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There are two cases, PCP (producer-currency pricing, price sticky in home
currency of the producer) and LCP (local-currency pricing, price sticky in cur-
rency of the buyer, so that a producer must set domestic as well as foreign
prices). In both cases, prices are set on date t � 1 to be charged buyers in
period t.

PCP case. Worldwide pro�ts of a Home producer (say, in terms of domestic
currency) are given by
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where p�(h) is the Foreign-currency price at which goods are sold in Foreign.
Under PCP, the Foreign price will simply be p(h)=E , where p(h) is set a period
in advance. Thus, ex post nominal pro�ts under sticky prices (once date t
variables including the exchange rate E are realized) will be:
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Because the �rm sets the price a period in advance and asset markets are
complete, the payo¤ to the �rm in a given date-t state of nature st, valued in
terms of date t� 1 money, will be

�(st)�u
0[C(st)]=P (st)

u0(Ct�1)=Pt�1
�(st);

where �(st) is the probability of occurrence of state st. (Recall that the ratio

�(st)�u
0[C(st)]=P (st)

u0(Ct�1)=Pt�1

is the value of a unit of money delivered on date t contingent on state st;
measured in terms of money on date t � 1.) The �rm maximizes, with respect
to its date t�1 choice of pt(h), the sum of the preceding state-contingent payo¤s,
and therefore solves the problem
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(The equivalence is a consequence of log utility.)
Substituting eq. (1) into the preceding maximization, one expresses the

�rm�s problem (after dividing by Pt�1Ct�1, which is exogenous to the individual
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producer and known as of date t�1; and multiplying by PH , which also is known
as of date t� 1), as
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9=; :
Above, we have used the fact that, under PCP, PH will always equal EP �H (since
that relationship holds for each individual Home good h 2 [0; 1]).
Di¤erentiating with respect to pt(h) yields the �rst-order condition
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Under the Corsetti-Pesenti preference assumptions, PH;tCH;tPtCt
= 1

2 ; and, as we
have noted, PH = EP �H under PCP: Furthermore, P �H;tC�H;t = 1

2P
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Because, moreover, pt(h) and PH;t are known as of date t�1; the term
h
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may be factored out above, leaving
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LCP case. Following steps analogous to those above, but recognizing that
the producer now can choose independently pt(h) and p�t (h), we express the
maximization problem of the price-setting �rm as
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The �rst-order condition with respect to pt(h) is
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Multiplying through by PH;t as above, which is known at date t� 1, we get
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The �rst-order condition with respect to p�t (h) is

Et�1

8<:Et
"
p�t (h)

P �H;t

#��
C�H;t
PtCt

� � [Etp
�
t (h)�MCt]
p�t (h)

"
p�t (h)

P �H;t

#��
C�H;t
PtCt

9=; = 0:

Now, P �H;t also is known with certainty as of date t � 1, so we may multi-
ply through the expectations operator in the preceding equation and rearrange
terms to get
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which reduces to
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through the expectations operator to yield
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