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There are two cases, PCP (producer-currency pricing, price sticky in home
currency of the producer) and LCP (local-currency pricing, price sticky in cur-
rency of the buyer, so that a producer must set domestic as well as foreign
prices). In both cases, prices are set on date t — 1 to be charged buyers in
period t.

PCP case. Worldwide profits of a Home producer (say, in terms of domestic
currency) are given by
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where p*(h) is the Foreign-currency price at which goods are sold in Foreign.
Under PCP, the Foreign price will simply be p(h)/E, where p(h) is set a period
in advance. Thus, ex post nominal profits under sticky prices (once date ¢
variables including the exchange rate £ are realized) will be:
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Because the firm sets the price a period in advance and asset markets are
complete, the payoff to the firm in a given date-t state of nature s;, valued in
terms of date ¢ — 1 money, will be
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where 7(s;) is the probability of occurrence of state s;. (Recall that the ratio
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is the value of a unit of money delivered on date ¢ contingent on state sy,
measured in terms of money on date ¢t — 1.) The firm maximizes, with respect
to its date t—1 choice of p;(h), the sum of the preceding state-contingent payoffs,
and therefore solves the problem
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(The equivalence is a consequence of log utility.)
Substituting eq. (1) into the preceding maximization, one expresses the
firm’s problem (after dividing by P;_1C;—_1, which is exogenous to the individual
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producer and known as of date t—1, and multiplying by Py, which also is known
as of date t — 1), as
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Above, we have used the fact that, under PCP, Py will always equal EP}; (since
that relationship holds for each individual Home good h € [0, 1]).
Differentiating with respect to p;(h) yields the first-order condition
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Under the Corsetti-Pesenti preference assumptions, Pngzg:”t = %, and, as we
have noted, Py = £ Pj; under PCP. Furthermore, Pf; ,CF; , = $P;Cy, and under
complete markets, P;C; = P,Ci/&;, so % = % Thus, the preceding

first-order condition reduces to
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Because, moreover, p;(h) and Py ¢ are known as of date ¢t —1, the term h;}(lht)}

may be factored out above, leaving
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LCP case. Following steps analogous to those above, but recognizing that
the producer now can choose independently p:(h) and pj(h), we express the
maximization problem of the price-setting firm as
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The first-order condition with respect to p;(h) is
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Multiplying through by P, as above, which is known at date ¢t — 1, we get
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The first-order condition with respect to p;(h) is
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Now, Pj, also is known with certainty as of date ¢ — 1, so we may multi-
ply through the expectations operator in the preceding equation and rearrange
terms to get
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(because % = 1 under complete markets). We may multiply pj(h)

through the expectations operator to yield
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or, solving for p;(h),




