Exercise 2

1. Facts on Circular Functions: Consider the trigonometric functions $\cos (\omega)$ and $\sin (\omega)$, where ω is a real number giving the angle in radians. These functions are periodic, with $\cos (\omega+2 \pi \mathrm{k})=$ $\cos (\omega), \cos (\pi \mathrm{k})=(-1)^{\mathrm{k}}, \sin (\omega+2 \pi)=\sin (\omega), \sin (\pi \mathrm{k})=0$, and $\cos (\omega)=\sin (\omega+\pi / 2)$ for $\mathrm{k}= \pm 1, \pm 2, \ldots$. Define the complex valued function $\exp (\imath \omega s)=\cos (\omega s)+\imath \cdot \sin (\omega s)$, where $\imath=(-1)^{1 / 2}$. Then $\exp (\imath(\omega+2 \pi))=\exp (\imath \omega)$ and $\exp (\imath \pi k)=(-1)^{\mathrm{k}}$. Here are some other useful relationships -
(1) $\cos (\omega)=\frac{e^{\imath \omega}+e^{-\imath \omega}}{2}$ and $\sin (\omega)=\frac{e^{\imath \omega}-e^{-\iota \omega}}{2 \imath}$
(2) $\int_{-\pi}^{\pi} \cos (\omega \mathrm{k}) \mathrm{d} \omega=\int_{-\pi}^{\pi} \sin (\omega \mathrm{k}) \mathrm{d} \omega=\int_{-\pi}^{\pi} \exp (\imath \omega \mathrm{k}) \mathrm{d} \omega=0$ for $\mathrm{k}= \pm 1, \pm 2, \ldots$
(3) $\quad \int_{-\pi}^{\pi} \cos (0) \mathrm{d} \omega=\int_{-\pi}^{\pi} \exp (0) \mathrm{d} \omega=2 \pi$ and $\int_{-\pi}^{\pi} \sin (0) \mathrm{d} \omega=0$
(4) $\int_{-\pi}^{\pi} \cos (\omega \mathrm{k})^{2} \mathrm{~d} \omega=\int_{-\pi}^{\pi} \sin (\omega \mathrm{k})^{2} \mathrm{~d} \omega=\pi$ for $\mathrm{k}= \pm 1, \pm 2, \ldots$
(5) $\quad \int_{-\pi}^{\pi} \exp (\imath \omega \mathrm{k}) \exp (-\imath \omega \mathrm{k}) \mathrm{d} \omega=2 \pi$ for $\mathrm{k}= \pm 1, \pm 2, \ldots$
(6) $\quad \int_{-\pi}^{\pi} \exp (\imath \omega \mathrm{k}) \exp (-\imath \omega \mathrm{m}) \mathrm{d} \omega=0$ for $\mathrm{k}, \mathrm{m}=0, \pm 1, \pm 2, \ldots$ and $\mathrm{k} \neq \mathrm{m}$
(7) $\int_{-\pi}^{\pi} \cos (\omega \mathrm{k}) \cos (\omega \mathrm{m}) \mathrm{d} \omega=\int_{-\pi}^{\pi} \sin (\omega \mathrm{k}) \sin (\omega \mathrm{m}) \mathrm{d} \omega=0$ for $\mathrm{k}, \mathrm{m}=0, \pm 1, \pm 2, \ldots$ and $\mathrm{k} \neq \mathrm{m}$

$$
\begin{equation*}
\int_{-\pi}^{\pi} \cos (\omega \mathrm{k}) \sin (\omega \mathrm{m}) \mathrm{d} \omega=0 \text { for } \mathrm{k}, \mathrm{~m}=0, \pm 1, \pm 2, \ldots \tag{8}
\end{equation*}
$$

These formulas are found in handbooks of mathematical functions, and are demonstrated in textbooks on orthogonal polynomials or on Fourier analysis.

Suppose $\mathrm{T}>1$ is an integer, and define $\mathrm{n}=[\mathrm{T} / 2]$, the largest integer satisfying $\mathrm{n} \leq \mathrm{T} / 2$. Define the system of functions $\psi_{k}(t)=(T)^{-1 / 2} \exp (22 \pi t k / T)$ for $t=1, \ldots, T$ and $k=-n,-n+1, \ldots, 0, \ldots, n-1$ for T even or $\mathrm{k}=-\mathrm{n}+1, \ldots, 0, \ldots, \mathrm{n}-1$ for T odd.

Every complex-valued function $h(t)$ can be written as $h(t)=h_{1}(t)+h_{2}(t)$ with h_{1} and h_{2} real-valued. The complex conjugate of h is $\mathrm{h}^{*}(\mathrm{t})=\mathrm{h}_{1}(\mathrm{t})-\mathrm{th}_{2}(\mathrm{t})$, and the product $\mathrm{h}(\mathrm{t}) \mathrm{h}^{*}(\mathrm{t})=\mathrm{h}_{1}(\mathrm{t})^{2}+$ $h_{2}(t)^{2}$. Apply the formula for geometric sums to show that
(9) $\quad \sum_{t=1}^{T} \quad \Psi_{\mathrm{k}}(\mathrm{t}) \Psi_{\mathrm{m}}{ }^{*}(\mathrm{t})=\mathbf{1}(\mathrm{k}=\mathrm{m})$.

Then the system of circular functions $\psi_{k}(t)$ form an orthonormal basis for \mathbb{R}^{T}. Suppose y_{1}, \ldots, y_{T} is a sequence of numbers, which may be deterministic or may be a realization from some stochastic process. This sequence can be represented in terms of the system of circular functions. Hereafter, assume T even and $\mathrm{n}=\mathrm{T} / 2$. (Analogous formulas hold when T is odd, $\mathrm{n}=(\mathrm{T}+1) / 2$, and the $\mathrm{k}=-\mathrm{n}$ term in the sums below are dropped.) The relationship is

$$
\begin{equation*}
\mathrm{y}_{\mathrm{t}}=\sum_{k=-n}^{n-1} \quad \Psi_{\mathrm{k}}(\mathrm{t}) \mathrm{x}_{\mathrm{k}} \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{x}_{\mathrm{k}}=\sum_{t=1}^{T} \quad \psi_{\mathrm{k}}^{*}{ }^{*}(\mathrm{t}) \mathrm{y}_{\mathrm{t}} . \tag{11}
\end{equation*}
$$

Verify that these formulas follow from the projection of $\left(y_{1}, \ldots, y_{T}\right)$ on the space spanned by the vectors $\left(\psi_{k}(1), \ldots, \psi_{k}(T)\right)$ for $k=-n, \ldots, n-1$; i.e., the regression of $\left(y_{1}, \ldots, y_{T}\right)$ on these vectors. The vector $\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{T}}\right)$ is termed the Fourier representation of $\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{T}}\right)$. Write out the real and imaginary parts of (10) and (11) to get the equivalent formulas

$$
\begin{equation*}
\mathrm{y}_{\mathrm{t}}=\sum_{k=-n}^{n-1} \cos (2 \pi \mathrm{kt} / \mathrm{T}) \cdot \mathrm{a}_{\mathrm{k}}+\sum_{k=-n}^{n-1} \sin (2 \pi \mathrm{kt} / \mathrm{T}) \cdot \mathrm{b}_{\mathrm{k}} \tag{12}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathrm{a}_{\mathrm{k}}=\mathrm{T}^{-1} \quad \sum_{t=1}^{T} \quad \cos (2 \pi \mathrm{kt} / \mathrm{T}) \mathrm{y}_{\mathrm{t}} \text { and } \mathrm{b}_{\mathrm{k}}=\mathrm{T}^{-1} \quad \sum_{t=1}^{T} \quad \sin (2 \pi \mathrm{kt} / \mathrm{T}) \mathrm{y}_{\mathrm{t}} . \tag{13}
\end{equation*}
$$

Show that $\quad \sum_{t=1}^{T} \quad \mathrm{y}_{\mathrm{t}}{ }^{2}=\sum_{k=-n}^{n-1} \quad \mathrm{X}_{\mathrm{k}} \mathrm{x}_{\mathrm{k}}$.
2. Suppose h is a real-valued function on an interval $[-\pi, \pi]$. For T a large even integer and $n=T / 2$, define $y_{t}=h(-\pi+2 \pi t / T) \cdot T^{-1 / 2}$. Let x_{k} be the Fourier coefficient given by (11), and define $z_{k}=$ $2 \pi e^{i \pi k} x_{k}$. The Fourier representation of the sequence y_{t}, from (11), is

$$
\begin{equation*}
\mathrm{x}_{\mathrm{k}}=\sum_{t=1}^{T} \quad \psi_{\mathrm{k}}{ }^{*}(\mathrm{t}) \mathrm{y}_{\mathrm{t}}=\mathrm{T}^{-1} \quad \sum_{t=1}^{T} \quad \mathrm{e}^{-2 \pi \mathrm{k} / \mathrm{T}} \mathrm{~h}(-\pi+2 \pi \mathrm{t} / \mathrm{T}), \tag{14}
\end{equation*}
$$

implying

$$
\begin{equation*}
\mathrm{z}_{\mathrm{k}}=\frac{2 \pi}{T} \quad \sum_{t=1}^{T} \quad \mathrm{e}^{-22 \pi \mathrm{k} / \mathrm{T}+\mathrm{l} \mathrm{k}} \mathrm{~h}(-\pi+2 \pi \mathrm{t} / \mathrm{T}) \tag{15}
\end{equation*}
$$

and, from (10),
(16) $\mathrm{h}(-\pi+2 \pi \mathrm{t} / \mathrm{T})=\sum_{k=-n}^{n-1} \quad \mathrm{e}^{12 \pi k / T-\tau \pi k} \cdot \mathrm{Z}_{\mathrm{k}} / 2 \pi$.

Now let $T \rightarrow \infty$. Suppose h is of bounded variation (i.e., can be written as the difference of two increasing bounded functions). Then it is continuous except at most at a countable number of points, and is square integrable. Then (15) converges to

$$
\begin{equation*}
\mathrm{z}_{\mathrm{k}}=2 \pi \int_{0}^{1} \mathrm{e}^{-22 \pi \mathrm{ks}+1 \pi \mathrm{k}} \cdot \mathrm{~h}(-\pi+2 \pi \mathrm{~s}) \mathrm{ds} \tag{17}
\end{equation*}
$$

A further change of variable to $\mathrm{r}=-\pi+2 \pi \mathrm{~s}$, implying $-\imath 2 \pi \mathrm{ks}+\imath \pi \mathrm{k}=-\mathrm{\imath kr}$, yields

$$
\begin{equation*}
\mathrm{z}_{\mathrm{k}}=\int_{-\pi}^{\pi} \mathrm{e}^{-\mathrm{kkr}} \cdot \mathrm{~h}(\mathrm{r}) \mathrm{dr} \tag{18}
\end{equation*}
$$

Show that the z_{k} satisfy $\sum_{k=-n}^{n-1} \quad \mathrm{z}_{\mathrm{k}} \mathrm{z}_{\mathrm{k}}{ }^{*}=\left(4 \pi^{2} / \mathrm{T}\right) \sum_{t=1}^{T} \mathrm{~h}(-\pi+2 \pi \mathrm{t} / \mathrm{T})^{2} \rightarrow 2 \pi \int_{-\pi}^{\pi} \mathrm{h}(\mathrm{r})^{2} \mathrm{dr}$. Then, the limit of (16), evaluated at $\mathrm{t}=[\mathrm{T}(\mathrm{r}+\pi) / 2 \pi]$, as $\mathrm{n} \rightarrow \infty$ exists for $\mathrm{r}>-\pi$ and equals
(19) $\mathrm{h}(\mathrm{r})=\sum_{k=-\infty}^{+\infty} \mathrm{e}^{\mathrm{tkr} \cdot \mathrm{Z}_{\mathrm{k}} / 2 \pi}$
at all continuity points of h. The pair (18) and (19) give a Fourier representation of a function on
a bounded interval. If the function is periodic with $h(r \pm 2 \pi)=h(r)$ for all r, then the Fourier representation holds for all r. Using orthogonality properties of $e^{i k r}$, show directly that if z_{k} is a square summable sequence, then applying (19) then (18) reproduces the sequence. Note that if $h(z)$ is a sum of sines and cosines with frequencies that are multiples of $1 / 2 \pi$, then the Fourier representation will have non-zero z_{k} 's only for the k's corresponding to these frequencies. Then, the z_{k} series may be thought of as extracting the frequencies appearing in $\mathrm{h}(\mathrm{r})$.
3. Suppose $\mathrm{h}(\mathrm{r})$ is a square integrable real-valued function on the real line. For a large constant M , apply the Fourier representation in the previous question to the function $\mathrm{M} \cdot \mathrm{h}(\mathrm{Mr})$ for $-\pi \leq \mathrm{r} \leq \pi$ to obtain (18) and (19). Define a variable $\omega=\mathrm{k} / \mathrm{M}$, or $\mathrm{k}=\omega \mathrm{M}$, and a function $\mathrm{H}_{\mathrm{M}}(\omega)$ on the real line by

$$
\begin{equation*}
\mathrm{H}_{\mathrm{M}}(\omega)=\int_{-\pi M}^{+\pi M} \mathrm{e}^{-\mathrm{-} \mathrm{\omega s}} \cdot \mathrm{~h}(\mathrm{~s}) \mathrm{ds} \rightarrow \mathrm{H}(\omega) \equiv \int_{-\infty}^{+\infty} \mathrm{e}^{-\mathrm{-} \mathrm{\omega s}} \cdot \mathrm{~h}(\mathrm{~s}) \mathrm{ds} \tag{20}
\end{equation*}
$$

Note that $\mathrm{z}_{\mathrm{k}}=\mathrm{H}_{\mathrm{T}}(\mathrm{k} / \mathrm{M})=\int_{-\pi M}^{+\pi M} \mathrm{e}^{-\mathrm{ss}(\mathrm{k} / \mathrm{M})} \cdot \mathrm{h}(\mathrm{s}) \mathrm{ds}$, so that (19) can be written

$$
\begin{equation*}
\mathrm{h}(\mathrm{Mr})=\frac{1}{2 \pi M} \cdot \sum_{k=-\infty}^{+\infty} \mathrm{e}^{\mathrm{kr}} \cdot \mathrm{H}_{\mathrm{M}}(\mathrm{k} / \mathrm{M}) \tag{21}
\end{equation*}
$$

Letting $\mathrm{s}=\mathrm{Mr}$ and $\omega=\mathrm{k} / \mathrm{M}$, the limit of (21) as $\mathrm{M} \rightarrow \infty$, if it exists, becomes
(22) $h(s)=\frac{1}{2 \pi} \cdot \int_{-\infty}^{+\infty} e^{i \omega s} \cdot \mathrm{H}(\omega) \mathrm{d} \omega$.

The pair consisting of (22) and

$$
\begin{equation*}
H(\omega) \equiv \int_{-\infty}^{+\infty} e^{-i \omega s} \cdot h(s) d s \tag{23}
\end{equation*}
$$

are Fourier transforms. This construction shows that Fourier transforms are obtained as limits of Fourier representations, and also shows that when the limits exist, the Fourier representations from Question 1 can be used to approximate the Fourier transforms. Show that if (22) and (23) are satisfied, then

$$
\begin{equation*}
\int_{-\infty}^{+\infty} \mathrm{h}(\mathrm{~s})^{2} \mathrm{ds}=\int_{-\infty}^{+\infty} \mathrm{H}(\omega) \mathrm{H}^{*}(\omega) \mathrm{d} \omega . \tag{24}
\end{equation*}
$$

4. For the Fourier transforms (22) and (23), verify the following conditions:
(1) h even implies H real and even
(2) h odd implies H imaginary and odd
(3) [time scaling] for $\mathrm{c}>0, \mathrm{~h}(\mathrm{cs})$ transforms to $\mathrm{c}^{-1} \mathrm{H}(\omega / \mathrm{c})$
(4) [frequency scaling] for $\mathrm{c}>0, \mathrm{H}(\mathrm{c} \omega)$ transforms to $\mathrm{c}^{-1} \mathrm{~h}(\mathrm{~s} / \mathrm{c})$
(5) [time shifting] h(s- $\tau)$ transforms to $\mathrm{H}(\omega) \cdot \mathrm{e}^{1 \omega \tau}$
(6) [convolution] if g and h are real functions and G and H are their transforms, and if $(\mathrm{g} * \mathrm{~h})(\mathrm{s}) \equiv \int_{-\infty}^{+\infty} \mathrm{g}(\mathrm{t}) \mathrm{h}(\mathrm{s}-\mathrm{t}) \mathrm{dt}$, then the transform of $\mathrm{g} * \mathrm{~h}$ is $\mathrm{G}(\omega) \cdot \mathrm{H}(\omega)$.
(7) [covariation] if g and h are real functions and $\operatorname{cov}(\mathrm{g}, \mathrm{h})=\int_{-\infty}^{+\infty} \mathrm{g}(\mathrm{s}) \mathrm{h}(\mathrm{s}) \mathrm{ds}$, then $\operatorname{cov}(\mathrm{g}, \mathrm{h})$
$=\int_{-\infty}^{+\infty} \mathrm{G}(\omega) \mathrm{H}^{*}(\omega) \mathrm{d} \omega$.
(8) [Parseval's theorem] $\int_{-\infty}^{+\infty} h(s)^{2} d s=\int_{-\infty}^{+\infty} H(\omega) H^{*}(\omega) d \omega$.
