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Abstract

This paper considers the most effective use of multiple proxy measures for
the same unobserved variable. It extends the results of Lubotsky and Whit-
tenberg (2006) to examine the impact of proxy variables on correctly measured
variables. We find that including all proxy variables in the regression min-
imizes the bias on all other coefficients in the regression. Unlike previous
results, estimates of coefficients on other regressors do not require a scaling
assumption. We derive a set of bounds based on results from Klepper and
Leamer (1984) and Bollinger (2003) for parameters in the model. These re-
sults are compared to Extreme Bounds Analysis. We find through Monte Carlo
results that our bounds perform better than extreme bounds in most circum-
stances. We also find that our results may overturn many of the results found
through extreme bounds analysis. We conclude with an empirical example
from the cross-country growth literature in which human capital is measured
through three proxy variables: literacy rates, and enrollment in primary and
secondary school. We find that the coefficient estimate on initial income is
“robust,” as previous extreme bound analyses have concluded. However, in
contrast to previous results, we find that the coefficient estimate on investment
cannot be distinguished from zero, while that on population growth is robustly
statistically different from zero.
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1 Introduction

This paper considers estimation of a model such as the following:

yi = α′Z1i + βZ2i + ui, (1)

where the usual regression assumptions hold. We assume that the structural model

is well specified; that is, the researcher is interested in the specific model above: in

particular, estimation of α. However, the researcher does not observe the variable

Z2i, but only observes a set of variables X i (referred to as proxy variables) which are

thought to be related to Z2i.

Examples of this situation include the case where yi is earnings and Z1i is gender

or race while Z2i is human capital (see Bollinger, 2003 for some results). A second

example is the case considered by Lubotsky and Whittenberg (2006) where yi is con-

sumption and Z2i is permanent income. In our example in Section 4, following the

Solow model, yi is economic growth, while Z1i is a vector including initial GDP per

capita, investment in physical capital, and population growth, and Z2i is aggregate

human capital. The problem in all of these cases is that while conceptually (or

theoretically), Z2i exists and plays an important role in the model, it is difficult or

impossible to actually measure. Griliches (1974, p. 976), whose examples include

human capital and permanent income, describes this type of unobservable variable as

one that “do[es] not correspond directly to anything that is likely to be measured.”

What are often available are variables termed “proxy” variables, thought to be cor-

related with, but not perfectly related to, the underlying theoretical concept. In the

case of human capital in the earnings literature, measures such as AFQT score (see

Neal and Johnson, 1996; Bollinger, 2003) are often used. In the case of permanent in-

come, measures of multiple years of realized income are typically available (Lubotsky

and Whittenberg, 2006). In the case of measuring human capital in the cross-country

growth literature, various measures of school attainment or completion rates are often

used: the numerous studies employing enrollment rates include Mankiw, Romer and
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Weil (1992), who use secondary enrollment rates, and Sala-i-Martin (1997), who uses

primary school enrollment rates. Many other studies use outcome measures to proxy

for the stock, rather than the flow, of human capital, generally based on the school

attainment measures most recently updated in Barro and Lee (2001).

Our approach is related in a sense to the model specification literature, including

extreme bounds analysis (EBA), but in practice, we will show, provides very different

results. It appears that the main conceptual difference between our approach and

EBA is that EBA does not have a specific structural model in mind, but is interested

in how E [yi|Z1i, X i] varies across different choices of X i. Researchers employing

EBA assume that regressions of yi on Z1i and various combinations of variables

for X i are consistently estimated by OLS. In the growth literature, EBA (and other

model specification tests) have been used most frequently as tests of “robustness”:

that is, identifying the coefficient estimates that are always (EBA) or nearly always

(the distributional approach of Sala-i-Martin 1997 and Bayesian Model Averaging)

of the same sign as the combination of X i variables changes.

Implicit in the EBA approach is the assumption that one of the specifications is

the “true” specification, so that the high and low estimates of the coefficient must

contain the true estimate. We argue that this may not always be the most accurate

approach when a variable that belongs in the estimation is unobserved. To elabo-

rate on this distinction with our example, the human-capital-augmented neoclassical

growth model tells us that “human capital” belongs in the growth regression, and we

have three proxy variables related to investment in human capital or its stock: lit-

eracy rates, primary school enrollment rates, and secondary school enrollment rates.

Taking EBA literally, some combination of these three proxy variables is the correct

specification; the problem is that the researcher does not know the correct specifica-

tion, and so can only bound the (other) coefficient estimates with the high and low

estimates from all possible combinations of these measures. Our generalized proxy

bounds approach, however, starts from the premise that the correct specification
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cannot be estimated, since one of the variables (“human capital”) is not observed;

rather, the researcher has a set of proxies for the unobserved variable. In this paper,

we develop a procedure for bounding coefficient estimates in the presence of proxies

for an unobserved variable.

These two approaches sound similar, yet yield very different results: in fact, we

show that the bounds from the two approaches do not overlap, although they have

one bound in common. Through our analytic results, simulations, and an empiri-

cal example, we show that our generalized proxy bounds tend to outperform EBA,

particularly in the most relevant cases.

The analytic section develops three results. First, we extend the result of Lubot-

sky and Whittenberg (2006) (hereafter L-W) and focus upon the bias in estimation

of α. Those results are related to Bollinger (2003), which considers the case where

the dimensions of X i are the same as the dimensions of Z2i. We show that the

minimum bias estimates of the parameters α and β can be achieved from the results

of the regression which includes all proxy variables (L-W showed the minimum bias

on β, but did not explicitly examine the impact of the bias on α). L-W show that

the minimum bias estimate of β is only estimable if there is an element of ρ that

is equal to one: that is, they assume that ρ1 = 1. Our results for β require the

same assumption. However, we show that the minimum bias estimates for α do not

require this assumption. We further show that, as in Bollinger (2003), minimum

bias estimates of β/ρ1 are always estimable. As discussed in Bollinger (2003), this

is simply a normalization of the scale of the unobserved variable Z2i. Finally, we

extend the results of Bollinger (2003) to derive a set of bounds for the parameters (α,

β). The minimum bias estimates of (α, β) form one bound, and a reverse regression

(like that used in Klepper and Leamer, 1984, and Bollinger, 2003) provides the other

bound. We compare these results to extreme bounds analysis. What is important

in comparing these results to the extreme bounds literature is that regressions which

include only a subset of these variables have at least as large a bias as the regression
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which includes all proxy variables. We show that the extreme bounds approach will

not provide bounds for the parameters α (or β) in the model above, while our results

do provide such bounds.

Next, we demonstrate analytic results using Monte Carlo evidence and comparing

these generalized proxy bounds to extreme bounds analysis. We find that in many

cases, the extreme bounds analysis provides the wrong conclusion, while the proxy

bounds yield the correct conclusion. The only cases where extreme bounds analysis

appears to work well are cases where the unmeasured variable Z2i is uncorrelated

with the other variables in the model, and hence all estimates from extreme bounds

analysis are consistent for the parameter of interest.

We conclude with an empirical example from the cross-country growth literature

in which human capital is measured through three proxy variables: literacy rates, and

enrollment in primary and secondary school. We find that the coefficient estimate on

initial income is “robust” (i.e., consistently negative and statistically significant) as

previous extreme bound analyses have concluded. However, in contrast to previous

results, we find that the coefficient estimate on investment cannot be distinguished

from zero, while that on population growth is robustly statistically different from

zero.

2 Analytic Results

This section proceeds as follows. First, we follow the results of L-W and establish

that there is a linear combination of proxy variables which simultaneously minimizes

the bias on all coefficients in the model. However, forming this linear combination

requires knowledge of unknown variances. Second, we show that the OLS regression

that includes all proxy variables provides coefficients on the observed variables that

are equal to the coefficients that would be achieved by use of the bias minimizing

linear combination of proxy variables. Following L-W, we also show that an available

linear combination of the coefficients on the proxy variables achieves the minimum
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bias estimate of the ratio of β/ρ1 (if, as in L-W, ρ1 = 1, this achieves a minimum

bias estimate of β), and that from the OLS results, the optimal linear combination

of the proxy variables can be constructed. From this result we show that bounds on

the coefficients can be achieved by applying results of Bollinger (2003).

The relationship between the observed proxies and the variable of interest is

X i = ρZ2i + εi. (2)

The vector X i contains multiple measures of the variable Z2i. We assume that

Cov(εi, Z2i) = Cov(εi, Z1i) = Cov(εi, ui), but V (εi) = Σ, which is unknown, and no

restrictions are placed upon it except that it be positive definite. These assumptions

are relatively benign: The relationship expressed in equation 2 and the assumption

that Cov(εi, Z2i) = 0 is simply the linear projection of X i on Zi and exists provided

that both X i and Zi have finite first and second moments. The assumptions that

Cov(εi, Z1i) = Cov(εi, ui) = 0 simply state that, except as measures of Z2i, there

is no additional information contained in these proxy variable. We assume that the

researcher observes (yi,Z1i,X i).

Like L-W, we begin by considering the problem of choosing a linear combination

of X i to minimize the bias on the resulting coefficient. That is, L-W are interested

in the regression of yi on Xδ
i = δT X i: the problem is to choose δ to minimize the

bias in estimation of β. (In their case, α = 0 and there are no other regressors.) We

follow the same approach here, but include additional regressors. As noted in L-W,

Xδ
i = δT X i = δT ρZ2i + δT εi.

We can write this as

Xδ
i = γδZ2i + eδ

i , (3)

which is a general measurement error specification as considered by Bollinger (2003).

If γ = δ′ρ = 1, then classical errors-in-variables results reveal that measurement error

bias from the regression of yi on Z1i and Xδ
i is minimized when V

(
eδ

i

)
is minimized.
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L-W examine this case. We extend this result beyond the results of L-W in two

dimensions. First, we clarify the scaling issue with respect to the choice of γ = δ′ρ.

Second, we derive the expressions for the bias on α and show that the result of L-W

also minimizes the bias on all regressors in the model.

Proposition 1 Define γ = δT ρ > 0 and θ = β/γ. Let (aδ, tδ) be the coefficients

from the regression of yi on Z1i, X
δ(γ)
i for any δ and a given value of γ. Then,

δ = γ(Σ−1ρ)(ρT Σ−1ρ) solves both minδ

(
tδ − θ

)2
and minδ

(
aδ − α

)
for γ = δT ρ if Σ

is positive definite. If Σ is not full rank, then a solution may be achieved provided

there exists a δ such that Σδ = 0 (which must be) and γ = δT ρ. In this case,

identification of α and β/γ is achieved.

Proof. By Lemma 1 (see appendix) we can write

(
aδ − α

)
=
(
V1 − CV −1

2 C ′)−1
C

(
V2 − C ′V −1

1 C

V2

)(
(δ′Σδ)(

γ2
(
V2 − C ′V −1

1 C
))

+ (δ′Σδ)

)
β

(4)

and (
tδ − θ

)
= −

(
(δ′Σδ)(

γ2
(
V2 − C ′V −1

1 C
))

+ (δ′Σδ)

)
θ. (5)

The common term,

(
(δ′Σδ)

(γ2(V2−C′V −1
1 C))+(δ′Σδ)

)
, is a scalar. Clearly, if Σ is not full

rank, then there exists a δ so that
(
δtΣδ

)
= 0. Provided that δ′ρ = γ > 0 can

also be solved, identification of all parameters can be achieved. When Σ is positive

definite, the common term

(
(δ′Σδ)

(γ2(V2−C′V −1
1 C))+(δ′Σδ)

)
is positive (see Lemma 2), hence

the bias on any coefficient (as measured by any norm) is minimized when this term

is minimized. It is trivial to show that

(
(δ′Σδ)

(γ2(V2−C′V −1
1 C))+(δ′Σδ)

)
is increasing in the

term
(
δtΣδ

)
. Hence, choosing the bias-minimizing δ is equivalent to solving

min
δ

(
δ
′
Σδ
)

subject to δ
′
ρ = γ,

the solution to which is δ∗ = γ(Σ−1ρ)(ρ
′
Σ−1ρ)−1. (See Appendix.)
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L-W derived the bias expression for tδ when δ′ρ = γ = 1, although they do also

discuss the more general case. The bias minimization, relative to α and θ, holds

regardless of γ. When γ = 1, the relationship between Xδ
i and Z2i is a classical

measurement error relationship. This provides a great deal of the intuition to these

results. As is well known, the bias from classical measurement error is determined

by the variance of the error term, which in this case is Var(eδ
i ) = δ

′
Σδ. Hence the

goal in combining X ′s is to choose a linear combination which minimizes the error

variance. In the case where γ is some arbitrary constant, the intuition for the result

can be found in Bollinger (2003), who shows that the model can be rescaled in terms

of (β/γ) to be a classical measurement error model, and again, the bias is minimized

by choosing δ to minimize the variance of ei.

We next turn to the issue of the scaling γ. Unlike Bollinger (2003), γ is a choice

variable (in the sense of the problem of choosing a linear combination of X). L-W

focus on the case where γ = 1 for a number of important reasons. Their fundamen-

tally important result shows a duality between the solution to choosing the optimal

linear combination of Xi and the linear regression of yi on X i. Another reason is that

if there exists a δ so that δ′Σδ = 0, then the choice γ = 1 achieves no measurement

error bias. We consider general implications of the choice of γ, and these will become

important for the general result below which relaxes the assumption made by L-W

that ρ1 = 1.

Corollary 1 If γ = δ
′
ρ = 1 + 1

(ρ′Σ−1ρ)(V2−C′V −1
1 C)

, then (t− β) = 0 : the OLS

regression of yi on Z1i and Xδ
i would provide consistent estimates of β.

Corollary 2 The bias for α, as expressed by
(
aδ − α

)
does not depend on γ. Even

the choice above, which allows consistent estimation of β, does not provide consistent

estimation of α.

We leave the proof of corollary 1 to the appendix and focus here upon the proof

of the second corollary.
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Proof. As noted above,

(aδ−α) =
(
V1 − CV −1

2 C ′)−1
C

(
V2 − C ′V −1

1 C

V2

)(
(δ′Σδ)(

γ2
(
V2 − C ′V −1

1 C
))

+ (δ′Σδ)

)
β.

Substitution of the optimal choice of δ (give a value of γ) from Proposition 1 results

in

(aδ − α) =
(
V1 − CV −1

2 C ′)−1
C

(
V2 − C ′V −1

1 C

V2

)(
γ2
(
ρ′Σ−1ρ

)−1

γ2
(
V2 − C ′V −1

1 C
)

+ γ2
(
ρ′Σ−1ρ

)−1

)
β

(6)

=
(
V1 − CV −1

2 C ′)−1
C

(
V2 − C ′V −1

1 C

V2

)( (
ρ′Σ−1ρ

)−1(
V2 − C ′V −1

1 C
)

+
(
ρ′Σ−1ρ

)−1

)
β,

which is not a function of γ. (See the proof of Corollary 1 in the Appendix for details.)

Regardless of γ, the bias on α is determined by the underlying variance covariance

structure of (Z1i, Z2i, X i).

The intuition is simple: unless Σ = 0, measurement error exists and severs the

relationship between Z1i and Z2i. Even though a rescaling of the Xδ
i variable exists,

the OLS regression alone will not result in consistent estimation. To arrive at that,

the variable Z1i must be rescaled as well.

It also important here to note that since the term

(
(δ′Σδ)

(γ2(V2−C′V −1
1 C))+(δ′Σδ)

)
is

positive, the direction of the bias on each coefficient is determined solely by the sign

of C and β. Note that if C = 0, there is no bias for aδ, and that the magnitude of the

bias is increasing in C. The magnitude of the bias for different linear combinations

of X i is determined solely by

(
(δ′Σδ)

(γ2(V2−C′V −1
1 C))+(δ′Σδ)

)
. Hence, linear combinations

of Xi that include only some subset of the proxies cannot be better than the optimal

linear combination.

Clearly, however, both the optimal choice of δ and the choice of γ rely on informa-

tion unavailable in typical applications: specifically Σ (the variance matrix of ε), C

(the covariance between Z1i and Z2i), and V2 (the variance of Z2i). The second key

result of L-W is that the OLS regression of yi on Z1i and X i provides slope coefficients

on Z1i equivalent to the coefficients from the regression of yi on Z1i and Xδ for the
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optimal choice of δ. Further, a linear combination of the coefficients on X i can be

combined to achieve the minimum bias estimate of β for the case where γ = 1. L-W

showed this for the linear combination of the coefficients on Xi, even in the presence

of additional regressors. We focus on the expression for the coefficients on additional

regressors, which was not examined by L-W.

Proposition 2 Let (a, b) be coefficients from the population least squares regres-

sion of yi on Z1i and X i. If Σ is non-singular, then a= aδ and ρ′b = tδ for δ =

Σ−1ρ/ (ρ′Σ−1ρ) .

The proof is provided in the appendix. It is important here to note the implica-

tion: the OLS regression that includes all proxy variables (X i) achieves coefficients

on all other regressors which have the minimum bias achievable through any linear

combination of regressors. Since the result does not depend on the number of proxy

variables, using any subset of X i is equivalent to using a linear combination of the

subset of X ′
is, and so necessarily has a larger bias than using all X i. Thus the set of

coefficients used in extreme bounds analysis (or other model specification approaches)

represents coefficients where the bias is larger as fewer and fewer X ′
is are included.

Indeed, it follows that if aj < αj (elements of a and α respectively), then any coef-

ficient ãj from the regression of yi on Z1i and any subset of X i will be less than or

equal to aj : ãj < aj < αj. We state this formally in the following corollary:

Corollary 3 Let aj, αj, and Cj be corresponding elements of a, α, and C. Let ãj

be the corresponding coefficient from any regression of yi on Z1i and any subset of

elements of X i. Then if Cj > 0, ãj ≥ aj ≥ α,; if Cj < 0 then α ≤ aj ≤ ãj.

Lubotsky and Wittenberg (2005) show that Xδ can be formed empirically if ρ1,

the first element of ρ, is known to be 1. We note that this is a desirable case, but

generalize to the more realistic case where this assumption cannot be made. L-W

note that

Cov (Xij, yi) = ρj Cov (Zi, yi)
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for each element Xji of the vector X i. Hence, if ρ1 = 1, the terms in ρ are identified

by
Cov(Xij ,yi)

Cov(Xi1,yi)
. We note that in general the ratio

Cov(Xij ,yi)

Cov(Xi1,yi)
=

ρj

ρ1
. Hence the vector

ρ∗ = 1
ρ1

ρ is identified without further assumptions. Unlike L-W, this vector is

actually overidentified, since the other regressors Z1i can also be used in place of yi:

Cov(Xij ,Zli)

Cov(Xi1,Zli)
=

ρj

ρ1
. Next consider using ρ∗ in place of ρ in the results for proposition

2: ρ∗′b = 1
ρ1

ρ′b = 1
ρ1

tδ. Considering the results in corollary 1, this implies that use

of ρ∗ is equivalent to choosing δ′ρ = ρ1, rather than 1 as is the case in proposition 2.

Note that this choice has no effect on the results for the a. Hence, ρ∗′b is the least

biased estimate of β
ρ1

.

L-W also consider construction of Xδ. They show that (X ′
ib) /

(
ρ′b
)

= Xδ for the

optimal δ when δ′ρ = 1. This result holds regardless of whether ρ1 = 1. Similarly,

(X ′
ib) /

(
ρ∗′b
)

= Xδ for the optimal δ when δ′ρ = ρ1. Thus, the regression of yi on

Z1i and (X ′
ib) /

(
ρ∗′b
)

will yield a slope coefficient of ρ∗′b.

We return now to the dual problem of linear combinations of X i. Let Xρ1 be

the optimal linear combination of X i for the restriction that δ′ρ = ρ1. This implies

that

Xρ1 = ρ1Z2i + vi,

where vi = ρ1(ρ
′
Σ−1ρ)−1

(
ρ
′
Σ−1

)
ε. Thus, Xρ1 is a mismeasured variable with a

scaling coefficient. Bollinger (2003) considers this case and shows that the direct

regression of yi on Z1i and Xρ1 provides a lower bound for the ratio β
ρ1

and the slope

coefficients on Z1i form one bound (upper or lower depending upon sign of C) for

the coefficients α. Bollinger also shows that the reverse regression Xρ1 on yi and Z1i

provides the upper bound on β
ρ1

and the other bound on α. Since Xδ can be formed

from the results of the regression of yi on Z1i and X i, the reverse regression can also

be estimated. Let d be the coefficient on yi from the reverse regression and let g

be the vector of coefficients on Z1i from the reverse regression. Hence we state the

following proposition:
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Proposition 3 The sign of ρ∗′b is the sign of β. Further,
∣∣ ρ∗′b

∣∣ ≤ |β| ≤ |1/d| and

αj ∈ [aj,−gj/d].

The proof follows from the results in propositions 1 and 2, the definition of Xρ1

and Theorem 1 and corollary 1 in Bollinger (2003).

This result provides an approach to achieve bounds on α and a rescaled measure

of β. These bounds correspond to the tightest bounds achievable using any linear

combination of the available proxy variables. It is interesting to note that by corollary

3 and proposition 4, the bounds achieved will not contain any of the coefficients

obtained through extreme bounds analysis: extreme bounds analysis provides the set

of all biased coefficients that can be obtained. There is one special case in which

extreme bounds analysis provides a set of consistent estimates of α: when C = 0.

In this case, any regressions of yi on Z1i and any (or no) elements of Xi provide

consistent estimates of α.

A potential objection to the above procedure is that including many proxy vari-

ables will increase the standard errors on all variables. Although analytic results are

still in progress, intuitively we note that including all proxy variables is equivalent to

simply including the optimal Xδ linear combination. Indeed, the estimates can all be

obtained through a two stage procedure: first regress yi on Z1i and X i. Using b and

the estimated covariances, construct X̃δ. Then regress yi on Z1i and X̃δ. We claim

that, like a plug-in two-stage least squares estimator, the sampling variance of the

coefficients in this second stage are not affected by the sampling variance of the coef-

ficients used to construct X̃δ. Unlike 2SLS, there is no need to correct the standard

errors as there is no prediction error; inclusion of the estimated Xδ is asymptotically

equivalent to inclusion of the true Xδ. We also note empirically that the standard

errors on a are nearly identical in the first and second stages. The intuition is rela-

tively straightforward: standard errors on a are affected by the correlation between

Z1i and X i or Xδ. These correlations are identical and are bounded above by the

correlation between Z1i and Z2i. In the extreme, as δ′Σδ tends to zero, the standard
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errors on a will tend toward the standard errors that would be obtained if Z2i were

available. It should be noted that the standard errors on elements of b may be quite

large, but these are not the standard errors of interest. Rather, the standard error

on either ρ′b or the coefficient on Xδ should be the focus: these also tend toward the

standard errors that would be obtained if Z2i were available. Formal proofs of these

conjectures will be given in future drafts.

3 Simulation Results

In order to illustrate and evaluate the above results, we provide a set of simulations.

We use the following model

yi = αZ1i + Z2i + ui.

We let

X1i = Z2i + s× (0.25× vi +
√

(1− 0.252)e1i)

X1i = 2Z2i + s×
(
0.25× vi +

√
(1− 0.252)e2i

)
X1i = 3Z2i + s×

(
0.25× vi +

√
(1− 0.252)e3i.

)
For simplicity, we generate (vi, ei, ui) as jointly standard normally distributed and mu-

tually independent. We generate (Z1i, Z2i) as jointly standard normally distributed

with a covariance C (which is also the correlation). The term s determines the

total amount of measurement error in the proxy variables (and also in the optimal

linear combination of the proxy variables). Two values of α are interesting: 1 and 0.

Using α = 1 provides a standard on how large the bias from the regression of yi on

Z1i and X i (or subsets of X i) is likely to be. It also demonstrates how the extreme

bounds approach can either over- or understate the coefficient on Z1i, depending on

C. Similarly the case of α = 0 demonstrates that failure to include all Xi may lead

one to conclude that Z1i is an important explanatory variable when in fact it is not.
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We examine nine values of C: 0,±0.25,±0.5,±0.75 and ±0.9. We examine two val-

ues of s: 1 and 1.4 ≈
√

2 (these result in error variances of 1 and 2, respectively).

The simulation results are based on 500 replicates of samples of size 1000.

Table 1 summarizes the results of our Monte Carlo simulations. Panel A provides

a great deal of intuition. In the first row, we present the proportion of times that the

slope coefficient from the regression of yi on only Z1i would reject the null hypothesis

that α = 1, the true value (in other panels the test changes with values of α). This

demonstrates the impact from omitted variable bias of not including Z2i. As noted

in Bollinger (2003), the inclusion of proxy variables mitigates omitted variable bias,

but the bias on α (as can be seen in equation 6) is similar to omitted variable bias.

As can be seen, when C = 0, the test accepts the null 95% of the time (as one would

expect). For other values of C, failure to include any measure of Z2i leads to rejection

of the true null hypothesis in every sample.

The second row of panel A presents the test that α = 1 when all proxy variables

are included. As can be seen, when C = 0, this test also has the correct nominal

size: there is no penalty to including the proxy variables. As C moves toward either

1 or -1, the nominal size falls. However, even at C = ±0.75, we accept the true null

over 30% of the time.

The third row of panel A presents the percentage of simulations where the bounds

derived in proposition 3 contain the true value of α. When C = 0, these generalized

proxy bounds seldom contain the true value: the reverse regression is not informative

about the coefficient on Z1i, since it is identified in the direct regression. However,

as the covariance gets higher, the percentage of times that the proxy bounds contain

the true coefficient also tends toward 1. At C = ±0.25, the proxy bounds capture

the true coefficient over 70% of the time. The fourth row of the panel shows that it

is only sampling variance which prevents the proxy bounds from capturing the true

coefficient at least 95% of the time. In the case where C = 0, the inclusion of the

standard errors captures the true coefficient 95% of the time, while at higher values
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of C, it is 99% of the time or higher.

The fifth row presents the percentage of times that extreme bounds analysis would

capture the true coefficient α. In the row labelled “xbnd1,” the bounds are formed

as the maximum coefficient estimate plus two times the standard error, and the

minimum estimate minus two times the standard error. Notice that when C = 0, this

actually performs better than not including the proxy variables at all. In contrast to

the proxy bounds, the extreme bounds perform less well as the correlation between

Z1i and Z2i increases.

The sixth row presents an alternative version of extreme bounds (labelled “xbnd2,”

where the bounds are defined as the maximum and minimum estimates from the EBA

estimation. As one would expect, since these are narrower bounds, these perform

decidedly worse than the first extreme bounds case, and very poorly compared to the

proxy bounds. When sampling variance is included in the extreme bounds 2 case, by

adding and substracting 2 times the standard errors of the bounds, the performance

mimics that of the first extreme bounds case (as one would expect).

In panels E-H, we double the amount of noise in the proxy variables. This actually

improves the performance of the generalized proxy bounds in an absolute sense, in

that the proportion of times that the proxy bounds include the true coefficient on α

increases for all values of C. In sharp contrast, this decreases the performance of the

extreme bounds analysis. For some perspective on this, we note that when s = 1,

the correlation between Xδ (the optimal linear combination of the proxy variables)

and Z2i is 0.93 when s = 1 and falls to 0.77 when s = 1.4. Indeed, the correlation

between X3i and Z2i is 0.9 and 0.81 for the two cases respectively. These are cases

where the noise in the proxy variables is quite low relative to the signal. Clearly, in

cases where the noise is much higher, extreme bounds will likely perform even more

poorly.
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4 Application

To demonstrate the difference between extreme bounds and proxy bounds, in this

section we use an illustrative example from the economic growth literature, where a

common problem is that the researcher wants to estimate a structural relationship

between growth and a variable (or variables) of interest, but the conditioning variables

include unobservable variables such as “technology” or “human capital.”

In our example, we use extreme bounds analysis, which has been used to gauge the

“robustness” of variables included in economic growth regressions, most influentially

by Levine and Renelt (1992). Variants of the extreme bounds approach include

the Bayesian Classical Model Averaging of Doppelhofer, Miller, and Sala-i-Martin

(2004), and the related distributional approach of Sala-i-Martin (1997). With all of

these approaches, the problem is framed as one of model specification: the “correct”

specification of the model is one containing some subset of the control variables, and

the purpose of the exercise is to bound the coefficient estimates on other variables

included in the regression. In contrast, with the proxy bounds approach, the set of

conditioning variables is correlated with some variable (human capital, technology,

institutions) that belongs in the regression but is not directly observable.

Our goals in this section are more modest than identifying “robustness” in growth

regressions: we use this application to illustrate the difference between extreme

bounds and proxy bounds with a structural estimation of the neoclassical growth

model including human capital. In future drafts we anticipate adapting this ap-

proach to robustness tests of this kind.

In their empirical test of the Solow (1956) model, Mankiw, Romer and Weil (1992)

augment the original Solow model with a separate measure of human capital, as

follows. Consider a production function given by:

Y (t) = K(t)αH(t)β(A(t)L(t))1−α−β (7)

where Y is aggregate output, K is the (physical) capital stock, H is the stock of
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human capital, A represents (labor-augmenting) technological progress, and L is the

labor force. Income is invested in physical and human capital at the constant fractions

sk and sh, respectively.

Allowing lower-case letters to denote quantities in terms of effective units of labor

(i.e., y = Y/AL, k = K/AL, and h = H/AL), the economy evolves following:

k̇(t) = sky(t)− (n + g + δ)k(t); (8)

ḣ(t) = shy(t)− (n + g + δ)h(t)

where δ denotes the depreciation rate (assumed identical for human and physical

capital), n is the population growth rate, and g is the rate of exogenous technological

progress (i.e., the rate at which A grows).

The equations given in (8) imply that there is a steady state characterized by:

k∗ =

(
s1−β

k sβ
h

n + g + δ

)1/(1−α−β)

; h∗ =

(
sα

ksa−α
h

n + g + δ

)1/(1−α−β)

(9)

In the steady state, income per capita y∗is given by:

ln(y∗) = lnA(0) + gt− α + β

1− α− β
ln(n + g + δ)

+
α

1− α− β
ln(sk) +

β

1− α− β
ln(sh). (10)

However, equation (10) only describes income in the steady state. As economies

converge toward their steady-state values of income, the Solow model implies what has

come to be known as conditional convergence, or convergence (of income) conditional

on the determinants of the steady state.

The speed at which a country converges from its income at time t to its steady

state y∗ can be approximated by:

dln(y(t))

dt
= λ[ln(y∗)− ln(y(t))] (11)

where λ = (n + g + δ)(1− α− β).
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Equation (11) implies that:

ln(y(t)) = (1− e−λt)ln(y∗) + e−λtln(y(0)), (12)

where y(0) is initial income per effective worker. Subtracting ln(y(0)) from both sides

and substituting for y∗ yields a regression that can be estimated to measure the actual

rate of convergence:

ln(y(t))− ln(y(0)) = (1− e−λt)
α

1− α− β
ln(sk) + (1− e−λt)

β

1− α− β
ln(sh)

− (1− e−λt)
α + β

1− α− β
ln(n + g + δ)− (1− e−λt)ln(y(0)). (13)

Thus, growth in GDP per capita is a function of investment in physical capital (sk),

investment in human capital (sh), a term including population growth, technological

progress, and depreciation (n + g + δ), and initial income (y(0)). In addition, the

coefficient estimate on the log of initial income can be used to infer the speed of

convergence toward the steady state (λ).

Equation (13) is the key equation for our application, and is a standard regression

in the empirical growth literature. Our estimates of GDP per capita are adjusted for

purchasing power parity, and come from the Penn World Tables database, frequently

used in the empirical growth literature. Investment in physical capital is the invest-

ment/GDP ratio, also from the Penn World Tables. The annual rate of population

growth is also taken from the Penn World Tables, and we follow Mankiw et al. (1992)

in setting (g + δ) = 0.5. We believe that these variables are measured correctly; the

key question is how to accurately measure “human capital.” (Mankiw et al. (1992),

among many others, discuss this issue at length.) We include three variables corre-

lated with stocks and accumulation rates of human capital, all of which are commonly

used in the empirical growth literature: literacy rate, primary school enrollment rates,

and secondary school enrollment rates. Our sample is a cross-section of 88 countries

at all levels of development.

Using the notation of Section 1, we are interested in estimating the structural
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relationship

yi = α′Z1i + βZ2i + ui. (14)

Z2i is not measured directly, but a vector X i of correctly measured variables exists

such that X i = ρZ2i + εi. In this application X i contains primary school enrollment,

secondary school enrollment, and literacy rates. Z1 is a vector including the variables

measured without error (in our application, initial GDP per capita, physical capital

investment, and the term including population growth).

The focus of this estimation is the relationship between growth and the three

regressors: initial income, physical capital investment, and population growth. That

is, we focus on the coefficients α. Theory defines the structural relationship. The

problem is that we do not have a measure of human capital (Z2i) but rather have

a set of variables (primary and secondary school enrollment and literacy rates) that

are correlated with human capital. The model specification literature has a simi-

lar approach: the key concern is the coefficient estimates on a set of key variables

(frequently initial income for estimating the speed of convergence, but often also a

particular variable of interest), but the claim is that the correct set of additional

conditioning variables is unknown. More generally, the traditional approach in much

empirical work is to include different sets of control variables, under the assumption

that the correct coefficient estimates on the variables of interest fall somewhere in

that range. This is also the idea behind more formal approaches to model selection,

such as extreme bounds analysis and Bayesian model averaging. For example, in

extreme bounds analysis, the researcher includes all possible combinations of a set of

control variables, and identifies the “extreme bounds” as the minimum and maximum

estimates, accounting for standard errors.
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4.1 Extreme Bounds

We adapt extreme bounds analysis first suggested by Leamer and Leonard (1983) and

employed in the growth literature by Levine and Renelt (1992) in the following way.1

After estimating the regression with each possible combination of the three human

capital proxy variables (yielding seven regressions), we compute the upper and lower

bounds for each of the correctly measured (Z1) regressors (initial GDP, investment,

and population growth) as the maximum and minimum values of β ± 2σ, which is

also the cutoff used by Levine and Renelt (1992). Table 2 presents the results for

initial income, physical capital investment, and population growth; each would be

considered “robust” by their definition (i.e., for each variable, the highest and lowest

bounds are statistically significant at 95% or greater and of the same sign).

In general, empirical growth researchers have been concerned primarily with iden-

tifying variables that are “robustly” correlated with growth (i.e., consistently pos-

itively or negatively correlated with growth, conditional on other variables), and

extreme bounds analysis and other approaches to model specification have been em-

ployed primarily to identify these variables. However, the coefficient estimates on

initial GDP also allow for inference about the speed of convergence to the steady

state. In the extreme bounds analysis, the coefficient estimate range of -0.47 to -0.36

implies an estimate of λ of between 0.008 and 0.010, which is slightly lower than

the estimate of 0.014 in the full 98-country sample in Mankiw et al. (1992).2 These

estimates of λ imply that a country moves halfway toward its steady state in between

70 and 87 years.

1Because Levine and Renelt included over 30 possible control variables, primarily policy variables
(the analogue here is the three measures of human capital), they limited their control variables to
exactly three in each regression. We allow for all possible measures of our three measures of human
capital (yielding seven regressions).

2The Mankiw et al. sample covers the period 1960-85, which is extended here to 1960-2000.
Their measure of human capital is secondary school enrollment rates.
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4.2 Generalized Proxy Bounds

A problem with extreme bounds analysis is that when the control variable is measured

with error, the estimates on the correctly measured variables are not guaranteed to

be within the extreme bounds; in fact, by Proposition 2 and Corollary 3, the extreme

bounds will not include the true estimates.

In this section, we present the estimation of the alternative generalized proxy

bounds. We proceed as follows. First, we estimate the base regression by OLS,

including all of the proxies for Z2:

yi = β′
Z1

Z1i + β′
X

X i + εi (15)

and retain the β
Z1

and β
X

coefficients. Following Propositions 2 and 3, the estimates

of β
Z1

identify one of the bounds for each of the Z1 variables.

To find the other set of bounds, we must construct Xδ, for the reverse regression.

The first step is in finding estimates for ρ. There are four consistent estimates for

ρ2 and ρ3: for example, ρ2 could be estimated by cov(x2,y)
cov(x1,y)

, cov(x2,z1)
cov(x1,z1)

, cov(x2,z2)
cov(x1,z2)

, or

cov(x2,z3)
cov(x1,z3)

. For both ρ2 and ρ3, we take the average of these four estimators, which

is equivalent to a minimum-distance GMM estimator. We then construct the lower

bound on the slope of the unobserved Z2 variable:

B1 = βX1 + ρ2 · βX2 + ρ3 · βX3 (16)

The minimum-bias weighted average estimate of the unobserved Z2 variable is

then:

Ẑ2i =
βX1 + βX2X2i + βX3X3i

B1

(17)

Finally, we regress these estimates Ẑ2i on yi and Z1i:

Ẑ2i = δyyi + δ′Z1Z1i + νi (18)

The upper bound on the slope for the Z2 variable is given by:

B2 = 1/δy (19)
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Finally, the second bound for the Z1 variables is given by:

−δZ1j/δy (20)

The results for the generalized proxy bounds are in Table 3. Several comparisons

to the extreme bounds analysis in Table 2 merit attention. First, the coefficient esti-

mates on investment are no longer considered “robust,” in that one bound is positive

and one is negative. This is somewhat surprising, in that investment was one of only

three variables (out of over 30 tested) identified as “robustly” correlated with growth

in the extreme bounds analysis of Levine and Renelt (1992). Second, the coefficient

estimates on the population growth term (n + g + δ) are statistically significant and

negative at both bounds, and are larger in magnitude than the estimates from the ex-

treme bounds analysis. Although the extreme bounds analysis in Table 2 also yielded

coefficient estimates that would be considered robust, population growth was not a

robust variable in Levine and Renelt (1992).

Finally, the bounds on the coefficient estimates for initial GDP are interesting,

because the point estimates can be used to infer the speed of convergence toward the

steady state. The upper generalized proxy bound is identical to the lower extreme

bound, suggesting that the coefficient estimate is more negative, and the speed of

convergence faster. The speed of convergence (λ) implied by the generalized proxy

bounds in Table 3 is between 0.010 and 0.019, which would imply that a country

would move half of the distance toward its steady state in between 70 and 35 years.

(The range for λ in the extreme bounds is 0.008 to 0.010.)

5 Conclusions

We have demonstrated that when a researcher has a series of proxy variables

which are thought to be correlated with an unobserved regressor from a structural

model, including all proxy variables in the regression will result in estimates which

are the least biased of any combination of the proxy variables. Further, we provide
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an approach which derives bounds on all coefficients in the model. The extreme

bounds literature has a similar goal: when a series of proxy variables is available,

they examine coefficients on all possible combinations. We show that this may lead

to conclusions about the robustness of results that are unwarranted.

Our results are preliminary at this stage. One important issue is how the inclusion

of many proxy variables will affect the standard errors of estimates of structural

coefficients. We plan on examining this issue more closely in the future. This

question suggests that the focus on bias in our section 2 and in L-W is only part

of the story; the focus should be on mean squared error. Our future research will

address this issue.

A second issue is further reconciling our results with the model specification liter-

ature (including Bayesian model averaging techniques as well as EBA), particularly

as it has been applied in the empirical growth literature to address the question of

which variables are “robustly” correlated with growth.
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Table 1: Simulation Results
Panel A: a=1; s=1

C=0 C=0.25 C=0.5 C=0.75 C=0.9
shorthattest 0.958 0.000 0.000 0.000 0.000
minbiastest 0.950 0.924 0.788 0.352 0.016
obtestt 0.250 0.700 0.886 0.988 1.000
obtestse 0.946 0.990 1.000 1.000 1.000
xbnd1testt 0.994 0.942 0.806 0.374 0.022
xbnd2testt 0.266 0.304 0.114 0.012 0.000
xbnd2testtse 0.992 0.938 0.790 0.360 0.022
Panel B: a=1; s=1

C=–0.25 C=–0.5 C=–0.75 C=–0.9
shorthattest 0.000 0.000 0.000 0.000
minbiastest 0.922 0.722 0.336 0.014
obtestt 0.722 0.882 0.992 1.000
obtestse 0.996 1.000 1.000 1.000
xbnd1testt 0.938 0.740 0.350 0.018
xbnd2testt 0.292 0.118 0.008 0.000
xbnd2testtse 0.932 0.724 0.338 0.014
Panel C: a=0; s=1

C=0 C=0.25 C=0.5 C=0.75 C=0.9
shorthattest 0.954 0.000 0.000 0.000 0.000
minbiastest 0.948 0.898 0.738 0.340 0.016
obtestt 0.276 0.720 0.900 0.994 1.000
obtestse 0.966 0.994 0.998 1.000 1.000
xbnd1testt 0.976 0.916 0.758 0.356 0.020
xbnd2testt 0.278 0.284 0.100 0.006 0.000
xbnd2testtse 0.974 0.908 0.744 0.342 0.018
Panel D: a=0; s=1

C=–0.25 C=–0.5 C=–0.75 C=–0.9
shorthattest 0.000 0.000 0.000 0.000
minbiastest 0.884 0.728 0.334 0.018
obtestt 0.714 0.928 0.992 1.000
obtestse 0.992 0.998 1.000 1.000
xbnd1testt 0.898 0.750 0.364 0.020
xbnd2testt 0.290 0.072 0.008 0.000
xbnd2testtse 0.896 0.734 0.336 0.020

Table continued on following page
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Table 1, continued
Panel E: a=1; s=1.4

C=0 C=0.25 C=0.5 C=0.75 C=0.9
shorthattest 0.944 0.000 0.000 0.000 0.000
minbiastest 0.948 0.850 0.406 0.012 0.000
obtestt 0.286 0.868 0.994 1.000 1.000
obtestse 0.912 1.000 1.000 1.000 1.000
xbnd1testt 0.984 0.860 0.428 0.012 0.000
xbnd2testt 0.270 0.136 0.006 0.000 0.000
xbnd2testtse 0.980 0.852 0.416 0.012 0.000
Panel F: a=1; s=1.4

C=–0.25 C=–0.5 C=–0.75 C=–0.9
shorthattest 0.000 0.000 0.000 0.000
minbiastest 0.818 0.420 0.018 0.000
obtestt 0.824 0.986 1.000 1.000
obtestse 1.000 1.000 1.000 1.000
xbnd1testt 0.838 0.440 0.018 0.000
xbnd2testt 0.180 0.014 0.000 0.000
xbnd2testtse 0.830 0.422 0.018 0.000
Panel G: a=0; s=1.4

C=0 C=0.25 C=0.5 C=0.75 C=0.9
shorthattest 0.952 0.000 0.000 0.000 0.000
minbiastest 0.958 0.816 0.378 0.018 0.000
obtestt 0.302 0.842 0.988 1.000 1.000
obtestse 0.980 0.996 1.000 1.000 1.000
xbnd1testt 0.988 0.838 0.400 0.020 0.000
xbnd2testt 0.300 0.166 0.014 0.000 0.000
xbnd2testtse 0.982 0.828 0.382 0.018 0.000
Panel H: a=0; s=1.4

C=–0.25 C=–0.5 C=–0.75 C=–0.9
shorthattest 0.000 0.000 0.000 0.000
minbiastest 0.836 0.394 0.008 0.000
obtestt 0.856 0.990 1.000 1.000
obtestse 1.000 1.000 1.000 1.000
xbnd1testt 0.844 0.404 0.008 0.000
xbnd2testt 0.154 0.010 0.000 0.000
xbnd2testtse 0.838 0.394 0.008 0.000

Notes to Table:
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Table 2: Extreme Bounds Analysis
β (s.e) p-value Bound HK measures

ln(GDP ) upper: -0.36 (0.10) 0.001 -0.16 lit
lower: -0.47 (0.10) 0.000 -0.66 lit, pri, sec

ln(INV ) upper: 0.41 (0.09) 0.000 0.59 lit
lower: 0.29 (0.09) 0.002 0.11 lit, pri, sec

ln(n + g + δ) upper: -2.36 (0.71) 0.001 -0.94 lit
lower: -2.98 (0.68) 0.000 -4.33 lit, pri, sec

Notes to Table: The table reports the coefficient estimates, standard errors, and p-values associated
with each bound. The bounds are defined as β ± 2σ.

Table 3: Generalized Proxy Bounds
β (s.e) p-value Bound

ln(GDP ) upper: -0.47 (0.09) 0.000 -0.29
lower: -1.14 (0.20) 0.000 -1.54

ln(INV ) upper: 0.29 (0.09) 0.002 0.47
lower: -0.31 (0.20) 0.062 -0.71

ln(n + g + δ) upper: -2.98 (0.64) 0.000 -1.70
lower: -3.69 (1.32) 0.003 -6.33

Notes to Table: The table reports the coefficient estimates, standard errors, and p-values associated
with each bound. The bounds are defined as β ± 2σ.
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6 Appendix

Let

V

(
Z1i

Z2i

)
=

[
V1 C
C ′ V2

]
.

Let δ be an arbitrary vector such that δ′ρ = γ̇ > 0 for some given value γ. Let

θ = β/γ.

The next three Lemmas establish key results for Proposition 3.

Lemma 1 Expressions for (α−a) and (θ − t).

Then [
a
t

]
=

[
V1 γC
γC ′ γ2V2 + (δ′Σδ)

]−1 [
V1α + θγC

γC ′α + θγ2V2

]
.

Rewriting yields

[
V1 γC
γC ′ γ2V2 + (δ′Σδ)

] [
a
t

]
=

[
V1α + θγC

γC ′α + θγ2V2

]
,

which is equivalent to[
V1 γC
γC ′ γ2V2

]−1 [
V1 γC
γC ′ γ2V2 + (δ′Σδ)

] [
a
t

]
=

[
V1 γC
γC ′ γ2V2

]−1 [
V1α + θγC

γC ′α + θγ2V2

]
.

This yields[
I γ

(
V1 − CV −1

2 C ′)−1
C
(
1− (γ2V2)

−1
(γ2V2 + (δ′Σδ))

)
0
(
γ2
(
V2 − C ′V −1

1 C
))−1 (

γ2V2 + (δ′Σδ)− γ2C ′V −1
1 C

)
] [

a
t

]
=

[
α
θ

]
.

Noting that V2, γ, and (δ′Σδ) are all scalars, this can be written as I −γ
(
V1 − CV −1

2 C ′)−1
C
(

(δ′Σδ)
γ2V2

)
0′

(
1 + (δ′Σδ)

(γ2(V2−C′V −1
1 C))

) [ a
t

]
=

[
α
θ

]
.

Rearranging gives a− γ
(
V1 − CV −1

2 C ′)−1
C
(

(δ′Σδ)
γ2V2

)
t(

1 + (δ′Σδ)

(γ2(V2−C′V −1
1 C))

)
t

 =

[
α
θ

]
.
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Thus

(a− α) = γ
(
V1 − CV −1

2 C ′)−1
C

(
V2 − C ′V −1

1 C

V2

)(
(δ′Σδ)(

γ2
(
V2 − C ′V −1

1 C
))

+ (δ′Σδ)

)
θ

=
(
V1 − CV −1

2 C ′)−1
C

(
V2 − C ′V −1

1 C

V2

)(
(δ′Σδ)(

γ2
(
V2 − C ′V −1

1 C
))

+ (δ′Σδ)

)
β,

and

(t− θ) =

( (
γ2
(
V2 − C ′V −1

1 C
))(

γ2
(
V2 − C ′V −1

1 C
))

+ (δ′Σδ)

)
θ − θ

= −

(
(δ′Σδ)(

γ2
(
V2 − C ′V −1

1 C
))

+ (δ′Σδ)

)
θ.

QED.

Lemma 2 The term

(
(δ′Σδ)

(γ2(V2−C′V −1
1 C))+(δ′Σδ)

)
is positive and increasing in (δ′Σδ) .

The term
(
γ2
(
V2 − C ′V −1

1 C
))

+ (δ′Σδ) is positive provided that γ 6= 0 and Σ is

positive semi-definite. The term V1V2 − C2 is the determinant of the V(Z1i, Z2i),

and so is, by necessary assumption, positive. The term (δ′Σδ) will be non-negative

provided Σ is positive semi-definite and V1 is also non-negative. The respective

derivatives, with respect to the term (δ′Σδ) are

γ (γ2V1V2 − γ2C2 + V1 (δ′Σδ))− γ (δ′Σδ) V1

(γ2V1V2 − γ2C2 + V1 (δ′Σδ))
2

=
γ3V1V2 − γ3C2

(γ2V1V2 − γ2C2 + V1 (δ′Σδ))
2 > 0

and

V1 (γ2V1V2 − γ2C2 + V1 (δ′Σδ))− V1 (δ′Σδ) V1

(γ2V1V2 − γ2C2 + V1 (δ′Σδ))
2 =

V1 (γ2V1V2 − γ2C2)

(γ2V1V2 − γ2C2 + V1 (δ′Σδ))
2 > 0.

Hence the biases are both increasing in (δ′Σδ) .QED

Lemma 3 The solution to minδ (δ′Σδ) s.t. δρ = γ is δ = γΣ−1ρ(ρ′Σ−1ρ).
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The Lagrangian is

(δ′Σδ)− λ
(
δ′ρ− γ

)
.

FOC are

2Σδ − λρ = 0

δ′ρ− γ = 0.

Solving:

δ =
1

2
λΣ−1ρ

1

2
ρ′Σ−1ρλ = γ.

Substitution yields

δ = γΣ−1ρ
(
ρ′Σ−1ρ

)−1

λ = 2γ
(
ρ′Σ−1ρ

)−1
.

QED

Proof. The proof of proposition 1 follows from the details in the text combined with

the above lemmas.

Proof. Proof of Corollary 1. Substitution of the results from proposition 1 into the

expressions in Lemma 1 yields

(δ′Σδ) =
γ2ρ′Σ−1ΣΣ−1ρ(

ρ′Σ−1ρ
)2 =

γ2(
ρ′Σ−1ρ

) .
From Lemma 1 we have that

(t− θ) = −θ

(
(δ′Σδ)(

γ2
(
V2 − C ′V −1

1 C
))

+ (δ′Σδ)

)

Alternatively,

t = θ

(
1−

(
(δ′Σδ)(

γ2
(
V2 − C ′V −1

1 C
))

+ (δ′Σδ)

))
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=
β

γ

(
γ2
(
V2 − C ′V −1

1 C
)(

γ2
(
V2 − C ′V −1

1 C
))

+ (δ′Σδ)

)
.

Substitute the optimal choice of δ from proposition 1 which yields

t =
β

γ

(
γ2
(
V2 − C ′V −1

1 C
)

γ2
(
V2 − C ′V −1

1 C
)

+ γ2
(
ρ′Σ−1ρ

)−1

)

=
β

γ

( (
V2 − C ′V −1

1 C
)(

V2 − C ′V −1
1 C

)
+
(
ρ′Σ−1ρ

)−1

)
.

Hence, by choosing

γ =

(
V2 − C ′V −1

1 C
)

+
(
ρ′Σ−1ρ

)−1(
V2 − C ′V −1

1 C
) = 1 +

1(
ρ′Σ−1ρ

) (
V2 − C ′V −1

1 C
) ,

we have t = β : no bias in the coefficient on Xδ.QED

Lemma 4 (Sherwin-Morrison Woodbury Matrix Inversion Lemma):
If A and B are non-singular matrices, and X is conformable, then (A + XBX ′)−1 =
A−1 − A−1X (B−1 + X ′A−1X)

−1
X ′A−1.

Proof. Proof of Proposition 2:

The linear regression of yi on Z1i and X i yields slope coefficients consistent for(
a
b

)
=

[
V1 Cρ′

ρC ′ (ρρ′V2 + Σ
) ]−1 [

V1α + Cβ
ρC ′α + ρV2β

]
.

Rewriting yields [
V1 Cρ′

ρC ′ (ρρ′V2 + Σ
) ] [ a

b

]
=

[
V1α + Cβ

ρC ′α + ρV2β

]
,

which is equivalent to[
V1 Cρ′

ρC ′ Iρ′ρV2

]−1 [
V1 Cρ′

ρC ′ (ρρ′V2 + Σ
) ] [ a

b

]
=

[
V1 Cρ′

ρC ′ Iρ′ρ

]−1 [
V1α + Cβ

ρC ′α + ρV2β

]
,
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where I is the identity matrix of appropriate dimensions. The inverse of the leading

matrix (a partitioned matrix) can be written as (
V1 − Cρ′

(
Iρ′ρV2

)−1
ρC ′
)−1

−
(
V1 − Cρ′

(
Iρ′ρV2

)
ρC ′)Cρ′

(
Iρ′ρV2

)−1

−
(
Iρ′ρV2 − ρC ′V −1

1 Cρ′
)−1

ρC ′V −1
1

(
Iρ′ρV2 − ρC ′V −1

1 Cρ′
)−1

 .

Since ρ′ρV2 is a scalar, this reduces to[ (
V1 − CV −1

2 C ′)−1 −
(
V1 − CV −1

2 C ′)−1
Cρ′

(
ρ′ρV2

)−1

−
(
Iρ′ρV2 − ρC ′V −1

1 Cρ′
)−1

ρC ′V −1
1

(
Iρ′ρV2 − ρC ′V −1

1 Cρ′
)−1

]
.

Substitution and simplification yields[
I −

(
V1 − CV −1

2 C ′)−1
(
Cρ′

(
ρ′ρV2

)−1
Σ
)

0
(
Iρ′ρV2 − ρC ′V −1

1 Cρ′
)−1 (

ρ
(
V2 − C ′V −1

1 C
)
ρ′ + Σ

) ] [ a
b

]
=

[
α(

Iρ′ρV2 − ρC ′V −1
1 Cρ′

)−1
ρ
(
V2 − C ′V −1

1 C
)
β

]
,

or [
a−

(
V1 − CV −1

2 C ′)−1
(
Cρ′

(
ρ′ρV2

)−1
Σ
)

b(
Iρ′ρV2 − ρC ′V −1

1 Cρ′
)−1 (

ρ
(
V2 − C ′V −1

1 C
)
ρ′ + Σ

)
b

]

=

[
α(

Iρ′ρV2 − ρC ′V −1
1 Cρ′

)−1
ρ
(
V2 − C ′V −1

1 C
)
β

]
.

We can write

b =
(
ρ
(
V2 − C ′V −1

1 C
)
ρ′ + Σ

)−1
ρ
(
V2 − C ′V −1

1 C
)
β,

and

a = α +(
V1 − CV −1

2 C ′)−1
(
Cρ′

(
ρ′ρV2

)−1
Σ
)

×
(
ρ
(
V2 − C ′V −1

1 C
)
ρ′ + Σ

)−1
ρ
(
V2 − C ′V −1

1 C
)
β.

Turning first to the term a and applying the Sherwin-Morrison Woodbury Matrix
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Inversion Lemma:

a = α +(
V1 − CV −1

2 C ′)−1
(
Cρ′

(
ρ′ρV2

)−1
Σ
)

×
(

Σ−1 − Σ−1ρ
((

V2 − C ′V −1
1 C

)−1
+ ρ′Σ−1ρ

)−1

ρ′Σ−1

)
ρ
(
V2 − C ′V −1

1 C
)
β.

Simplification yields

a = α

+
(
V1 − CV −1

2 C ′)−1
C

((
V2 − C ′V −1

1 C
)

V2

)

×

(
1−

ρ′Σ−1ρ(
V2 − C ′V −1

1 C
)−1

+ ρ′Σ−1ρ

)
β

or

= α

+
(
V1 − CV −1

2 C ′)−1
C

((
V2 − C ′V −1

1 C
)

V2

)

×

( (
ρ′Σ−1ρ

)−1(
V2 − C ′V −1

1 C
)

+
(
ρ′Σ−1ρ

)−1

)
β,

which is the expression for a when the error-variance-minimizing choice of δ is used

to construct Xδ. (See Corollary 2).

Turning now to b, consider

ρ′b = ρ′
(
ρ
(
V2 − C ′V −1

1 C
)
ρ′ + Σ

)−1
ρ
(
V2 − C ′V −1

1 C
)
β.

Again using the Sherwin-Morrison Woodbury Matrix Inversion Lemma,

ρ′b = ρ′
(

Σ−1 − Σ−1ρ
((

V2 − C ′V −1
1 C

)−1
+ ρ′Σ−1ρ

)−1

ρ′Σ−1

)
ρ
(
V2 − C ′V −1

1 C
)
β

=
(
ρ′Σ−1ρ− ρ′Σ−1ρ

((
V2 − C ′V −1

1 C
)−1

+ ρ′Σ−1ρ
)

ρ′Σ−1ρ
) (

V2 − C ′V −1
1 C

)
β
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=

((
V2 − C ′V −1

1 C
)−1 (

ρ′Σ−1ρ
)

+
(
ρ′Σ−1ρ

)2 − (ρ′Σ−1ρ
)2(

V2 − C ′V −1
1 C

)−1
+ ρ′Σ−1ρ

)(
V2 − C ′V −1

1 C
)
β

=

( (
V2 − C ′V −1

1 C
)(

V2 − C ′V −1
1 C

)
+
(
ρ′Σ−1ρ

)−1

)
β.

This is equal to the expression for a when the error variance minimizing choice of δ

is used to construct Xδ in Corollary 1 if γ = 1.QED.
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