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ARMA Estimation Recipes

1. Preliminaries

These notes summarize procedures for estimating the lag coefficients in the stationary
ARMA(p,q) model 

(1)   yt = µ +a1(yt-1-µ) + ... + ap(yt-p-µ) + �t + b1�t-1 + ... + bq�t-q,

where yt is observed for t = 1,...,T and the �t are unobserved i.i.d. disturbances with mean zero and
finite variance 2.  The mean µ, the lag coefficients a1,...,ap and b1,...,bq, and 2 are the parameters
of the model.  By assumption, ap � 0 and bq � 0.  Define the polynomials A(z) = a1z + ... + apz

p and
B(z) = b1z + ... + bqz

q, and the lag operator L that for any series xt is defined as Lxt = xt-1.  Then the
model can be written

(2)   (I - A(L))(yt - µ) = (I + B(L))�t.

The model is stationary if and only if the polynomial 1 - A(z) is stable; i.e., all its roots lie
outside the unit circle.  If the model is stationary, then the lag polynomial I - A(L) is invertible, and
there is a MA(�) representation of the model, written formally as

(3)   yt - µ = ��t.
I � B(L)
I � A(L)

Let z1,...,zp denote the roots of 1 - A(z), some of which may be repeated.  Then this polynomial

can be written 1 - A(z) = (1 - z/z1)�...�(1 - z/zp).  Then (I - A(L))-1 =  zk
s�Ls.  Alternately,�

p

k'1
�
4

s'0

write (I - A(L))-1(I + B(L)) = sL
s � (L).  The identity�

4

s'0

(4)   I + B(L} = (I - A(L))� sL
s = 0I + ( 1-a1 0)�L + ... + ( s -   ai s-I)�L

s + ...�
4

s'0
�

min(p,s)

i'1

implies 0 = 1, 1 = a1 + b1 , and s = ai s-i + bs, where bs = 0 for s > q.  Another derivation�
min(p,s)

i'1

of these conditions starts by noting that the covariance of yt and �t-m is  2
m

2 for m � 0, and zero for
m < 0.  Multiplying (1) by �t-m and taking expectations then gives
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(5)   m = a1 m-1 + ... + ap m-p + bm,

with m-s = 0 for s > m, b0 = 1, and we define bm = 0 for m > q.  These are called the Yule-Walker
equations.  They can be used recursively to obtain the coefficients s in the MA(�) representation.

An implication of the MA(�) representation is

(6)   0 � Var(yt) = 2� s
2  and  m � cov(yt,yt-m) = 2� s s+m for m > 0.�

4

s'0
�
4

s'0

Since cov(yt+m,yt) = cov(yt,yt-m) for m > 0, one has -m = m.  It is sometimes convenient to summarize
the autocovariances of a stationary series x in terms of an autocovariance generating function
(ACGF)

(7)   gx(z) = cov(xt,xt-|s|)�z
s.�

4

s'&4

The ACGF has a useful convolution property: If a linear transformation C(L) = csL
s is applied�

4

s'&4

to a stationary series xt, then yt = C(L)xt has gy(z) = C(z)C(1/z)gx(z).  To verify this, note that

cov(yt,yt-m) = cicj�cov(xt-i,xt-m-j), and cov(xt-i,xt-m-j) = cov(xt,xt-m+i-j).  Then �
4

i'&4
�
4

j'&4

 gy(z) � zmcov(yt,yt-m) = zm�cicj�cov(xt-i,xt-m-j)�
4

s'&4
�
4

m'&4
�
4

i'&4
�
4

j'&4

= ciz
-i

 � cjz
j�cov(xt-i,xt-m-j)z

m+i-j = ciz
-i

 � cjz
j�gx(z),�

4

m'&4
�
4

i'&4
�
4

j'&4
�
4

i'&4
�
4

j'&4

with the last equality holding since summing over m for each fixed i and j gives gx(z).
Let t = �t + b1�t-1 + ... + bq�t-q.  Then E t = 2(b0

2 + ... + bq
2), E t t-m = 2(bmb0 + ... + bqbq-m) for

1 < m � q, and zero for m > q, and E tyt-m = 2(bm 0 + ... + bq q-m) for 0 � m � q, zero for m > q.
The i.i.d. series �t has the constant ACGF g

g
(z) = 2 since all its autocovariances are zero.  Then,

applying the ACGF convolution formula to  t = (I + B(L))�t yields

(8)   g (z) = 2{1+B(z))(1+B(1/z)) = 2 (b*s*b0 + ... + bqbq-*s*)z
s.�

q

s'&q

For example, q = 1 yields g (z) = 2((1+b1
2) + b1z + b1z

-1), and q = 2 yields g (z) = 2((1+b1
2+b2

2) +
b1(1+b2)z + b1(1+b2)z

-1 + b2z +b2z
-1).  Applying the convolution formula to yt = (I - A(L))-1

t, it has
the ACGF
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(9)   gy(z) = �g (z) = = 2 (z)� (1/z).1
1�A(z)

� 1
1�A(1/z)

2 1�B(z)
1�A(z)

� 1�B(1/z)
1�A(1/z)

If all the roots of the polynomial 1 + B(z) lie outside the unit circle, then I + B(L) is invertible,
and there is an AR(�) representation of (1), written formally as

(10)   �yt = �t.
I � A(L)
I � B(L)

It is not a condition for stationarity that I + B(L) be invertible.  However, it is always possible to
re-scale the �’s and redefine B(L) so that it has the same ACGF, but all the roots of 1 + B(z) lie
outside or on the unit circle.  For example, t = (I + L/z1)�t has ACGF 2((1+z1

-2) + z/z1 + 1/zz1),
while t = (I + z1L)(�t/z1) has ACGF ( 2/z1

2)((1+z1
2) + zz1 + z1/z), which is the same.  Then one can

factor B(L) into an invertible term and a non-invertible term that has unit roots.

For some purposes, it is convenient to rewrite the ARMA model (1) by defining the (p+q)×1
vectors h� = (1,0,...,0) with a one in the first component, r� = (1,0,...,0,1,0,...,0) with ones in the first
and p+1 components and zeros elsewhere, and t� = (yt-µ,...,yt-p+1-µ,�t,...,�t-q+1).  Then

(11)   t+1 = F t + r�t+1  and  yt+1-µ = h� t+1,

where

(12)   F = 

a� b�

Ip&1,p 0p&1,q

01,p 01,q

0q&1,p Iq&1,q

with a� = (a1,...,ap), b� =(b1,...,bq), Irs an r×s matrix with ones down the diagonal and zeros elsewhere,
and 0rs an r×s matrix of zeros.  This is called a state space representation of the ARMA(p,q) model,
with t called the state vector, t+1 = F t + r�t+1 called the state equation, and yt+1-µ = h� t+1 called the
observation equation.  State space representations are not unique, and the one given here is easy to
interpret but not minimal in terms of dimensionality; see Harvey, p. 95-98, for a more compact and
commonly used state space representation for the ARMA model.
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2. Prediction

Let Gt denote all of history up through t, including the realizations of ys and �s for s � t.  Then,

(13)   E(yt+1�Gt) = a1E(yt�Gt) + ... + apE(yt-p+1�Gt) + E(�t-1�Gt) + b1E(�t-2�Gt) + ... + bqE(�t-q-1�Gt)

       = a1yt + ... + apyt-p+1 + b1�t + ... + bq�t-q+1.

As a shorthand, let yt+1*t = E(yt+1�Gt); this is the forecast of yt+1 given Gt that minimizes mean square
error.  An implication of the formula for yt+1*t is that �t = yt - yt*t-1.  Similarly, the minimum-MSE
m-period ahead forecast yt+m*t = E(yt+m�Gt) is obtained using the recursion

(14)   yt+m*t = a1�yt-1+m*t + ... + ap�yt-p+m*t + b1�t+m-1*t + ... + bq�t+m-q*t,

where yt-I+m*t = yt-I+m and �t+I-m*t = �t+I-m if I � m, and �t+I-m*t = 0 if I < m.  The conditional variance of
the forecast error t+m*t = yt+m - yt+m*t is

(15)   vt+m*t = E( t+m*t�Gt).

A convenient way of summarizing the forecasting formulas is in terms of the state space
representation above, where the minimum MSE forecast is

(16)   t+m*t = F t+m-1*t = Fm
t.

The forecast error is t+m*t = t+m - t+m*t =  Fsr�t+m-s = r�t-m + F t-m-1*t, implying �t+1 = 1,t+1 - 1,t+1*t.�
m&1

s'0

The conditional covariance matrix of the forecast errors is

(17)   Vt+m*t = FVt+m-1*tF� + 2U = 2FsUFNs,�
m&1

s'0

where U is an array that has a one in the northwest corner and zeros elsewhere.  The updating
formulas t+m*t = F t+m-1*t and Vt+m*t = FVt+m-1*tF� + 2U are versions of what is called the Kalman filter.
This formulation has broader application in state space models for time series analysis, a topic that
will be discussed elsewhere.

For some purposes, it is useful to predict backwards to period t from information after t.
Multiplying the equations (I-A(L))yt = t and t = (I+B(L))�t by L-p and L-q respectively gives

(18)   E(yt|yt+1,..., t+1,...) = (yt+p - a1yt+p-1 + ... + ap-1yt+1- t+p)/ap, 

   E( t|�t+1,..., t+1,...) = ( t+q - �t+q - b1�t+q-1 + ... + bq-1�t+1)/bq.
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3. Method of Moments Estimation

The model (1) can be written as a regression model

(19)   yt = c + a1yt-1 + ... + apyt-p + t

where c = (1 - a1 - ... - ap)µ and the MA(q) disturbances t have a covariance matrix given by the
formulas following (6).  Since t is correlated with yt-1,...,yt-q but uncorrelated with earlier y's, (19)
can be estimated using 2SLS with 1,yt-q-1,...,yt-q-p as instruments, and observations t = p+q+1,...,T.
This method then loses the first p+q observations in order to get the instruments.  

To estimate the MA coefficients, first retrieve the residuals tT from the 2SLS estimation of (19),
and form the empirical ACGF,

(20)   g T(z) = sz
s,�

q

s'&q

where s =   tT t-*s*,T is an empirical estimate of E t t-*s*.
1
T �

T

t'p%q%*s*%1

From (8), the theoretical ACGF for  is a bilinear function of the MA coefficients.  Then,
estimating the MA coefficients so that the theoretical and empirical ACGF coincide is relatively
practical.  As noted earlier, the solution is not in general unique, and it is preferable to pick estimates
that give a stable root rather than an unstable one.  This can be achieved by conducting the search
over the q possible roots of 1 + B(z) subject to the constraint that these roots lie outside or on the unit
circle.

For the example of a MA(1) component in the ARMA model, matching the ACGF terms yields

0 = 2(1 + b1
2) and 1 = 2b1, which yields the quadratic 1 - 0b1 + 1b1

2 = 0.  This has the solution
b1 = 0/2 1 ± ( 0

2-4 1
2)½/2 1.  If 0 > 2 1, there are two real roots, and 0/2 1 - ( 0

2-4 1
2)½/2 1 gives

the stable root.  If 0 � 2 1, there is no real root, and the empirical ACGF cannot be matched exactly
by a MA(1) model.  In this case, b1 = sign( 1) yields the MA(1) model with a root on or outside the
unit circle that is closest to the empirical ACGF.  For the example of a MA(2) component, writing
1 + B(z) in terms of its roots and matching the ACGF terms yields 0 = 2(1 + 1/z1

2 + 1/z2
2), 1 =

2(1/z1)(1 + 1/z1z2 + 1/z2
2), and 2 = 2/z1z2.  The estimator would then be obtained by a search in 2,

z1, and z2 subject to the restriction that z1 and z2 are in the complex plane, on or outside the unit
circle, and either are both real, or are convex congugates.

The estimators described above are not the most efficient available among those employing only
moment conditions.  However, it will be convenient to develop the alternatives as estimators for the
case of normal disturbances, and then note that they will be consistent even without normality.
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4. Maximum Likelihood Estimation

       Suppose the disturbances �t in (1) are normal.  Then, vector (y1,...,yT) is then multivariate normal
with mean µ and a covariance matrix that is a band matrix �, with all coefficients s places off the
diagonal equal to s:

(21)    =  .

0 1 2 ... T&2 T&1

1 0 1 ... T&3 T&2

2 1 0 ... T&4 T&3

: : : � : :

T&2 T&3 T&4 ... 0 1

T&1 T&2 T&3 ... 1 0

The autocovariances s in  are functions of the deep parameters of the model, 2 and the coefficients
of A(L) and B(L); these are given by the coefficients of the ACGF (9).  A brute force approach to
estimating the model, which is efficient under the assumptions of normality, is then to maximize the
log likelihood function

(22)   L = -(T/2)log(2 ) - (½)log(det( )) - (½)(y1-µ,...,yT-µ) -1(y1-µ,...,yT-µ)�

in the parameters µ, 2, a1,..., ap, b1,...,bq.  The likelihood function is minimized in µ at the sample
mean µT.  Using the formulas for differentiation of determinants and inverses, the
first-order-condition for a parameter  is

(23)   	L/	  = -½ -1(I - uu� -1)�	 /	 ,

where u� = (y1-µT,..,yT-µT) is the vector of deviations from sample mean.
The practical problem with the brute force approach is that the parameters of the ARMA process

appear in L non-linearly, deep within the T×T matrix .  Therefore, considerable effort in time-series
analysis goes to reformulating the maximum likelihood problem in ways that are more tractable
computationally.

The model (1) can be rewritten as

(24)   �t = yt - a1yt-1 - ... - apyt-p - b1�t-1 - ... - bq�t-q.

Taking expectations conditioned on the information Gt-1, this equation implies 0 = yt*t-1 - a1yt-1 - ...
- apyt-p - b1�t-1 - ... - bq�t-q, and hence
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(25)   �t = yt - yt*t-1.

The mapping from �’s to y’s is linear, with a transformation matrix that is triangular (i.e., yt depends
only on �’s at or before t) with ones on the diagonal.  Then, the Jacobean of the transformation from
(y1,...,yT) to (�1,...,�T) is one, and the log density of (�1,...,�T) conditioned on earlier �’s is  

(26)   L = -(T/2)log(2 ) - (½)log( 2) - ½ �t
2/ 2,�

T

t'1

with the �t defined (recursively) as functions of the lag parameters from (24).  This is called the
predictive error decomposition of the likelihood.  One approach to estimation is to condition on
(y1,...,yp) and (�p-q,...,�p-1), so that (24) gives the �'s for t = p+1,...,T, and then to maximize the
conditional log likelihood, which is equivalent to minimizing the conditional sum of squares,

(27)   CSS = �t
2,�

T

t'p%1

in the lag parameters.  This gives a pre-estimator (because of dependence on �p-1,..) that is equivalent
to the solution at convergence obtained by iteratively applying least squares to the equation below,
with the lagged �'s computed using (24) and the lag coefficient estimates from the previous round:

(28)   yt = a1yt-1 + ... + apyt-p + b1�t-1 + ... + bq�t-q + t  for t = p+1,...,T.

The final step is to get rid of the dependence of the estimator on the initial �'s.  This is often done
in the computationally expedient way of replacing them by their unconditional expectations, which
are zero.  A superior procedure, only moderately more difficult, is described later.

For AR(p) models, a useful simplification of (22) comes from noting that the density of (y1,...,yT)
can be written as the product of the p-dimensional multivariate normal density of (y1,...,yp) and the
1-dimensional conditional densities of yt given yt-1,...,yt-p for t = p+1,...,T.  In this formulation, the
log likelihood is

(29)   L = -(T/2)log(2 ) - ½log(det( p)) - ½(y1-µ,...,yp-µ) p
-1(y1-µ,...,yp-µ) 

- ½log( 2) - (1/2 2) (yt-a1yt-1-...-apyt-p)
2,

�
T

t'p%1

where p is the covariance matrix of the first p observations.  If, further, one conditions on (y1,...,yp),

the resulting log likelihood is maximized when the quadratic form (yt-a1yt-1-...-apyt-p)
2 is�

T

t'p%1
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minimized; this is exactly the same as the regression (19) in the case q = 0.  Conditioning on the first
p observations, maximization of this likelihood function is equivalent to (non-iterative) least  squares
applied to the model (28), or to minimizing CSS in (27).  

Now consider the full stationary ARMA(p,q) model (1), and its representation (11) in state space
form.  Let zt denote the conditional expectation of t given yt,yt-1,...,y1.  This is the optimal predictor
of t given this information.  Given normality, this is a linear function of the y’s.  Let Pt denote the
conditional MSE of the deviation t - zt; i.e., Pt = E{( t - zt)( t - zt)��yt,yt-1,...,y1}.  Similarly, define
zt|t-1 = E( t|yt-1,...,y1) and Pt|t-1 = E{( t - zt)( t - zt)��yt-1,...,y1}.  Given the state equation t = F t-1 + r�t

and the observation equation yt = h� t, and taking conditional expectations, one obtains the formulas

(30)   zt*t-1 = Fzt-1,  Pt*t-1 = FPt-1F� + 2rr�, yt*t-1 = h�zt*t-1,

and from these the updating relationships for projections,

(31)   t � yt - yt*t-1 = h�( t - zt*t-1),

ft = h�Pt|t-1h

     zt = zt*t-1 + Pt*t-1h(yt - h�zt*t-1)/ft 

     Pt = Pt*t-1 - Pt*t-1hh�Pt*t-1/ft.

These formulas (with a different notation) are derived and discussed in Harvey, p. 85-86, for a more
general model that includes stationary ARMA as a special case.

The formulas in (31) can be employed, with an initialization for z0 and P0, to calculate the exact
joint normal density function of (y1,...,yT):

(32)    L = -(T/2)log(2�) - ½ log(ft) - ½ �t
2/ft�

T

t'1
�

T

t'1

This is a predictive error decomposition form of the log likelihood.  The maximum likelihood
estimates can also be given an interpretation of minimizing a CSS; see  Harvey, p. 90. 

Harvey, p. 88, also describes the construction of starting values.  For the stationary ARMA
model, they are  z0 = (I - F)-1c, where c is a vector with µ in the first p components and 0 in the
remaining q components, and  vec(P0) = �2(I - F
F)-1vec(rr�).  Absent normality, the predictors above
remain best linear predictors, and the estimators continue to have an interpretation of minimum CSS
estimators that use all of the sample information on the first two moments, with a Bayesian
interpretation of the starting values.
 


