish.  This is called a kernel of order s.  In applications, you will
encounter mostly first-order kernels satisfying �ziK(z)dz = 0 and �zi

2K(z)dz > 0; these are usually
constructed as non-negative densities that are symmetric about zero.  Higher-order kernels, for s >
1, will be used to take advantage of problems where g is known to be differentiable to higher order
than two.   Higher order kernels will necessarily sometimes be negative.

An example of a first-order kernel is K(z) = (2 )-m/2�exp[-z�z/2], a Gaussian kernel formed by the
product of univariate standard normal densities.  Forming products of univariate kernels in this
fashion is a convenient way to build up multivariate kernels.  Another example of a multivariate
kernel is the multivariate Epanechnikov kernel, K(z) = (½)cm�(m+2)�(1 - z�z)�1(z�z < 1), where cm

is the volume of a unit sphere in 
m, which can be calculated recursively using the formulas c1 = 2,
c2 = , and cn = cn-2�n/(n-1) for n > 2.  An example of a second-order kernel derived from a first-order
kernel K is

   K*(z) = [K(z) - 3K( z)]/(1- 2), 

where  is a scalar in (0,1).  (If K is symmetric about zero, then K* is actually a third-order kernel.)
Kernels to any order can be built up recursively as linear combinations of lower order kernels.

Mean and Variance of the Kernel Estimator

The mean of the kernel estimator is
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   E�(x) = E K  =  K �g(y)dy .
1

nh m �
n

i'1

x � xi

h
1

h m �
x � y

h

Using the fact that the observation xi are independent, the variance of the kernel estimator is 

  V�(x) � E[�(x) - E�(x)]2 =   
1

n 2h 2m �
n

i'1
E K

x � xi

h

2

� E K
x � xi

h

2

  =  .
1

nh 2m � K
x � y

h

2

g(y)dy � � K
x � y

h
�g(y)dy

2

Consistency, Bias, and Mean Square Error
Require h �� 0 and n�h2m �� +�.  Then, E�(x) �� g(x) and V�(x) �� 0, so that �(x) converges to

g(x) in mean square error, and is hence consistent.  Note that for m large, these conditions require
that h fall quite slowly as n rises.  This is called the curse of dimensionality.

Next approximate the bias and variance of the estimator when h is small.  Assume that the order
of the kernel s is less than or equal to the degree of differentiability p.  Introduce the change of
variables y = x - hz in the expressions for the mean and variance of �(x), and then use the Taylor’s
expansion for g(x - hz) up to order s, to obtain

  E�(x) =  K �g(y)dy =  K(z)�g(x - hz)dz 1

h m�
x � y

h �

  = g(x) +  gr(x)  K(z)�zrdz + �  gr(x)�  K(z)�zr�L�z�dz �
p

q'0

(�h)q

q! �
h s%1

s! �
*r*'s �

  = g(x) + ��L�  �gr(x)��Cr ,
h s%1

s! �
*r*'s

where Cr = ��K(z)�zr���z�dz is a positive constant determined by the kernel, and � is a scalar in
(-1,1).  Then,

   Bias(x) = ��L�  �gr(x)|�Cr .  
h s%1

s! �
*r*'s

From this formula, one sees that the magnitude of the bias shrinks at the rate hs+1, where s is the order
of the kernel, as long as s � p.  Thus, when one knows that g has a high degree of differentiability,
one can use a higher order kernel and control bias more tightly.  The reason this works is that when
g is very smooth, you can in effect estimate and remove bias components that change smoothly with
x; e.g., bias terms that are linear in deviations from the target x.  However, if one uses a low order
kernel, the bias is determined by the order of the kernel, and is not reduced even if the function g is
very smooth.  At the other extreme, the bias is of order hp+1 for any kernel of order s 	 p, since the
Taylor’s series cannot be extended beyond the order of differentiability of g, so nothing is gained on
the bias side by going to a kernel of order s > p.  For example, if p = 0, so that one knows only that
g is Lipschitz, then one cannot reduce the order of bias by using a symmetric kernel.
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Next consider the variance.  Making the change of variables y = x - hz,

  V�(x) = E[�(x) - E�(x)]2 =  K(z)2�g(x - hz)dz - 1

nh m �
1
n � K(z)�g(x � hz)dz

2

  =  K(z)2dz +  , 
g(x)

nh m �
D

n�h m&1

where D is a constant that depends on K and g.  As h �� 0, the first term in the variance will
dominate.  Then, the mean square error of the estimator � at x is bounded by

   MSE(x) = Bias(x)2 + V�(x) = L2�   +  K(z)2dz + HOT, 
h 2(s%1)

(s!)2 �
*r*'s

�g r(x)��Cr

2
g(x)

nh m �
where HOT stands for "Higher Order Terms".  The mean integrated square error (MISE) is then

MISE = �MSE(x)dx = L2� �A +  K(z)2dz + HOT,h 2(s%1)

(s!)2

1

nh m�
where 

A = dx  .  � �
*r*'s

�g r(x)��Cr

2

The optimal bandwidth h minimizes MISE:

 hopt =  .
m(s!)2

2(s�1)n�A�L 2 � K(z)2dz
1

m%2(s%1)

Then, the bandwidth falls with n, at a slower rate the higher the dimension m or the higher the order
of the kernel s.  Intuitively, this is because when m is high, there are more dimensions where data
can "hide", so the sample is less dense and one has to look more widely to find sufficient neighboring
points.  Also, when the order of the kernel s high, more distant points can be used without adding
too much to bias because the function is smooth enough so that leading bias terms can be taken out.
 Increasing the order of derivatives typically increases A and/or L, and this also shrinks bandwidth.
In an applied problem, direct application of the formula for hopt is impractical because it depends on
functions of g that one does not know.

Substituting the optimal bandwidth in MISE yields

MISE(hopt) = � � �  .n
2(s%1)

m%2(s%1) 2(s�1)AL 2

m(s!)2

m
m%2(s%1) � K(z)2dz

2(s%1)
m%2(s%1) m�2(s�1)

2(s�1)

Note first that MISE will always fall more slowly than 1/n.  This is due to the nonparametric nature
of the problem, which implies in effect that only local data is available to estimate the density at each
point.  Chuck Stone has shown that the rate above is not particular to kernel estimation, but is a best
rate that can be obtained by any estimation method.  Second, the higher the dimension m, the lower
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the rate at which MISE falls with sample size, the curse of dimensionality.  If the problem is very
smooth, and one exploits this by using a higher-order kernel, one can offset some of the curse of
dimensionality.  In the limiting case, as s �� +�, the rate approaches the limiting 1/n rate.  However,
other terms in MISE also change when one goes to higher order kernels.  In particular, �K(z)2dz will
increase for higher order kernels, and the constant A will typically increase rapidly because higher
order derivatives are less smooth than lower order ones.

Least-Squares Cross-Validation
The idea behind cross-validation is to formulate a version of the MISE criterion that can be

estimated from the data alone.  Then, the bandwidth that minimizes this empirical criterion is close
to the optimal bandwidth.  The MISE criterion can be written 

  MISE = E  [�(x) - g(x)]2dx = E  �(x)2dx - 2�E  �(x)�g(x)dx +  g(x)2dx .� � � �
The approach is to obtain unbiased estimators of the terms involving �(x), and then to choose h

iteratively to minimize this estimated criterion.  Consider first the term E  �(x)2dx.  This�
expression can be estimated using the kernel estimator �.  To get a convenient computational
formula, first define K(2)(z) = � K(w - z)�K(w)dw .  This is a convolution that defines a new kernel
starting from K, and is an expression that can often be determined analytically.  When K is a
probability density, K(2) has a simple interpretation: if W1 and W2 are independent random vectors
with density K, then the density of Z = W1 - W2 is K(2).  For example, if K is a product of univariate
standard normal densities, then K(2) is a product of univariate normal densities with mean 0 and
variance 2.  Using the definition of K(2), and making the transformation of variables w = (x - xi)/h,

  �(x)2dx =   K �K �dx �
1

n 2h 2m �
n

i'1 �
x � xi

h

x � xj

h

=  K(2)
 .

1

nh m �
n

i'1
�

n

j'1

xj � xi

h

This statistic converges to its expectation as n �� +�.

Next consider the term �(x)�g(x)dx =  K g(x)dx .  Replace the�
1

n 2h 2m �
n

i'1 �
x � xi

h

unknown g(x) in the expression K g(x)dx by the empirical density from the sample,�
x � xi

h

excluding xi; this puts probability 1/(n-1) at each data point xj for j � i.  This gives an estimator

�   K  for �(x)�g(x)dx.  
1

nh m

1
n�1 �

n

i'1
�
júi

xj � xi

h �
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Exercise 3.  Show that  �(x)�g(x)dx and the estimator for it given above have the same�
expectation.

Putting together the estimators for the first two terms in the MISE, one obtains the empirical
criterion

   MISE�(h) =  K(2)
 - �  K  1

n 2h m �
n

i'1
�

n

j'1

xj � xi

h
2

nh m

1
n�1 �

n

i'1
�
júi

xj � xi

h

   =  + .1

n 2h m �
n

i'1
�

n

j'1
K (2)(

xj�xi

h
)� 2n

n�1
K(

xj�xi

h
)

2K(0)

(n�1)h m

For application, use a nonlinear search algorithm to minimize this expression in h.   The minimand
hlsxv is the optimal bandwidth estimated by the cross-validation method.   An important theoretical
result due to Chuck Stone is that if g is bounded, then MISE(hopt)/MISE(hlsxv) � 1 as n � +�, so that
asymptotically one can do as well using the bandwidth obtained by minimizing the empirical
criterion MISE�(h) as one can do using the optimal bandwidth.

4.  NONPARAMETRIC REGRESSION

Now consider the general problem of estimating (x) in the regression model ti = (xi) + �i,
where xi is of dimension m, ti = t(yi,xi) is a known transformation,  is an unknown function, �i is a
disturbance satisfying E(�i�xi) = 0, but otherwise not restricted, and (yi,xi) for i = 1,...,n is a random
sample.  This is the general setup from the introduction.  Consider locally weighted estimators of the
form

   Tn(x) = wni(x;x1,...,xn)t(yi,xi),�
n

i'1

where the wni are scalars that put the most weight on observations with xi near x.   The weights do
not have to be non-negative, but their sum has to approach one as n � +�.  Here are some examples
of nonparametric estimation methods that are of this form, and their associated weight functions:

1.  Kernel Estimation: Suppose K is a kernel function from 
m into 
, and h is a bandwidth.  The
function K will be large near zero, and will go to zero at arguments far away from zero; common
examples for m = 1 are the uniform kernel, K(v) = 1[-1,+1](v); the normal kernel K(v) = (v), where

 is the standard normal density; the triangular kernel K(v) = Max{1-�v�,0}; and the Epanechnikov
kernel K(v) = (3/4)(1-v2)1[-1,+1](v), which turns out to have an efficiency property.  The local weights
are
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wni(x;x1,...,xn) = ,1

hn
m

K
x�xi

hn

� �
n

j'1

1

hn
m

K
x�xj

hn

where the bandwidth hn shrinks with sample size.  The kernel estimator of (x) is

Tn(x) = .

1

nh m �
n

i'1
t(yi,xi)K

x�xi

hn

1

nh m �
n

i'1
K

x�xi

hn

The denominator of this expression can be interpreted as an estimator of g(x), and the numerator as
an estimator of g(x)Ey*xt(y,x) = g(x) (x).  The kernel function K is typically defined so that �K(v)dv
= 1, and is taken to be symmetric so that �vK(v)dv = 0.  If  is known to be a smooth function, with
Lipschitz derivatives of order p, then there turns out to be an advantage (in large enough samples)
to using a higher-order kernel that satisfies �vjk(v)dv = 0 for j = 1,...,p.

2.  Nearest Neighbor Estimator.  For the given x, order the observations (y(i),x(i)) so that �x - x(1)� �
�x - x(2)� � ...  � �x - x(n)�.  To simplify discussion, rule out ties.  Define a sequence of scalars wn,(i)

that sum to one, and define

Tn(x) = wn,(i)t(y(i),x(i)) .�
n

i'1

If wn,(i) = 0 for i > r, this is termed a r-nearest neighbor estimator.  Examples of weights are uniform,
wn,(i) = 1/r for i � r and zero otherwise, and triangular, wn,(i) = 2(r-i+1)/r(r+1).  If  is known to be a
smooth function with Lipschitz derivatives of order p, then it is advantageous to run a local

regression, in which t(yi,xi) is regressed on all points of the form xih
ph with ph � p, with�

m

h'1
�
m

h'1

weights wn,(i), and the fitted value of this regression at x is the estimator of (x).  This  extension
reduces bias by taking into account the fact that a smooth function must vary regularly in its
arguments, allowing larger neighborhoods so that variance as well as bias can be reduced.  

Uniform nearest neighbor and uniform kernel estimators have the following relationship: If the
bandwidth in a uniform kernel estimator is chosen as a function of the data, a variable kernel
method, so that exactly r observations fall in the interval where the kernel is positive, then this
estimator is a uniform nearest neighbor estimator.

3.  Other Nonparametric Methods.  There are several widely used nonparametric estimation methods
other than locally weighted estimators.  First, the function (x) may be approximated by sums of
standard functions, such as polynomials, with the number of terms in the sums growing with sample
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size.  A traditional form of these series approximations is the use of Fourier or Laplace
approximations, or other series of orthogonal polynomials.  These series are truncated at some point,
depending on the sample size, the dimension of the problem, and the smoothness assumed on (x).
Once this is done, the problem is effectively parametric, and ordinary regression methods can be
used.  (Judicious choice of the series so that the terms are orthogonal results in computational
simplifications, as you do not have to invert very large matrices.)  This approach to nonparametric
regression is called, awkwardly, semi-nonparametric estimation.  The traditional econometric
practice of adding variables to regression models as sample sizes grow, and using some criterion
based on t-statistics to determine how many variables to keep in, can be interpreted as a version of
this approach to estimation.  What nonparametric econometrics adds is a mechanism for choosing
the number of terms in an "optimal" way, and an analysis that determines the statistical properties
of the result.

More recently it has become common to use a functional approximation approach with functions
whose determination is more local; popular functional forms are splines, neural nets, and wavelets.
This approach is called the method of sieves.   Loosely speaking, splines are piecewise polynomials,
neural nets are nested logistic functions, and wavelets are piecewise trigonometric functions.
Another approach to nonparametric estimation is penalized maximum likelihood, in which the log
likelihood of the sample, written in terms of the infinite-dimensional unknown function, is
augmented with a penalty function that controls the "roughness" of the solution.

All the nonparametric estimation methods listed above will be consistent, in the sense that the
mean square error MSE(x) of Tn(x) at a given point x converges to zero, with asymptotically normal
distributions (although not at a root-n rate) under suitable regularity conditions and choices of
estimation tuning features such as bandwidth.  Further, the conditions on the underlying problem
needed to get this result are essentially the same for all the methods.  An important result, due to
Chuck Stone, is that given sample size, the dimensionality of a problem, and the smoothness that can
be assumed for the regression function, there is a maximum rate at which MSE(x) can decline.  Any
of the estimation methods listed above can achieve this maximum rate.  Thus, at least in terms of
asymptotic properties, one method is as good as the next.  In practical sample sizes, there are no
general results favoring one method over another.  Kernel methods are usually the easiest to compute
at a point, but become computationally burdensome when an estimator is needed for many points.
Nearest neighbor estimators require large sorts, which are time-consuming.  The method of sieves
involves more computational overhead, but has the advantage of being "global" so that once the
coefficients of the series expansion have been estimated, it is easy to produce forecasts for different
points.  The method of sieves is currently the most fashionable approach, particularly using neural
net or wavelet forms which have been spectacularly successful in recovering some complex test
functions.  On the whole, nonparametric methods in finite samples place a considerable burden on
the econometrician to decide whether nonlinearities in nonparametric estimators are true features of
the data generation process, or are the result of "over-fitting" the data.  

Consistency:

As in the case of the histogram estimator of a density, good large sample properties of a locally
weighted estimator are obtained by giving sufficient weight to nearby points to control variance,
while down-weighting distant points to control bias.  As sample size increases, distant observations
will be down-weighted more strongly, since there will be enough observations close by to control
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the variance.   The following theorem, adapted from C.  Stone (1977), gives sufficient conditions for
consistency of a locally weighted estimator.

Theorem 1.  Assume (i) g(x) has a convex compact support � � 
m; (ii) (x) satisfies a Lipschitz
property � (x�) - (x)� � L�x� - x� for all x�,x  B; (iii) the conditional variance of t(y,x) given
x, denoted (x), satisfies o � (x) � 1, where o and 1 are finite positive definite matrices;
(iv) a random sample i = 1,..,n is observed; and (v) as n � +� the local weights wni satisfy 

   (a)   wni(x;x1,...,xn)
2 � 0E{xi} �

n

i'1

   (b)   wni(x;x1,...,xn) - 1 � 0 E{xi} �
n

i'1

   (c)   �wni(x;x1,...,xn)���x - xi� � 0 .E{xi} �
n

i'1

Then Tn(x) - (x) converges to zero in mean square.

Proof: The bias of the estimator is 

   Bn(x) = wni(x;x1,...,xn)[ (xi) - (x)] + (x) ,E{xi} �
n

i'1
E{xi} �

n

i'1
wni(x;x1,...,xn) � 1

so that assumption (v), (b) and (c) imply

�Bn(x)� � L� �wni(x;x1,...,xn)���xi - x� + (x) � 0.E{xi} �
n

i'1
E{xi} �

n

i'1
wni(x;x1,...,xn) � 1

The variance of the estimator is, by assumption (v), (a),

Vn(x) = wni(x;x1,...,xn)
2 (xi) � 1 wni(x;x1,...,xn)

2.E{xi} �
n

i'1
E{xi} �

n

i'1

Then, MSE = Vn(x) + Bn(x)2 � 0, completing the proof.  �

It is useful to work out conditions on nearest neighbor and kernel estimators that satisfy the
sufficient conditions in Theorem 1.  First, consider a uniform nearest neighbor estimator, with rn
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points included in the neighborhood at sample size n.  Then, wn(i) = 1/rn for the points in the
neighborhood.  The LHS of condition (v), (b) in Theorem 1 equals 1/rn, so the condition is satisfied
if rn � +�.  Next, we show that a sufficient condition for (v), (c) in Theorem 1 is rn/n � 0.  Let Nt(x)

denote a neighborhood of x of radius t.  For any  > 0, define n such that  = (1+ )rn/n, andg(N
n
)

note that rn/n � 0 and x  � implies n � 0.  Let Rn denote the (random) number of observations in

the neighborhood ; then ERn = n  = (1+ )rn and Var(Rn) = n [1 - ] �N
n

g(N
n
) g(N

n
) g(N

n
)

(1+ )rn.  Let Tn denote the (random) radius of the neighborhood that contains exactly rn of the
observations xi.   Then

P(Tn > n) = P(Rn < rn) = P(Rn - ERn < rn - (1+ )rn) = P(Rn - ERn < - rn)   
� Var(Rn)/

2rn
2 � (1+ )/ 2rn,

with the first inequality obtained by applying Chebyshev’s inequality to the sum of the independent

random indicators for the events xi  ; these indicators sum to Rn.  From this result, and aN
n

bound �x - x�� � M for x, x�  B implied by the compactness of B,

ETn � n�P(Tn � n) + M�P(Tn > n) � n + M(1+ )/ 2rn � 0.
Then, 

   �wni(x;x1,...,xn)���x - xi� � ETn � 0,E{xi} �
n

i'1

establishing that (v), (c) in Theorem 1 holds.  The kernel estimator of (x) is

    Tn(x) =  .

1

n�h m �
n

i'1
t(yi,xi)�K

x � xi

h

1

n�h m �
n

i'1
K

x � xi

h

Note that this estimator is of the generic form Tn(x) = wint(yi,xi), where the wi are weights that�
n

i'1

sum to one.  Because the kernel K  is small unless xi is near x, the weights wi will be
x � xi

h

concentrated on points with xi near x.  Then, this estimator corresponds to intuition on how a
non-parametric estimator can be constructed.  You will recognize the denominator in the formula
for Tn(x) is simply a kernel estimator of g(x).  The numerator is an estimator of �t(y,x)�f(y�x)dy�g(x).
Then, Tn(x) can be interpreted as an estimator of �t(y,x)�f(y�x)dy = [�t(y,x)�f(y�x)dy�g(x)]/g(x).

Now suppose that (x) and g(x) are continuously differentiable to order p, with Lipschitz order
p derivatives, and that the kernel is of order s � p.  Also assume that 2(x) is finite and Lipschitz in
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x.  As in the case of density estimation, require that h � 0 and nhm � +� as n � +�.  This will ensure
that the numerator of Tn(x) converges in mean square error to (x)�g(x) and that the denominator
converges in mean square error to g(x), so that the ratio is a consistent estimator of (x).

Arguments similar to those for density estimation are used to establish further statistical
properties of Tn(x).  Treat the numerator and the denominator separately.  The denominator is the
earlier density estimator, where we found that the bias satisfied Biasdenom(x) = C�hs+1, where C is a
constant.  Make a Taylor’s expansion of the function q(x - hz) � (x - hz)�g(x - hz) to order s:

q(x - hz) =  qr(x)�zr + �  �qr(x)�zr��L��z� .�
s

j'0

(�h)j

j! �
*r*'j

h s%1

s! �
*r*'s

Then, the numerator satisfies

 E t(yi,xi)�K  = �g(x-hz)� (x-hz)�K(z)dz = g(x)� (x) - ��A��hs+1, 
1

nh m �
n

i'1

x � xi

h

where A� is a constant that depends on the order s derivatives of t, and on the Lipschitz constant L�.
Then, Biasnumer(x) = ��A��hs+1.

The variance of the denominator, from the previous analysis, is  K(z)2dz + HOT.  An
g(x)

nh m �

analogous argument applied to the numerator establishes that its variance is 
2(x)�g(x)

n�h m �K(z)2dz

+ HOT.  The covariance of the numerator and denominator is zero.
Consider a ratio n/ n of random variables n and n that have finite second moments, satisfy n�p

0 and n�p 0 as n� +�, and have n uniformly bounded and bounded away from zero.  Then, E n

� 0, E n � 0, and the ratio can be rewritten 

     - =  .
n

n

0

0

n � E n

E n

�
0

0

� n � E n

E n

�
E n � 0

E n

�
0

0

�
E n � 0

E n

1 �
n � E n

E n

The expectation of the square of this expression is the mean square error of n/ n.  For n large, the
denominator is almost always very close to one, and is rarely close to zero.  The expectation of the
square of the numerator can be written

 + �  - �  +  
V n

2
0

0

0

2
V n

2
0

2 0

0

cov( n, n)
2
0

bias

0

�
0�bias

0
2

2

Applying this formula to the numerator and denominator of Tn(x), substituting the expressions just
derived for variances and biases, the mean square error in Tn(x) is

 MSE(x) =  K(z)2dz +  K(z)2dz + h2(s+1)�  ,
2(x)

n�h m�g(x) �
(x)2

n�h m�g(x)�
C

g(x)2
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where C is a constant depending on order s derivatives, Lipschitz constants, and K.   The hopt that
minimizes MSE(x), or the integral MISE of MSE(x) over a domain where g(x) is bounded positive,
is proportional to n-1/(m+2(s+1)), and the mean square error criterion is proportional to n-2(s+1)/(m+2(s+1)), just
as in the case of density estimation.  Again, the precision of the estimator falls when dimensionality
m rises, and high-dimension problems require immense sample sizes to achieve accurate estimators.
A high degree of smoothness, exploited using high-order kernels can offset some of the negative
impacts of dimensionality, but can never get mean square error to fall at a 1/n rate.  As in the case
of density estimation, a least squares cross-validation procedure can be used to determine an
approximately optimal bandwidth in applications.  W. Hardle and O. Linton (1994) give the
formulas.

Optimal Rates
The number of observations included in a nearest neighbor estimator, or the bandwidth in a

kernel estimator, can vary over considerable ranges and still produce consistent estimators.
However, there are typically optimal values for these design parameters that minimize mean square
error.  These values depend on the properties of the function being estimated, but their qualitative
properties are of interest.   These notes mentioned earlier the result of Stone that there will be a best
rate at which MSE(x) declines, for any nonparametric method, and that all the standard methods can
achieve this rate.  This best rate of decline turns out to be very slow when the dimension m of x is
large.  This is called the curse of dimensionality, and is a consequence of the fact that when
dimensionality is high, data are more sparse.   (This proposition can be made precise by considering
the statistical problem of the expected radius of the largest sphere that can be circumscribed around
a data point without encountering any other data points.  For a given sample size, this expected
radius rises with dimension m at a rate that corresponds to the curse of dimensionality.)

I will give a rough outline of an argument that determines the optimal bandwidth for kernel
estimation in the case that (x) is Lipschitz, and after that a rough outline of an argument that
determines the optimal number of neighbors for nearest neighbor estimation.  These arguments draw
heavily from the demonstrations following the proof of Theorem 1, and parallel the arguments for
consistent kernel estimation of a multivariate density given earlier.

Kernel Estimation: From the earlier analysis, the variance of the estimator is approximately
proportional to K(0)/g(x)nhm, and the bias is approximately proportional to h.  Then, the
first-order-condition for minimization of variance plus squared bias is hn = D/n1/(m+2) for a constant
D, and the corresponding MSE declines at rate n-2/(2+m).  For m = 1, this is the same n-2/3 rate that was
achieved by the optimal histogram estimator of a Lipschitz density.

Nearest Neighbor Estimation: From the earlier analysis, if there are r observations in the
neighborhood, with r � +� and r/n � 0, then the estimator is a (weighted) average of r observations,
so that its variance is approximately D0/r, where D0 is a constant that does not depend on r.  The
volume of a sphere of radius t in 
m is Cmtm, where Cm is a constant depending only on m.  Then, for
g(x) > 0, the radius n of a neighborhood that is expected to contain (1+ )r points satisfies (1+ )r/n

= g ) � g(x)Cm n
m and the random radius Tn of a neighborhood that contains exactly r points(N

n

satisfies ETn � n + D1/r � D2(r/n)1/m + D1/r for some constant D2.  Suppose for the moment that we
omit the D1 term.  Then, the first-order-condition for minimizing the sum of variance and squared
bias is D0/rn = (D2/m)rn�n

-2/m, which implies that the optimal rn is proportional to n2/(2+m).  Substituting
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this into the formula for the bias shows that at this rate the D1 term becomes negligible relative to
the D2 term, justifying its omission.  Finally, when rn is proportional to n2/(2+m), the MSE declines at
the rate n-2/(2+m).

The common rate n-2/(2+m) at which MSE declines for the "best" nearest neighbor and kernel
estimators of a Lipschitz nonparametric regression is in fact the maximum rate found by Stone for
a problem of m dimensions with Lipschitz  that has no further known smoothness properties.
Hence the rates above for the number of neighbors and for bandwidth are also "best".  Note that for
m even moderately large, the rate of decline of MSE is agonizingly slow.  When m = 8 for example,
to reduce MSE by a factor of 10, it is necessary to increase sample size by a factor of 100,000.  This
is the curse of dimensionality in action.  The only way to circumvent this problem is to assume (and
justify the assumption) that  is differentiable to high order, and use this in constructing the
nonparametric estimator, or to assume that  depends only on low-dimensional interactions of the
variables, e.g.,  is a sum of functions of the variables taken two at a time.

Asymptotic Normality

Returning to the general family of locally weighted estimators, we look for conditions, in
addition to those guaranteeing consistency, that are sufficient to establish that the nonparametric
estimator is asymptotically normal.  The following theorem gives a general result; the added
conditions are (iv) and in (vi), strengthened conditions (b) and (c), and new conditions (d)-(f):

   Theorem 2.  Assume (i) g(x) has a convex compact support B � 
m; (ii) (x) satisfies a
Lipschitz property � (x�) - (x)� � L�x� - x� for all x�,x  B; (iii) the conditional variance of
t(y,x) given x, denoted (x), satisfies o � (x) � 1, where o and 1 are finite positive
definite matrices; (iv) Ey*x�t(y,x) - (x)�3 � A� (x)�3/2 for some constant A; (v) a random sample
i = 1,..,n is observed; and (vi) as n� +� the local weights wni satisfy 

(a)   wni
2(x;x1,...,xn) � 0 �

n

i'1
E{xi}

(b)    � 0�
n

i'1
E{xi}

w 2
ni(x;x1,...,xn) (xi)

&1/2

E{xi} �
n

i'1
wni(x;x1,...,xn) � 1

(c) �wni(x;x1,...,xn)���x - xi�� 0�
n

i'1
E{xi}

w 2
ni(x;x1,...,xn) (xi)

&1/2

E{xi} �
n

i'1

(d)    � 0  
E{xi} �

n

i'1
|wni(x;x1,...,xn)|

3

E{xi} �
n

i'1
wni(x;x1,...,xn)

2
3/2
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(e)   � 0 
E{xi}�

n

i'1
|wni(x;x1,...,xn)|.|x � xi|

2

E{xi}�
n

i'1
wni(x;x1,...,xn)

2| (xi)|

(f)   � 0 

E{xi}�
n

i'1
wni(x;x1,...,xn) � 1

2

E{xi}�
n

i'1
wni(x;x1,...,xn)

2| (xi)|

Then {Tn(x) - (x)} converges in distribution to N(0,I).E{xi�
n

i'1
wni(x;x1,...,xn)

2 (xi)
&1/2

Proof: We make use of the following central limit theorem, which is a corollary of the
Lindeberg-Feller theorem for triangular arrays; see Serfling (1980, 1.9.3, Corollary, p.  32): For each
n, let ni for i � n be independent random variables  with mean zero, finite variances ni

2, and for

some  > 2, / � 0.  Then, / �d N(0,I).  �
n

i'1
E� ni� �

n

i'1

2
ni

/2

�
n

i'1
ni �

n

i'1

2
ni

1/2

Assume that Tn(x) is a scalar, or else consider a fixed linear combination of components.  Define

ni = wni[t(yi,xi) - (xi)]; then for each n, the ni are independent with finite variances ni
2 = wni

2 (xi).

Hypotheses (iv) and (vi), (d) imply

   /  �
n

i'1
E{xi}

�wni�
3�t(Y,xi) � (xi)�

3 �
n

i'1

2
ni

3/2

       � A /�
n

i'1
E{xi}

�wni�
3� (xi)�

3/2 �
n

i'1
E{xi}

w 2
ni (xi)

3/2

       � A(� 1�/� o�) / � 0.�
n

i'1
E{xi}

�wni�
3 �

n

i'1
E{xi}

w 2
ni

3/2

Finally, consider the scaled bias term 

[ Tn(x) - (x)] �
n

i'1
E{xi}

w 2
ni (xi)

&1/2

E{xi}
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 = . �
n

i'1
E{xi}

w 2
ni (xi)

&1/2

�
n

i'1
E{xi}

wni[ (xi) � (x)] � (x)[�
n

i'1
E{xi}

wni � 1]

This converges to zero by (vi), (e) and (f).  Then, the limiting distribution has mean zero.  �

Consider the "best" kernel and nearest neighbor estimators.  The assumptions on these estimators
made in the discussion of consistency and best rates, along with assumptions (i)-(v) in Theorem (ii),
are sufficient to establish (vi), (a)-(d).   These in turn are sufficient to establish consistency and
asymptotic normality, but possibly with a non-zero mean.  A device introduced by Herman Bierens
allows one to get this asymptotic mean to zero while preserving the "best" rate.  I will explain the
trick for a nearest neighbor estimator.  Suppose rn = Dn2/(2+m) and rn� = 2mrn are two cutoff numbers
for nearest neighbor estimation, both growing at the "best" rate, where D is some constant.  Let Tn(x)
and Tn�(x) be the corresponding estimators.  Since rn� > rn, the estimator Tn�(x) will have a larger bias
and a smaller variance than Tn(x).  Now consider an estimator T*(x) = 2Tn(x) - Tn�(x).   This
estimator is also a locally weighted estimator, with weights that are the {2,-1} linear combination
of the weights for the two original estimators.  It is easy to check that these weights satisfy the same
properties in Theorems 1 and 2 as do the original weights, so that T*(x) is consistent for (x).  These
combined weights increase at the "best" rate n1/(2+m), so that T*(x) is again a "best" estimator.   Recall
from the discussion of optimal rates that except for terms that are negligible in large samples, the
bias for a nearest neighbor estimator with r = Cn2/(2+m) points is proportional to (r/n)1/m = C1/mn-1/(2+m).
For Tn(x), C = D, while for Tn�(x), C = 2mD.  Therefore, except for higher-order terms, the bias in
T*(x) is proportional to 2D1/mn-1/(2+m) - (2mD)1/mn-1/(2+m) = 0.  Then, there is a "best" nearest neighbor
estimator that is asymptotically normal with mean zero.  The weights for the estimator T*(x) can be
interpreted as "higher order" weights that remove more bias; note that these weights are sometimes
negative.  This trick has reduced bias, at the expense of increasing variance, since the variance of
T*(x) is greater than that of Tn(x), while leaving the "best" rate unchanged.  A similar device works
for kernel estimators, using a higher-order kernel that is a linear combination of two kernels whose
bandwidths differ by a multiplicative constant.  

Exercise 4.  Find the appropriate constants for a second-order kernel that removes asymptotic
bias from the estimator so that its asymptotic distribution is centered at zero.
.
5.  SEMIPARAMETRIC ANALYSIS

Semiparametric methods provide estimates of finite parameter vectors without requiring that the
complete data generation process be assumed in a finite-dimensional family.  By avoiding bias from
incorrect specification, such estimators gain robustness, although usually at the cost of decreased
precision.  The most familiar semiparametric method in econometrics is ordinary least squares,
which  estimates the parameters of a linear regression model without requiring that the distribution
of the disturbances be in a finite-parameter family.  The recent literature in econometric theory has
extended semiparametric methods to a variety of nonlinear models.  Four overlapping major areas
are models for censored duration data (e.g., employment duration); limited dependent variable
(partial observability) models for discrete or censored data (e.g., employment status or employment
hours); models for data with (natural or intentional) endogenous sample selection (e.g., wage
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determination among self-selected workers, or case-control sampling); and models for additive
non-parametric effects.  The following table summarizes some applications.

Model Applications

Regression and Single Index Models for
Censored Duration Data: Y�x � Y�x�

Employment Duration, Innovation
Lags, Mobility

Limited Dependent Variable Models 
(E.g., Discrete response or censored response) 
Y* = x�  - �, ��x ~ F(�), 
observability transformation Y = (Y*) 
E.g., Discrete: Y = sgn(Y*), Censored: Y = Min(Yc,Y*) 

Discrete: Employment Status,
Brand Choice 
Censored: Employment Hours,
Expenditure Levels

Endogenous Sample Selection 
Y = x�  - �, ��x ~ f(�), x ~ g(�), 
Natural: (Y,x) observed iff Y > 0 
Intentional: (Y,x) sampled iff Y > 0

P(Y,x�Obs) =   f(Y�x� )g(x)1(Y>0)

�
%4

z'&4 �
%4

y'0
f(y�z� )g(z)dydz

P(Y�x,Obs) = f(Y-x� )/ �
%4

y'0
f(y�x� )dy

Natural: Self-selected Workers,
Self-selected Homeowners 

Intentional: Case-Control Sample
Designs

Additive Non-Parametric Effects: Y = x�  + H(z) + � Robust policy analysis

In most cases, the primary focus of semiparametric analysis is estimation of coefficients of
covariates that index the location of the distribution of a dependent variable; then, the unknown
distribution is a (infinite-dimensional) nuisance parameter.  There are also applications where some
functional of the unknown distribution, such as the expectation of the dependent variable conditioned
on covariates, is of primary interest.  The final objective may be point estimates or confidence
intervals for the objects of interest, or hypothesis tests involving these parameters.  Usually, it is
important to have measures of precision for the estimates of interest, including convergence rates,
asymptotic distributions, and bootstrap or other indicators of finite-sample precision and accuracy
of asymptotic approximations.

These notes will not survey the full range of semiparametric models in econometrics, or develop
the properties of semiparametric estimator except for illustrative cases.  A good survey of the
foundations of semiparametric analysis can be found in Powell (1994).  These notes will instead
survey two areas of application.   The first is the analysis of censored employment duration data,
perhaps the leading case of applied semiparametric work.  The second is the analysis of data on
stated willingness-to-pay for natural resources.

Censored Employment Duration
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The main focus of the literature on employment duration has been the effect of covariates such
as sex, race, age, and education on the hazard of leaving a job.   Data on employment duration is
typically censored because employment spells start before a panel study is initiated (and the start date
may not be recovered accurately using retrospective questions) and/or continue past the end of the
panel study, or because of attrition from the panel.  In this chapter, we consider only right-censoring
before the end of a spell.  Parametric analysis of the duration problem has typically used exponential
or Weibull survival curves, or the Cox proportional hazards model, which qualifies as one
semiparametric formulation.  

Horowitz and Newmann (1987) make perhaps the first empirical application of semiparametric
censored regression methods to data on employment duration.  To provide some context for the
economic application, consider the hazards that may lead to termination of a spell of employment.
First, termination may be initiated either by the employee (quits), or the employer (layoffs,
separations).  The quit decision of an employee is presumably influenced by nonpecuniary job
features (e.g., safety, variety, and work rules), wage opportunity cost, and worker characteristics such
as education, race, and loyalty.  The termination decision of the firm is influenced by the expected
productivity of the worker, net of wages.  The worker’s job-specific human capital influences both
wage opportunity cost and expected productivity.  Wage opportunity cost is also influenced by
expected unemployment insurance benefits and duration of unemployment.  Macroeconomic and
product cycles influence expected productivity.  Several aspects of this description are important for
modeling employment duration:  

 1.  Quits and separations are competing risks, with overlapping but not identical covariates.
Structural estimates of duration must distinguish these two hazards.  Data on whether
employment spells end in quits would greatly aid identification and estimation of the separate
hazards.  
2.  Important covariates such as the level of macroeconomic activity and job-specific human
capital vary in elapsed or chronological time, so a structural model must accommodate
time-varying covariates.  To do this is fairly easy in discrete time using heterogeneous Markov
models, and quite difficult in continuous time.  
3.  Unobserved variables such as worker loyalty are heterogeneous in the population and are
selected by survival.  Thus, it is necessary for structural modeling of duration to determine the
distribution of these unobservables.  The presence of unobserved heterogeneity also selects the
subpopulation that start employment spells during the interval of observation.  The
subpopulation starting employment spells near the beginning of the observation interval will be
less loyal on average than all workers.  Those whose first observed employment spell start comes
near the end of the observation period will be more loyal on average if the panel is long enough.
4.  In a structural model of employment duration, the hazard must depend solely on the history
of economic variables, and not directly on elapsed time.  Thus, models that postulate a
reduced-form "baseline" hazard are removing variation that must have a structural source.  From
the standpoint of structural estimation of the economic determinants of duration, emphasis on
the effect of covariates with the baseline hazard treated as a nuisance parameter is misplaced. 
5.  Economic theory provides neither a tight specification of functional forms or the distributions
of unobservables; the assumption that observables enter in a parametric additive combination
must be justified as an approximation.   Consequently, analyses that assume observables appear
in an exact additive combination within unknown transformations or distributions in fact assume
too much on the structure of the additive combination, and perhaps too little on the unknown
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transformations, which may be approximable to comparable accuracy using flexible
finite-parameter families.  

The duration data generation process can be characterized by a survival curve q(t�x) stating the
proportion of a population with spells starting at time zero who survive at elapsed time t, given an
observed covariate process x(�).  If there are unobserved covariates  distributed in the initial
population with density (��x,0), and the "structural" survival curve is q(t�x, ), then the data
generation process satisfies 

(1)   q(t�x) = q(t�x, )� ( �x,0)d .  �
%4

&4

The density of the unobserved covariates, conditioned on survival, is modified over time by
selection, satisfying 

(2)   ( �x,t) = ( �x,0)q(t�x, )/q(t�x).  

The survival curve can also be described by the hazard rate, 

(3)   h(t�x, ) = - �tLn(q(t�x, )).

The average hazard rate in the surviving population is 

(4)   h*(t�x) = - �tLn(q(t�x)) 

     = /q(t�x) = h(t�x, ) ( �x,t)d  .�
%4

&4
h(t�x, )q(t�x, ) ( �x,0)d �

%4

&4

Equation (3) can be inverted to obtain

(5)   q(t�x, ) = exp  � exp ;��
t

0
h(s�x, )ds � (t�x, )

with (t�x, ) termed the integrated hazard.  The mean duration of completed spells is

(6)   E(t�x, ) = - t �t q(t�x, )dt = q(t�x, )dt,�
4

0 �
4

0

with the second formula obtained using integration by parts.  
When the observation interval is finite, some spells are interrupted or right-censored; the

survivor function defined up to the censoring point continues to characterize the data generation
process.  The mean duration of all spells whether ended naturally (at t) or by censoring (at tc) is



     14Typical examples are a Weibull or log-normal distribution for q(t�x), or an exponential distribution for q(t�x, ) combined
with a gamma distribution for . The parameters of the distribution can be estimated by maximum likelihood.
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(7)   E(Min(t,tc)) = - t �tq(t�x, )dt + tcq(tc�x. ) = q(t�x, )dt.� t c

0 � t c

0

Analogous formulas hold for the average hazard rate.
With sample attrition, the censoring time becomes a random variable, with an associated

censoring survivor function r(tc�x, ).  Then the probability that a spell is observed to extend to t is
q(t�x, )r(t�x, ); the combined hazard rate for termination of an observed spell either naturally or by
censoring is h(t�x, ) - r�(t�x, )/r(t�x, ); for a spell ending at time t, the probability that it is censored
is h(t�x, )/(h(t�x, ) - r�(t�x, )/r(t�x, )); and the mean duration of observed spells is

 q(t�x, )r(t�x, )dt.�
4

0

An example of a parametric duration model when x is time-invariant is the Weibull model, which
specifies

(8)   q(t�x) = exp(-t e-xN ),

with  a positive parameter,  a vector of parameters, and x a vector of covariates.  The associated
hazard rate is

(9)   h(t�x) = t -1e-xN

and the mean duration of completed spells is

(10)  E(t�x) = exN / (1+1/ ),

where  is the gamma function.  When  = 1, this simplifies to the exponential duration model.
There are three strategies for statistical inference of censored duration data: 

 1.  The fully parametric approach, with q(t�x), or in the case of unobserved heterogeneity
q(t�x, ) and ( �x,0), assumed to be in a finite-parameter family.14 



     15The classical Kaplan-Meier estimator is formulated for duration data without covariates. Suppose that in a data set spells
starting at a common time 0 are observed to end (naturally or by censoring) at times t1 < ... < tJ. Let nj denote the number that end
naturally at time tj, and let mj denote the number that are censored at this time. The total number "at risk" at time tj is Nj =

(ni+mi).  The Kaplan-Meier estimate of the hazard rate at tj is h*(tj) = nj/Nj. A corresponding estimate of the survival�
J

i'j

function is q*(tj) = (1-h*(tj))q*(tj-1), or q*(tj) = (1-nj/Nj). In the presence of categorical covariates, the Kaplan-Meier�
j

i'1

estimator obviously applies cell-by-cell for each configuration of the covariates.  Using the nearest neighbor idea from
non-parametric regression, the Kaplan-Meier estimator can be adapted to the general case of non-categorical covariates. In the
case of unobserved heterogeneity, it is not possible in general to identify the structural survivor functions and the density of the
unobserved covariates when both are non-parametric. Heckman and Singer (1984) establish this result, and also establish
semiparametric methods for estimation of a parametric structural survivor function q(t�x, , ) in the presence of a non-parametric
heterogeneity density ( �x,0). 

     16Other semiparametric approaches include multiple-index models and methods that parameterize quantiles without fully

parameterizing the distribution.
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 2.  The fully nonparametric approach, in which q(t�x) is estimated without parametric
restrictions, using for example a Kaplan-Meier estimator.15 

3.  The single-index semiparametric approach, in which q(t�x) depends on x through a scalar
function V(x, ) that is known up to a finite parameter vector , but q(t�v) is not confined to a
parametric family.  In the case of unobserved heterogeneity, either q(t�v, ) or ( �v,t) may be
nonparametric (but not both, without further restrictions, due to identification requirements).16

We survey some of the alternative semiparametric problems that have been discussed in the
literature.  Let x be a vector of covariates, assumed now to be time-invariant.  Let  be a vector of
unknown parameters, V(x, ) � x�  be a single  index function known up to , and q(t�x� ) the
survivor function.  Let T* be the random variable denoting completed duration, and Tc the censoring
time, so observed duration is T = Min(T*,Tc).  Four alternative models for T are 

   1.  Regression model: Ln T* = x�  + �, with ��x distributed with an unknown density f(�) with zero
mean.  The density f is often assumed symmetric and homoskedastic.  This model yields the survivor
function 

(11)  q(t�x� ) = 1 - F(Ln t - x� ), 

where F is the cumulative distribution function of f.  The associated hazard rate is

(12)  h(t�x� ) = f(Ln t - x� )�t[1 - F(Ln t - x� )].

A generalized version of this model allows � to be heteroskedastic, with variance depending on the
index x� , or more generally on some other function of x.  The censored regression model is simply

(13)  Ln T = Min(Ln Tc,x� +�); 
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it has the property in the case of non-stochastic censoring that 

(14)  E(Ln T�x) = �[1 - F(y-x� )]dy 

is an increasing function of x� .  

   2.  Transformation (Generalized Box-Cox) model: Suppose G is an unknown monotone increasing
transformation from (0,+�) onto the real line, and assume

(15)  G(T*) = x�  + �, 

with ��x distributed with a known or unknown density f(�).  The associated survivor function is 

(16)  q(t�x� ) = 1 - F(G(t) - x� ), 

and the associated hazard rate is

(17)  h(t�x� ) = G�(t)f(G(t) - x� )/[1 - F(G(t) - x� )].

Again, the model can be generalized to allow heteroskedasticity depending on x� .  

3.  Projection Pursuit (single index) regression: Suppose H is a unknown transformation from
the real line into the real line.  Assume

(18)  Ln T* = H(x� ) + �, 

with ��x distributed with a known or unknown density f(�).  The associated survivor function is 

(19)  q(t�x� ) = 1 - F(Ln t - H(x� )),

and hazard rate is

(20)  h(t�x� ) = f(Ln t - H(x� ))/t[1 - F(Ln t - H(x� ))].

The error distribution is usually assumed homoskedastic, but some estimators for this model permit
heteroskedasticity depending on x� .  

4.  Proportional Hazards model: Let ho(t) be an unknown nonnegative "baseline hazard"
function, and assume the covariates exert a proportional effect on the hazard, so that

(21)  h(t�x) = ho(t)exp(-x� ).

Define the integrated baseline hazard

(22)   o(t) = ho(s)ds.  �
t

0
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Then the survivor function is  

(23)  q(t�x� ) = , exp� o(t) e &x )

and 

(24)  Ln o(T
*) = x�  + �, 

where � has the extreme value cumulative distribution function 

(25)  F(�) = 1 - .  exp�e &g

Other error distributions may result from a proportional hazards model with unobserved
heterogeneity.  For example, following Lancaster (1979), assume 

(26)  h(t�x, ) = ho(t)exp(-x� ) , 

with  having a gamma density, ( �x,0) = -1e- / ( ).  Then, applying the relation (1), 

(27)  q(t�x) =  , 1 � e o(t) & x ) &

which implies that (15) holds with � having a generalized logistic distribution (or, eg having a Pareto
distribution), 

(28)  F(�) = 1 - (1+eg)- .  

The average hazard for (26), 

(29)  h*(t�x) = , h0(t)e
o(t)
� e o(t)

� e x´

is no longer of the proportional hazards form.  The conditional distribution of the unobserved
covariates given survival ( �x,t) remains Gamma with parameter , but in the transformed variable

.  (1�e o(t) & x ) )
)

The proportional hazards model (21) is a special case of the transformation model where the
disturbance has the distribution (25).  The proportional hazards model with heterogeneity (26) is also
a specialization of the transformation model.   When the baseline hazard varies with a power of t,
ho(t) = t -1, (21) specializes to the parametric Weibull duration model, and also can be interpreted
as a censored regression model with extreme value distributed disturbances. 
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FIGURE 1.  SINGLE-INDEX MODELS 

Observation Rules:   T = Min(Tc,T*) for right-censored data 
   T = sgn(Ln(T*)) for binomial discrete response data 

(Specificity Increases as You Move Down the Table) 

CONDITIONAL DISTRIBUTION SINGLE-INDEX MODEL: T*�x � T*�x�
|

 GENERAL ADDITIVE INDEX MODEL: G(T*) = H(x� ) + �
 ��x ~ F, F, G, H unknown with, e.g., F symmetric

 |                                                              |
linear in x�                                           linear in Ln(T*) 

|                                                              |
TRANSFORMATION

MODEL
PROJECTION PURSUIT

REGRESSION
G(T*) = x�  + � Ln(T*) = H(x� ) + �

      |                                                                      |
extreme value disturbances                                       linear in x�  

          |                                                                      |    
PROPORTIONAL HAZARDS

MODEL
CENSORED REGRESSION MODEL

     |                                                                      |
constant hazard rate                                   extreme value disturbance 

    |                                                                      |
PARAMETRIC WEIBULL DURATION MODEL

 

A common "generalized additive single-index" model in which the four models above are nested
is 

(30)  G(T*) = H(x� ) + �, 

with � distributed with cumulative distribution function F.  The associated survivor function is 

(31)  q(t�x� ) = 1 - F(G(T) - H(x� )).  

Figure 1 shows the logical relationship between these models.  All the models are special cases
of single-index sufficiency where the conditional distribution of the dependent variable depends on
covariates x solely through the index x� .  The proportional hazards model and the censored
regression model are logically distinct, except when both specialize to the common Weibull
parametric model.  Both are specializations of the transformation model.  The censored regression
model is a specialization of the projection pursuit regression model.  The transformation model can
be rewritten as a heteroskedastic projection pursuit model: If G(T*) = x�  + � with G monotone
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increasing, then Ln T* = H(x� ) + , where H(x� ) = E
g
Ln G-1(x�  + �), and  has the distribution

function F(G(exp(  + H(x� )) - x� ), which in general is heteroskedastic.  
The statistical issues that arise in application of these models are the (large sample and,

potentially, small sample) distributional properties of estimators that are available under various
assumptions, and the efficiency of alternative estimators.  Most of the work to date has concentrated
on finding computationally feasible estimators, establishing consistency and asymptotic normality,
and establishing asymptotic efficiency bounds.  

Horowitz and Newmann use two estimators for the censored regression model, a quantile
estimator (Powell, 1986) and one-step semiparametric generalized least squares estimator (SGLS)
(Horowitz, 1986).  Other estimators that have been proposed for this problem include flexible
parametric approximation of the cumulative distribution function (e.g., Duncan, 1986, who considers
spline approximations--the "method of sieves").  Chamberlain (1986) and Cosslett (1987) have
established for the censored regression problem the existence of a positive information bound on the
parametric part.  This suggests that the it is adequate to use relatively crude estimators of the
nonparametric part in order to achieve |n asymptotically normal estimation of the parametric part.
The Powell and Horowitz estimators have been shown |n asymptotically normal.  Neither achieves
the information bound for i.i.d. errors, and in general neither is efficient relative to the other.

Estimation of the proportional hazards model with an unknown baseline hazard function has
been studied extensively; see Kaplan and Meier (1968), Cox (1972), Kalbfleisch and Prentice (1982),
and Meyer (1990).  A particularly useful "semiparametric" method for this model, applicable to the
case where duration is measured in "weeks", is to flexibly parameterize the baseline hazard; Meyer
(1990) shows this method is root-n asymptotically normal.  

Estimators for the projection pursuit (single index) model have been proposed by Ichimura
(1987), Ruud (1986), Stoker (1986), and Powell, Stock, and Stoker (1989).   The Ichimura estimator
chooses  to minimize the conditional variance of Ln T given x� , using a kernel estimator of the
conditional mean to form an estimate of the conditional variance.  This estimator is consistent even
if the disturbances are heterogeneous in the index function, so it can also be applied to the
transformation model.  The Ichimura estimator is n1/2 asymptotically normal, and has recently been
argued to achieve the semiparametric information bound for the homoskedastic projection pursuit
problem with normal disturbances.  It is almost certainly not efficient for the transformation model.
The Ruud and Stoker estimators rely on the fact that under suitable conditions the regression of Ln
T on x is proportional to ; these are also |n asymptotically normal.  

An estimator for the transformation model, applicable also to the proportional hazards model,
is the maximum rank correlation method of Han (1987) and Doksum (1985). 

Newey (1990) has established the asymptotic efficiency of some kernel and quantile estimators
for the censored regression model when error distributions are symmetric.  The status of these
estimators under some other information conditions remains unresolved.  A problem requiring
further work is construction of reliable and practical covariance estimators for the semiparametric
estimators.  An interesting empirical question is whether the censored regression model or the
proportional hazards models can be accepted as restrictions on the transformation model (and what
are appropriate and practical test statistics)? 

Stated Willingness-to-Pay for a Natural Resource

A method for eliciting Willingness-to-Pay (WTP) for natural resources is a referendum
contingent valuation experiment: Survey respondents are asked if they are willing to pay an amount
b, where b is a bid set by experimental design.  Let d denote a dummy variable that is one for a "Yes"
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response, zero otherwise.  A sample of n observations are collected on (b,d) pairs, plus covariates
x characterizing the respondent.  Suppose WTP is distributed in the population as w = x  - �, where
� has a cumulative distribution function G(�) that is independent of x.  Then, Pr(d=1�x� ) = G(x
- b), or

(32)   d = G(x  - b) + �,

Suppose  and the function G are unknown.  The econometric problem is to estimate  and, if
necessary, G, and use these to estimate a measure of location of the distribution of WTP, conditional
on x or unconditional.  This is an example of a projection-pursuit regression model.

Contingent valuation experiments are controversial because they are very sensitive to
psychometric context effects, such as anchoring that leads respondents  who are unsure about their
preferences to take the offered bid as a cue to the "politically correct" range of values.  Some subjects
also appear to misrepresent their responses strategically, giving extreme values that they would not
practically pay, but which express "protest" positions.  These effects make WTP estimates imprecise,
and their connection to welfare economics tenuous.

Why do contingent valuation experiments use the referendum elicitation format, rather than a
format in which subjects would be asked to give an open-ended WTP response?  One answer is that
the open-ended format produces a much higher non- response rate, so that the referendum method
reduces selection bias caused by non- response.  Another is that psychologically the referendum and
open-ended methods elicit quite different behaviors.  Some argue that the referendum format is
closer to the voting mechanisms used elsewhere to make social decisions, and there is a virtue in
mimicking this mechanism for social decisions on natural resources.

One issue that enters the contingent valuation experimental design is the location of the bid
levels b.  Alternatives are to randomize b, or to choose b on a grid with a specified mesh.  In practice,
coarse meshes have been used, which limits the accuracy of semiparametric estimates.  Let h(b�x)
be the density from which the bid level b is drawn, given x.  Since this is chosen by experimental
design, it is known to the analyst.

Econometric analysis of referendum WTP data can use the fact that (32) is a binary response
model and a single-index model (that is heteroskedastic, but with the heteroskedasticity depending
on the index).  Then, available methods to estimate  are the Manski (1978) maximum score
estimator, the Cosslett (1987) semiparametric maximum likelihood estimator, the Ichimura (1986)
estimator that minimizes expected conditional variance, the Horowitz (1992) estimator that is a
smoothed version of maximum score, and the Klein-Spady (1993) estimator.  The key result for the
binomial response model is that under some smoothness conditions, there are root-n consistent
estimators n for ; i.e., n1/2( n - ) is asymptotically normal.  A nonparametric estimator of G can
be obtained jointly with the estimation of , as in the Cosslett procedure, or by conventional kernel
methods in a second step after the  estimate is plugged in to form the index; it can be estimated only
at a nonparametric rate less than root-n.

One particularly simple estimator for the index parameters  has been proposed for this problem
by Lewbel and McFadden (1997): Carry out a least squares regression on the model,

(33)   (di - 1(bi<0))/h(bi�xi) = xi  + i.

The authors show that the coefficients from this regression are consistent for , and are
asymptotically normal at a n1/2 rate.  The estimates are not particularly efficient, but their simplicity
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makes them an excellent starting point for analysis of model specification and construction of more
efficient estimators.

Exercise 5.  Prove that the estimator based on (33) is consistent.  Apply a law of large numbers
to conclude that

   xi�(di - 1(bi<0))/h(bi�xi) �p ExEb*x x�(G(x -b) - 1(b<0))/h(b�x).1
n �

n

i'1

Then apply integration by parts to conclude that

Eb*x x(G(x -b) - 1(b<0))/h(b�x) = x� (G(x -b) - 1)�db + x� G(x -b)�db�
0

&4 �
%4

0

   = x� b�G(x -b)�db = x�x .�
%4

&4

 From this conclude that the least squares coefficients converge to (Ex�x)-1(Ex�x ) = .
The authors also establish that the r-th moment of WTP, conditioned on x = xo, can be estimated

consistently at a root-n rate by 

(34)   Mr = (xo )r + r (bi+(xo-xi) )r-1 �  .�
n

i'1

di � 1((xi >bi)

�
n

j'1
h(bi�(xj�xi) �xj)

The estimators (33) and (34) are good examples of statistical procedures for a semiparametric
problem that are "robust" in the sense that they do not depend on parametric assumptions on the
distribution of WTP, and provide an easily computed alternative to use of a kernel-type
nonparametric estimator.

6.  SIMULATION METHODS AND INDIRECT INFERENCE
 Econometric theory has traditionally followed classical statistics in concentrating on problems

that yielded analytic solutions.  This explains the emphasis on the linear model, and on asymptotic
approximations in situations where nonlinearities or other factors make exact sample analysis
intractable.  Increased computational power, and better understanding of the uses and limitations of
numerical analysis, have greatly expanded the ability of econometricians to explore the
characteristics of the methods they use under realistic conditions.  The idea is straightforward.  The
economist can write down one or more trial data generation processes, perhaps after an initial round
of econometric analysis, and use these data generation processes to generate simulated or virtual
samples.  If a comparison of a real sample with these virtual samples reveals inconsistencies, this
is evidence that the trial data generation process is unrealistic.  Conversely, if the econometrician has
discovered the true data generation process, then the virtual samples generated from it should not
differ systematically from the real sample.  Computers and Monte Carlo simulation methods come
in at the stages of drawing the virtual samples and comparing the real and virtual samples.

If the kinds of comparisons just described are done casually, without attention to statistical
properties, they can mislead the analyst.  Traditional calibration exercises in economics and other
disciplines often suffer from this deficiency.  However, it is possible to develop a statistical theory
to support these comparisons, and use this theory to consistently identify the real data generation
process, or good approximations to it.  In various manifestations, this theory has been developed by
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Hendry, Mizon, and Richard  under the name encompassing, by Gourieroux and Monfort under the
name indirect inference, and by McFadden under the name simulation-assisted inference.  

Consider two parametric families of data generation processes, Hf containing models f(y�x, )
for parameter vectors  in a set A, and Hg containing models g(y�x, ) for parameter vectors  in a
set B.  Both of these families have the same dependent variable y, and are conditioned on the same
explanatory variables x.  It may be the case that one of these families is nested within the other; this
is the situation in classical hypothesis testing where the null hypothesis (say Hg) is a subset of the
universe (say Hf), and the true data generation process is a member of Hf and under the null a
member of Hg.  However, we will now consider more general situations where the two families are
not necessarily nested, and the true data generation process may not be in either.  

Example.  The family Hf is the family of linear models y = x  + �, where x is a  vector of
explanatory variables and � is a normal disturbance with variance 2.  This family is parameterized
by � = ( , 2).  Hg is the family y = z  + , where z is a vector of  explanatory variables and  is a
normal disturbance with variance 2, parmeterized by  = ( , 2).  The vectors x and z may have
some variables in common, but in the most general case will each contain some distinct variables
so that neither is contained (nested) within the other. y = x  + � and the family Hg of linear models
y = z  + , where x and z may have some variables in common, but also contain distinct variables
corresponding to alternative theories of the determination of y.  The families are said to be non-
nested when neither can be written as a linearly restricted case of the other.

A proximity measure between densities is the Kullback-Leibler Information Criterion (KLIC),

   Kfg( , ,x) = log(f(y�x, )/g(y�x, ))�f(y�x, )dy.�
The KLIC is always non-negative, and is zero only if f and g coincide.  This measure depends on
exogenous variables x.  We could alternately take its expectation with respect to x, 

Kfg( , ) = ExKfg( , ,x)

and approximate this expectation by a sample average

   Kfgn( , ) = Kfg( , ,xi).
1
n �

n

i'1

For the model g, define the pseudo-true value f( ) to be the   B that minimizes Kfg( , ), and
the conditional pseudo-true value fn( ) to be the   B that minimizes Kfgn( , ).  Then, g(y�x, f( ))
is the data generation process in the g family closest to f(y�x, ), and 

   Jf( ,B) � Kfg( , f( )) 

is the proximity of f and the g  Hg that is closest to f.  In an earlier chapter, where f(y�x, o) was
identified as the true data generation process, we called g(y�x, f( o)) the least misspecified model
in Hg.  However, we will now consider more general situations where the f family may not contain
the true data generation process.

Exercise 6.  In the linear model example, Show that

log(f/g) = 0.5�{log( 2/ 2) - (y-x )2/ 2 + (y-z )2/ 2}
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= 0.5�{log( 2/ 2) - (y-x )2(1/ 2 - 1/ 2) + 2(y-x )(x -z )/ 2 + (x -z )2/ 2},

and hence that Kfg( ) = 0.5�{log( 2/ 2) + 2/ 2 - 1 + E(x -z )2/ 2}.  The pseudo-true values in the
model Hg are  the values f( ) that minimize Kfg( ).  Show that the pseudo-true value for  is
(Ez�z)-1(Ez�x)  and the pseudo-true value for 2 is 2 + �{Ex�x - (Ex�z)(Ez�z)-1(Ez�x)} .  Show that
the minimum distance from f to Hg is 

Jf( ) = 0.5�log(1 + �{Ex�x -  (Ex�z)(Ez�z)-1(Ez�x)} / 2).

The distance is zero if z can be written as a linear combination of the variables in x
 

A model f(y�x, ) is said to encompass the family g if f can account for, or explain, the results
obtained with the g family.  Operationally, this concept says the g family will fit similarly the
observed sample data and virtual data generated by the model f(y�x, ).  If we define

   bn = argmax  g(yi�xi, );�
n

i'1

to be the maximum likelihood estimate from the family Hg for the observed sample, and f(y�x, )
encompasses Hg, then bn should converge to the pseudo-true value f( ).   Conversely, if bn - f( )
converges to a non-zero limit, f(y�x, ) fails to encompass Hg.  This is the same as saying that as
judged from the family Hg, samples generated by the model f(y�x, ) look like samples generated by
the true data generation process.

Exercise 7.  In the linear model example with n observations, write the models Hf and Hg as y
= X  + � and  y = Z  +  respectively.  Show that the maximum likelihood estimates in the family
Hg are e = (Z�Z)-1Z�y and e

2 = y�[I -  Z(Z�Z)-1Z�]y/n, and in the Hf family are e = (X�X)-1X�y and

e
2 = y�[I - X(X�X)-1X�]y/n.  Suppose the model y = X  + � with parameters  is true.  Show that the

differences of the maximum likelihood estimates in the Hg family and the corresponding pseudo-true
values for this family, evaluated at , converge in probability to zero.

If f(y�x, o) is the true data generation process, then by definition it encompasses any other family
of models Hg.  It is possible for a member of Hg to encompass the true data generation process
f(y�x, o); this means that the member of g can generate data that looks like data drawn from
f(y�x, o).  This could obviously happen if Hg contains one or more models that are observationally
equivalent to f, but could also occur if Hg contains models that are more "structural" than ƒ so that
they potentially can explain the same phenomena as f, and more.

In the theory of tests of non-nested hypotheses, the setup is to have two families of data
generation processes, Hf and Hg, which are not nested, with the true data generation process assumed
to be in one of the two families.  Then, the family containing the true data generation process will
encompass the other, but not vice versa (except in the unidentified case where there are models in
either family that can mimic the true data generation process).  Let an be the maximum likelihood
estimator of  from the model f(y�x, ).  Then bn - fn(an) converges to zero if and only f encompasses
g, and an - gn(bn) converges to zero if and only if g encompases f.  These observations form the basis
for practical test statistics for non-nested hypotheses; see Pesaran (1987) and Gourieroux & Monfort
(1994).  These ideas also form the basis for an estimation method called indirect inference, or in a
more general but less focused form, method of simulated moments: If the family Hf contains the true
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data generation process f(y�x, o), then this model encompasses g and one has bn - fn( n) converging
to zero if n converges to o, and with an assumption of identifiability, to a non-zero limit if n

converges to something other than o.  Then, choosing n to make bn - fn( n) small will under some
regularity conditions make these estimators consistent for o.  The reason to consider these indirect
estimates, rather than direct maximum likelihood estimates of  from the model f(y�x, ), is that the
true model may be very complex or very difficult to work with computationally.  For example,
f(y�x, ) may involve a complex structural model, or may involve probabilities that require
high-dimensional numerical integration to evaluate.  Then, the indirect inference may utilize a
simpler family of models Hg that are easier to compute or more "robust".  For example, g may be a
reduced form model and indirect inference may involve choosing structural parameters so that their
transformation to reduced form parameters gives the same values as direct least squares estimation
of the reduced form.  Or, indirect inference may utilize a select list of moment conditions that you
are confident hold in the population.  The reason simulation methods enter is that the practical way
to calculate fn( n) is to use Monte Carlo methods to draw virtual samples from the data generation
process f(y�x, ) for various trial , and select n to minimize the distance between the estimator bn

from the observed sample and estimators bn( ) obtained from a virtual sample from f(y�x, ) by
estimating  by maximum likelihood estimation applied to this virtual sample.   Because this process
can also be interpreted as matching the "moments" bn from the virtual sample with simulated
"moments" bn( ) from the simulated virtual sample by varying , it is also called the method of
simulated moments.  

Encompassing is a limited concept when comparing the true data generation process with an
alternative, since the true data generation process will encompass any alternative model.  However,
it becomes more general and more interesting under two circumstances: (1) the true data generation
process may fail to lie in either Hf or Hg, or (2) the results from Hf and Hg are based on limited
information, such as GMM estimates that rely on specific orthogonality conditions, rather that a full
parametric specification of a data generation process.  Then, encompassing can be a useful approach
to model selection.

We will not attempt to provide any general introduction to simulation and Monte Carlo methods
in these notes.  However, there a few key concepts that are important enough to introduce at this
stage.  First consider the problem of drawing a virtual sample from the data generation process
f(y�x, ) for a trial value of .  Consider the simplest case when y is one-dimensional.  The
corresponding CDF U = F(Y�x, ) has a uniform distribution, and a Monte Carlo draw of y for
observation i is y* = F-1(ui�xi, ), where ui is a draw from a uniform distribution.  This is a practical
method of drawing a realization of a random variable if F-1 can be determined analytically or
efficiently evaluated numerically.  When it is impractical to calculate F-1, one may be able to use
Monte Carlo Markov Chain (MCMC) methods.  A Metropolis-Hastings (MH) sampler for f(y�x, )
is defined by a conditional density q(y��y,x) chosen by the analyst and kernel w(y,y�,x) =
Min{q(y��y,x), f(y��x, )�q(y�y�,x)/f(y�x, )}.  This kernel is associated with a transition process in
which y� is sampled from q(y��y,x), then the process moves to y� with probability p(y,y�,x), and
otherwise stays at y, where p(y,y�,x) = Min{1,q(y�y�,x)�f(y��x, )/q(y��y,x)�f(y�x, )}.  A simple
choice for q(y��y,x) is a density q(y�) independent of y and x from which it is computationally easy
to draw and which has the property that f(y�x, )/q(y) is never too large, a key determinant of the
efficiency of the sampling process.  The MH sampler is a generalization of what are called
acceptance/rejection methods.

The Metropolis-Hastings sampler starts from an arbitrary point, and proceeds recursively.
Suppose at step t-1, the draw is yt-1 and ft-1 = f(yt-1�x, )).  Draw y� from the conditional density
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q(��yt-1), and define qt+ = q(y��yt-1) and  q+t = q(yt-1�y�), Calculate (yt-1,y�) = Min{1,q+tft/qt+ft-1}.  Draw
a uniform [0,1] random number .  If  � p(yt-1,y�,x), set yt = y�; otherwise, set yt = yt-1.  Once it is
“burned in”, the sequence yt behaves like a sample drawn from f(��x, ).  Note that the terms in the
sequence are not statistically independent.  When one needs to form expectations with respect to
f(y�x, ), these can be approximated by means over the yt draws.

In indirect inference or method of simulated moments, one searches iteratively for parameter
values that satisfy some criterion, such as minimizing the distance of bn - fn( ) from zero, using
simulation to approximate fn( ).  It is important in doing this that the simulated value of fn( ),
considered as a function of , have a property called stochastic equicontinuity.  Informally, this
means that the simulator does not "chatter" as  varies.  The way to accomplish this is to keep the
Monte Carlo draws that drive the simulation fixed as  changes.  For example, when a virtual sample
from f(y�x, ) is drawn by the inverse method y* = F-1(u�x, ), keeping the uniformly distributed draws
u fixed as  is varied does the job.

Further reading on simulation methods and indirect inference can be found in McFadden (1989),
Gourieroux & Monfort (1994), and Hajivassiliou & Ruud (1994).

7.  THE BOOTSTRAP

The idea fundamental to all of statistical inference is the principle that a statistical sample forms
an analogy to the target population, and to estimate the results of an operation on the target
population, one can complete the analogy by carrying out the same operation on the statistical
sample.  Thus, the sample mean is analogous to the population mean, and hence has decent statistical
properties as an estimate of the population mean.  Manski (1994) shows how this principle can guide
the construction of estimators.

Extending the analogy principle, if one is interested in the relationship between a target
population and a given sample drawn from this population, one could form an analogy by starting
from the given sample, drawing subsamples from it, and forming analogous relationships between
the original sample and the subsamples.  When the subsamples are drawn with replacement and are
the same size as the original sample, this is called the bootstrap.  

To illustrate the operation of the bootstrap, suppose you have an estimate an of the parameter in
a data generation process f(y�x, ), obtained from a sample of size n from the target population.  You
would like to know the variance of the estimator an.   Note that this is a property of the relationship
between the population and the sample that could in principle be determined by drawing repeated
samples from the population, and estimating the variance of an from the repeated samples.  The
bootstrap idea is to start from the observed sample, draw repeated subsamples from it (with
replacement), and complete the analogy by forming the estimator a* for each subsample, and
computing the sample variance of these estimators.  The bootstrap process is computationally
intensive, because it involves the subsampling process and the computation of a*, repeated many
times.  Under very general regularity  conditions, the analogy principle applies and the estimate of
the variance of an formed in this way will have good statistical properties.  Specifically, the bootstrap
estimate of the variance of an will have the same properties as the first-order asymptotic
approximation to the variance, without the effort of determining analytically and computing the
asymptotic approximation.  Further, the bootstrap estimator will under some conditions pick up
higher order effects, so that it is a better finite sample approximation that the first-order asymptotic
approximation.  In particular, if the expression being studied has a limiting distribution that is
independent of the parameters of the problem, as for example when one is interested in the finite
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sample distribution of the ratio of a parameter estimate to its standard error which has a limiting
T-distribution, the bootstrap will be more accurate for finite samples that the first-order asymptotic
approximation.  A statistic with the last property is called pivotal.

Bootstrap methods can often be used to estimate the distribution of statistics, for purposes of
estimating moments or critical levels, in situations where asymptotic analysis is intractable or
tedious.  The bootstrap is itself one member of a broad class of techniques called resampling
methods.  There are various pitfalls to be avoided in application of resampling methods, and a variety
of shortcuts and variants that can speed calculation or make them more accurate.  For further reading,
see Efron & Tibshirani (1993), Hall (1994), and Horowitz (1999).
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