Econ. 241B

Dan McFadden, 2000

Exercise 2

1. Facts on Circular Functions: Consider the trigonometric functions $\cos(\omega)$ and $\sin(\omega)$, where ω is a real number giving the angle in radians. These functions are periodic, with $\cos(\omega+2\pi k) = \cos(\omega)$, $\cos(\pi k) = (-1)^k$, $\sin(\omega+2\pi) = \sin(\omega)$, $\sin(\pi k) = 0$, and $\cos(\omega) = \sin(\omega+\pi/2)$ for $k = \pm 1, \pm 2, ...$ Define the complex valued function $\exp(\iota\omega s) = \cos(\omega s) + \iota \cdot \sin(\omega s)$, where $\iota = (-1)^{1/2}$. Then $\exp(\iota(\omega+2\pi)) = \exp(\iota\omega)$ and $\exp(\iota\pi k) = (-1)^k$. Here are some other useful relationships —

(1)
$$\cos(\omega) = \frac{e^{\iota\omega} + e^{-\iota\omega}}{2}$$
 and $\sin(\omega) = \frac{e^{\iota\omega} - e^{-\iota\omega}}{2\iota}$

(2)
$$\int_{-\pi}^{\pi} \cos(\omega k) d\omega = \int_{-\pi}^{\pi} \sin(\omega k) d\omega = \int_{-\pi}^{\pi} \exp(\iota \omega k) d\omega = 0 \text{ for } k = \pm 1, \pm 2, \dots$$

(3)
$$\int_{-\pi}^{\pi} \cos(0) d\omega = \int_{-\pi}^{\pi} \exp(0) d\omega = 2\pi \text{ and } \int_{-\pi}^{\pi} \sin(0) d\omega = 0$$

(4)
$$\int_{-\pi}^{\pi} \cos(\omega k)^2 d\omega = \int_{-\pi}^{\pi} \sin(\omega k)^2 d\omega = \pi \text{ for } k = \pm 1, \pm 2, \dots$$

(5)
$$\int_{-\pi}^{\pi} \exp(\iota \omega k) \exp(-\iota \omega k) d\omega = 2\pi \text{ for } k = \pm 1, \pm 2, \dots$$

(6)
$$\int_{-\pi}^{\pi} \exp(\iota \omega k) \exp(-\iota \omega m) d\omega = 0 \text{ for } k, m = 0, \pm 1, \pm 2, \dots \text{ and } k \neq m$$

(7)
$$\int_{-\pi}^{\pi} \cos(\omega k) \cos(\omega m) d\omega = \int_{-\pi}^{\pi} \sin(\omega k) \sin(\omega m) d\omega = 0 \text{ for } k, m = 0, \pm 1, \pm 2, \dots \text{ and } k \neq m$$

(8)
$$\int_{-\pi}^{\pi} \cos(\omega k) \sin(\omega m) d\omega = 0 \text{ for } k, m = 0, \pm 1, \pm 2, \dots$$

These formulas are found in handbooks of mathematical functions, and are demonstrated in textbooks on orthogonal polynomials or on Fourier analysis.

Suppose T > 1is an integer, and define n = [T/2], the largest integer satisfying $n \le T/2$. Define the system of functions $\psi_k(t) = (T)^{-1/2} \exp(\iota 2\pi t k/T)$ for t = 1,...,T and k = -n,-n+1,...,0,...,n-1 for T even or k = -n+1,...,0,...,n-1 for T odd.

Every complex-valued function h(t) can be written as $h(t) = h_1(t) + \iota h_2(t)$ with h_1 and h_2 real-valued. The *complex conjugate* of h is $h^*(t) = h_1(t) - \iota h_2(t)$, and the product $h(t)h^*(t) = h_1(t)^2 + h_2(t)^2$. Apply the formula for geometric sums to show that

(9)
$$\sum_{t=1}^{T} \psi_{k}(t)\psi_{m}^{*}(t) = \mathbf{1}(k=m).$$

Then the system of circular functions $\psi_k(t)$ form an *orthonormal basis* for \mathbb{R}^T . Suppose $y_1, ..., y_T$ is a sequence of numbers, which may be deterministic or may be a realization from some stochastic process. This sequence can be represented in terms of the system of circular functions. Hereafter, assume T even and n = T/2. (Analogous formulas hold when T is odd, n = (T+1)/2, and the k = -n term in the sums below are dropped.) The relationship is

(10)
$$\mathbf{y}_{t} = \sum_{k=-n}^{n-1} \boldsymbol{\psi}_{k}(t) \mathbf{x}_{k}$$

with

(11)
$$\mathbf{x}_{k} = \sum_{t=1}^{T} \psi_{k}^{*}(t) \mathbf{y}_{t}$$

Verify that these formulas follow from the projection of $(y_1,...,y_T)$ on the space spanned by the vectors $(\psi_k(1),...,\psi_k(T))$ for k = -n,...,n-1; i.e., the regression of $(y_1,...,y_T)$ on these vectors. The vector $(x_1,...,x_T)$ is termed the *Fourier representation* of $(y_1,...,y_T)$. Write out the real and imaginary parts of (10) and (11) to get the equivalent formulas

(12)
$$y_t = \sum_{k=-n}^{n-1} \cos(2\pi kt/T) \cdot a_k + \sum_{k=-n}^{n-1} \sin(2\pi kt/T) \cdot b_k$$

with

(13)
$$a_k = T^{-1} \sum_{t=1}^T \cos(2\pi kt/T)y_t$$
 and $b_k = T^{-1} \sum_{t=1}^T \sin(2\pi kt/T)y_t$.

Show that $\sum_{t=1}^{T} y_t^2 = \sum_{k=-n}^{n-1} x_k x_k^*$.

2. Suppose h is a real-valued function on an interval $[-\pi,\pi]$. For T a large even integer and n = T/2, define $y_t = h(-\pi+2\pi t/T) \cdot T^{-1/2}$. Let x_k be the Fourier coefficient given by (11), and define $z_k = 2\pi e^{i\pi k} x_k$. The Fourier representation of the sequence y_t , from (11), is

(14)
$$\mathbf{x}_{k} = \sum_{t=1}^{T} \psi_{k}^{*}(t)\mathbf{y}_{t} = \mathbf{T}^{-1} \sum_{t=1}^{T} e^{-\imath 2\pi k t/T} \mathbf{h}(-\pi + 2\pi t/T),$$

implying

(15)
$$z_k = \frac{2\pi}{T} \sum_{t=1}^{T} e^{-i2\pi kt/T + i\pi k} h(-\pi + 2\pi t/T)$$

and, from (10),

(16)
$$h(-\pi+2\pi t/T) = \sum_{k=-n}^{n-1} e^{i2\pi kt/T \cdot i\pi k} \cdot z_k/2\pi.$$

Now let $T \rightarrow \infty$. Suppose h is of bounded variation (i.e., can be written as the difference of two increasing bounded functions). Then it is continuous except at most at a countable number of points, and is square integrable. Then (15) converges to

(17)
$$z_k = 2\pi \int_0^1 e^{-i2\pi k s + i\pi k} \cdot h(-\pi + 2\pi s) ds.$$

A further change of variable to $r = -\pi + 2\pi s$, implying $-i2\pi ks + i\pi k = -ikr$, yields

(18)
$$z_k = \int_{-\pi}^{\pi} e^{-\iota k r} \cdot h(r) dr.$$

Show that the z_k satisfy $\sum_{k=-n}^{n-1} z_k z_k^* = (4\pi^2/T) \sum_{t=1}^T h(-\pi + 2\pi t/T)^2 \rightarrow 2\pi \int_{-\pi}^{\pi} h(r)^2 dr$. Then, the limit of (16), evaluated at $t = [T(r+\pi)/2\pi]$, as $n \rightarrow \infty$ exists for $r > -\pi$ and equals

(19)
$$h(\mathbf{r}) = \sum_{k=-\infty}^{+\infty} e^{i k \mathbf{r}} \mathbf{z}_k / 2\pi$$

at all continuity points of h. The pair (18) and (19) give a Fourier representation of a function on

a bounded interval. If the function is periodic with $h(r\pm 2\pi) = h(r)$ for all r, then the Fourier representation holds for all r. Using orthogonality properties of e^{ikr} , show directly that if z_k is a square summable sequence, then applying (19) then (18) reproduces the sequence. Note that if h(z) is a sum of sines and cosines with frequencies that are multiples of $1/2\pi$, then the Fourier representation will have non-zero z_k 's only for the k's corresponding to these frequencies. Then, the z_k series may be thought of as extracting the frequencies appearing in h(r).

3. Suppose h(r) is a square integrable real-valued function on the real line. For a large constant M, apply the Fourier representation in the previous question to the function $M \cdot h(Mr)$ for $-\pi \le r \le \pi$ to obtain (18) and (19). Define a variable $\omega = k/M$, or $k = \omega M$, and a function $H_M(\omega)$ on the real line by

(20)
$$H_{M}(\omega) = \int_{-\pi M}^{+\pi M} e^{-\iota\omega s} \cdot h(s) ds \rightarrow H(\omega) \equiv \int_{-\infty}^{+\infty} e^{-\iota\omega s} \cdot h(s) ds.$$

Note that $z_k = H_T(k/M) = \int_{-\pi M}^{+\pi M} e^{-is(k/M)} \cdot h(s) ds$, so that (19) can be written

(21)
$$h(Mr) = \frac{1}{2\pi M} \cdot \sum_{k=-\infty}^{+\infty} e^{ikr} \cdot H_M(k/M).$$

Letting s = Mr and $\omega = k/M$, the limit of (21) as M $\rightarrow \infty$, if it exists, becomes

(22)
$$h(s) = \frac{1}{2\pi} \cdot \int_{-\infty}^{+\infty} e^{i\omega s} \cdot H(\omega) d\omega$$

The pair consisting of (22) and

(23)
$$H(\omega) = \int_{-\infty}^{+\infty} e^{-i\omega s} h(s) ds$$

are *Fourier transforms*. This construction shows that Fourier transforms are obtained as limits of Fourier representations, and also shows that when the limits exist, the Fourier representations from Question 1 can be used to approximate the Fourier transforms. Show that if (22) and (23) are satisfied, then

(24)
$$\int_{-\infty}^{+\infty} h(s)^2 ds = \int_{-\infty}^{+\infty} H(\omega) H^*(\omega) d\omega.$$

4. For the Fourier transforms (22) and (23), verify the following conditions:

- (1) h even implies H real and even
- (2) h odd implies H imaginary and odd
- (3) [time scaling] for c > 0, h(cs) transforms to $c^{-1}H(\omega/c)$
- (4) [frequency scaling] for c > 0, $H(c\omega)$ transforms to $c^{-1}h(s/c)$
- (5) [time shifting] h(s- τ) transforms to H(ω)·e^{$i\omega\tau$}
- (6) [convolution] if g and h are real functions and G and H are their transforms, and if

 $(g^{*}h)(s) \equiv \int_{-\infty}^{+\infty} g(t)h(s-t)dt$, then the transform of $g^{*}h$ is $G(\omega) \cdot H(\omega)$.

(7) [covariation] if g and h are real functions and $cov(g,h) = \int_{-\infty}^{+\infty} g(s)h(s)ds$, then cov(g,h)

$$= \int_{-\infty}^{+\infty} G(\omega) H^*(\omega) d\omega.$$

(8) [Parseval's theorem] $\int_{-\infty}^{+\infty} h(s)^2 ds = \int_{-\infty}^{+\infty} H(\omega) H^*(\omega) d\omega.$