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Abstract

This paper estimates knowledge flows across regions in Europe and North America as revealed by

patent citations. Only if these knowledge flows affect the productivity of researchers in generating new

ideas do they generate externalities in innovation. We find that knowledge diffusion is strongly affected

by immediate proximity, distance, national borders, linguistic and technological barriers. While some

sectors such as Computer Technology are more “globalized” than others, all knowledge flows are much

more far-reaching than trade or migration flows. However, once we control for R&D inputs, we do not

find evidence that these flows of knowledge have an impact on innovation.
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1 Introduction

The concept of knowledge externalities in innovation has pervasively populated the recent theoretical liter-

ature on economic growth. Innovation is the engine of growth, it has been argued, and externalities from

existing knowledge are the ”renewable” fuel that keeps this engine running. If knowledge of existing ideas

makes scientists better in discovering new ideas then there are positive knowledge externalities in innovation.

The strength of these externalities is a key determinant of the dynamics of innovation, and ultimately of

productivity growth. Early models of endogenous growth (such as Aghion and Howitt [1] or Romer [19])

assumed very large knowledge externalities emphasizing the public-good nature of knowledge. As neither

productivity growth rates nor innovation growth rates (as measured by patents) have increased in the last

fifty years, while the resources devoted to research increased vastly, several authors (Jones [15], [16] analyz-

ing productivity and Griliches [7], [8] analyzing innovation) have questioned the existence of positive and

large externalities of knowledge. The historically decreasing productivity of R&D in generating output and

innovation could be the consequence of the negative impact of existing knowledge on innovation. As the

theoretical analysis does not impose any constraint on the sign and magnitude of the impact of available

knowledge on innovation we need to learn about this crucial parameter from the empirical analysis.

The present paper aims at identifying and estimating knowledge externalities in generating innovation,

using a large dataset of innovation patented in the United States. Patent data have long been used to inquire

into the process of innovation. Recently, thanks to the effort of collection and analysis of Adam Jaffe, Manuel

Trajtenberg and their coauthors, we have access to detailed data and information on US granted patents

(see Jaffe and Trajtenberg [14] for studies and references). The present paper aggregates the information

contained in about four million of those patents to estimate the flows of knowledge at the frontier of scientific

innovation as revealed by patent citations. Aggregating patents at the regional level we are able to treat

knowledge flows much like other macroeconomic flows (trade, migration, investments) and we analyze their

determinants from an aggregate perspective.

As citations across patents mark the trail left by an existing idea involved in developing a new idea,

we use them to reveal the intensity of knowledge flows across regions. With these data we can analyze

to what extent distance, crossing borders, moving away from technological and innovative proximity and

other hurdles affect knowledge flows at the frontier of the innovative activity. In particular, by measuring

these flows, we can calculate what share of overall knowledge generated in one region is available to another,

assuming a stable geographical distribution of creation and diffusion of knowledge over time.

The analysis and description of knowledge flows occupies the first half of our paper. Then we inquire

into the existence of positive or negative effects (externalities) of these flows in the process of generating new
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ideas. To do this we estimate the elasticity of patent creation to the estimated stock of available knowledge

in each region. In particular as we are able to identify, using citations, the relative flows of knowledge from

each region to any other, we consider as knowledge available to a region the flow-weighted amount of ideas

going into it.

Previous work analyzed technological externalities in production (as in Coe and Helpman [5] and Keller

[17]) or knowledge diffusion in itself (Jaffe et al.[13], Jaffe and Trajtenberg [14]). In this paper we explicitly

model and estimate the phase of knowledge diffusion first and we build on it to estimate the potential impact

of knowledge on the ability of researchers to generate new ideas.

Our results are rather clear. Knowledge flows are, overall, more localized than anecdotal evidence, based

on casual observation of the ”information community”, would suggest. However some specific sectors, such

as ”Innovation in Computers”, are much more ”globalized” than others. On one hand 80% of knowledge

flows, as revealed by citations, stay within the boundaries of a region and, of the remaining knowledge flows

only 50% pass the country border. On the other hand, knowledge flows are much farther reaching than those

involving movement of goods (trade) or people (migrations). Existing estimates imply that passing from

within to outside a country reduces trade flows by 95-96%. Knowledge flows, on the contrary, are reduced

by not more than 30%.

Moving to estimates of knowledge externalities, knowledge flows do not reveal any positive and significant

effect on productivity of R&D resources in generating new ideas. Our cross sectional evidence seems consis-

tent with the time series evidence of small or no positive returns to existing knowledge in innovation. This

may be the indication of decreasing returns in knowledge creation. The more ideas have been discovered

and are known, the harder it is to produce a further relevant discovery with the same amount of research.

Alternatively, it may capture the fact that as the knowledge and research ”space” expands companies and

government employ less talented researchers. Let us emphasize that here we are only measuring and captur-

ing knowledge externalities in innovation. These externalities could have large effects on production but we

are not capturing them in our study.

The rest of the paper is organized as follows. Section 2 presents our model of knowledge diffusion and

knowledge creation. Section 3 presents the data, Section 4 estimates the intensity and extent of knowledge

flows and Section 5 analyzes the impact of knowledge flows in generating new ideas. Section 6 concludes.

2 The Model

We use two tools in order to analyze knowledge flows and knowledge externalities across regions. The first is

a function that models the diffusion of ideas across regions as depending on bilateral regional characteristics.
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This is an adaptation to cross sectional data of a diffusion function such as the one used in Caballero and Jaffe

[3] or in Jaffe and Trajtenberg [14] Chapter 7. The advantage of this approach is that it produces estimates

of knowledge flows that could be compared with estimates of other flows, namely trade and migrations. The

second tool used is an innovation function describing how ideas are generated by researchers using R&D

spending and existing ideas available in a particular region. The description of these two equations and their

estimation occupy the rest of the paper.

2.1 Diffusion of Ideas

We use here a simple framework to estimate diffusion of ideas across regions using cross-sectional data on

Patent citations. We assume that the probability that one representative idea, generated in region s (sending)

in year t has flown to region r (receiving) by year T is as follows:

φ(r, T, s, t) = κef(r,s)e−β(t)1(T−t)
h
1− e−β(t)2(T−t)

i
. (1)

This function assumes that the diffusion of ideas over time between period t and T is regulated across

all regions by a double exponential in which β(t)1 determines the rate of obsolescence and β(t)2the rate

of diffusion over time of ideas. κ is a constant and the term ef(r,s) allows each region couple r, s to have

a specific effect on the probability of diffusion of the average idea between them. Such effect depends on

bilateral regional characteristics and scales up or down the common term capturing diffusion over time. As

long as the diffusion and the obsolescence effects captured by e−β(t)1(T−t)
£
1− e−β(t)2(T−t)¤ are equal for all

regions and separable from the region-couple effect captured by ef(r,s) it is possible to consider any couple of

”sending” and ”receiving” interval of years to estimate f(r, s). Integrating the receiving period between T1

and T2 and the sending period between t1 and t2 we generate the cross sectional function φ(r, s) = κef(r,s)Ω.

The term Ω is a common function of T1, T2, t1 and t2 and could be considered as a constant in the cross section

as long as the time-intervals considered are common to all regions. In our empirical analysis we consider a

group of ideas, discovered during the period t1 =1975 to t2 =1991 as ”sending” flows of knowledge to be used

in later discoveries by ”receivers” during the period T1 =1992 to T2 =1996. We are interested in analyzing

the determinants of knowledge flows between regions therefore we assume that the function f(r, s) depends

on several bilateral characteristics. In particular, merging all constant terms into δ, we use the following

representation,

φ(r, s) = δeγ1(d1)r,seγ2(d2)r,seγ3(d3)r,sef(Charr,s). (2)

We use exponential functions in order to interpret the coefficients as elasticities. (d1)r,s,measures distance
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between region r and region s in geographical space, (d2)r,s measures distance in technological space and

(d3)r,s measures distance in innovative space
1. The vector Charr,s captures other bilateral characteristics

such as being the same region, being in immediate proximity, being in the same country, being in the same

trade block, using a common language and so on.

We denote with ∆Ar the ideas (new knowledge) generated in region r (for ”receiving”) during the later

period of time (1992-1996) and with ∆As the ideas generated in region s (for ”sending”) during the earlier

period of time (1975-1991). Also we call σ(s, r) the number of ideas generated in region s that diffused to

and are available in region r. Therefore the definition of φ(r, s) is

φ(r, s) =
σ(s, r)/∆AsP
s (σ(s, r)/∆As)

. (3)

The term in the numerator measures the share of ideas generated in region s that diffused and are

available in region r, this term is closely related to the ”citation frequency” between r and s. The term in

the denominator is a standardization so that the sum of φ(r, s) over the sending regions is equal to one.

Therefore we can interpret φ as the probability that an idea generated in s makes it to r. There is a strict

relationship between the flow of ideas across regions σ(s, r) and the flows of citations between the same

regions, c(r, s), and also between the number of new ideas ∆As and the number of patents generated in

region s, Ps. However we think it is relevant to allow for two corrections before bringing (3) and (2) to the

data2.

First, we allow the average ”number of ideas” in a patent, denoted as βs, to be different across regions.

Alternatively we can interpret this parameter as the ”average quality ” of ideas contained in the patents of

a region. We call this parameter the ”intensity of ideas per patent”. Denoting with Ps the total number of

”sending” patents granted to region s in 1975-1991 the above assumption implies: ∆As = βsPs.

Second, taking into account two important features of citations data, we allow a looser relationship

between citations across regions c(r, s) and number of ideas diffused σ(s, r). In particular we assume the

following relationship: c(r, s) = ψrσ(s, r)ε(r, s). c(r, s) is the total number of citations from patents of region

r to patents of region s. As different ”receiving” regions may have different average propensity to include

citations in their patents, we allow for a region-specific term ψr. σ(s, r) is the actual flow of ideas between

regions. ε(r, s) is a log-normal random noise due to the fact that not all citations capture the flow of ideas as

some are added by patent reviewers. We assume that such noise is randomly distributed across region couples

(i.e. not correlated with σ(s, r)) as reviewers include them independently of any geographic characteristic

1The exact measure for these three types of distances will be made clear in the empirical section.
2In section 5.3 we also use citations to capture directly σ(r, s) and citation-weighted patents to capture ∆As as a form of

robustness check.
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of the citing patent. This assumption allows us to use the information in the citations to infer flows, while

trying to purge it from region-specific characteristics and from random noise.

Substituting these definitions into expression (3) and equating it to expression (2) we get the following

relation,

φ(r, s) =
c(r, s)/ψrβsPsε(r, s)P

s (σ(s, r)/∆As)
=
c(r, s)/ε(r, s)

µrPsβs
= δeγ1(d1)r,seγ2(d2)r,seγ3(d3)r,sef(Charr,s), (4)

where we have combined all the receiving-region specific effects into one: µr = ψr
P
s (σ(s, r)/∆As) .

Isolating the observable terms of φ(r, s) on the left hand side and taking logs on both sides of (4) we obtain

the following estimable equation, which serves as the empirical specification to estimate knowledge flows,

ln

µ
c(r, s)

Ps

¶
= a+ ln (µr) + ln (βs) + γ1(d1)r,s + γ2(d2)r,s + γ3(d3)r,s + f(Charr,s) + u(r, s). (5)

Equation (5) is derived from the framework described above, can be brought to the data and has an

interesting interpretation ”per se”. It says that the citation frequency c(r,s)Ps
from region r to region s depends

on several characteristics. First it depends on a ”citing region” fixed effect, ln (µr) , which controls for

different propensity to cite and other fixed effects and has no interesting interpretation. Second, it depends

on a ”cited region” fixed effect, ln (βs) , which captures the average intensity of ideas per patents in the

”sending” region. Third it depends on a set of bilateral distances and bilateral characteristics (described

above). Finally it contains u(r, s) = ln ε(r, s) that is a normally distributed random error. The equation

has the flavor of a gravity equation, popular in trade and migration analysis. The ”flows” of a variable, in

this case of knowledge, between two regions depend on some characteristics of the two regions and on the

”distance” between them. Specification (5) allows us to estimate the parameters γ1, γ2 γ3 and the vector

of coefficients f . Using definition (2) we can then apply this estimate to have a measure of φ(r, s), the

intensity of knowledge flows.

2.2 Innovation Function and the Effect of Available Knowledge

Once we have estimated the strength of knowledge flows, we can estimate the impact of these flows on the

production of new ideas. If the process of generating ideas in the analyzed regions has fluctuated, on average,

around a balanced growth path, we can separate the contribution to innovation of private inputs such as

scientists and R&D resources from the contribution (externality) of available ideas in the estimation of the

regional innovation function.
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New ideas, ∆A, are generated by scientists and researchers who exhibit different levels of productivity

across regions. Employees in R&D activities in region r are indicated as LR&Dr .Their productivity depends

on two main factors: the amount of resources available to them (such as laboratories, research funds, salaries

and so on) captured by spending per-worker in R&D and denoted as hr and on the stock of ideas available

to them in region r. We denote with the symbol AAVAr and ∆AAVAr the cumulated stock and the increase

in the stock of ideas available in region r. Ar and ∆Ar still denote the stock and the increase of the stock

of ideas generated in region r. The knowledge available in region r is given by the knowledge generated

anywhere and diffused to region r . Using the definition of knowledge flows φ(r, s) developed in the previous

section, available knowledge for region r is: AAVAr =
P
s∈S

φ(r, s)As. The production function of innovation

is, therefore,

∆Ar = f(L
R&D
r , hr, A

AVA
r ) = f

Ã
LR&Dr , hr,

X
s∈S

φ(r, s)As

!
. (6)

As we assume that regions are on their balance growth path with a common growth rate of knowledge

stocks, then flows are proportional to stocks and: As = g∆As. We devote Section 5.1 to check that our data

support this assumption. Substituting this condition into equation (6) and using a log-linear expression for

the innovation function we have

ln(∆Ar) = − ln(g) + εL ln(L
R&D
r ) + εh ln(hr) + εI ln

ÃX
s∈S

φ(r, s)∆As

!
. (7)

εL is the elasticity of innovation to the supply of scientists. εh is the elasticity of innovation to the supply

of resources per scientist. εI is the elasticity of innovation to available ideas. We can construct the available

knowledge in each region using the estimates of φ(r, s) obtained from the previous section (2.1). Also as

∆Ar is equal to βsPs,denoting with a hatb the variable estimates from equation (5) we have the estimable

specification

ln(Pr) = Intercept− ln(bβr) + εL ln(L
R&D
r ) + εh ln(hr) + (8)

+εI ln

ÃX
s∈S

exp
³cγ1(d1)r,s +cγ1(d2)r,s +cγ3(d3)r,s + bf (Charr,s)´ bβsPs

!
+ νr,s.

The dependent variable is the count of receiving patents granted in region r. The term Intercept contains

all the uninteresting constants. The term ln(bβr) controls for the average intensity of ideas per patent in
region r; it uses the estimates obtained from equation (5) with the assumption that such average intensity

remains constant in a region over time. ln(LR&Dr ) is the log of workers employed in the R&D sector, ln(hr) is

the log of spending in US $ per worker in the R&D sector. The term in brackets is the estimated knowledge
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available in region r coming from ideas discovered in the past. It is calculated as the intensity of flows to

region r (the exponential term) times the amount of ideas generated in each region bβsPs. Finally νr,s is a

zero average random disturbance that captures other determinants of patenting not included in our equation.

3 The Data

Our data on patented inventions, on their inventors and on citations between them are taken from the NBER

Patent Citation data File described in Jaffe et al. [11]. We choose only patents granted between 1975 and

1996, for which citation data are available, and we organize them across 141 regions3: 51 US states including

D.C., 10 Canadian Provinces and 80 regions in 17 European Countries. The regions chosen for Europe are

the Territorial Units used by Eurostat and denoted with the name NUTS1. Patents are assigned to the

region of residence of their first inventor in order to locate the invention as close as possible to the place

where it was developed (this procedure is common to several other studies such as Jaffe et al. [13]). The

original NBER file identifies the state of residence of American inventors but only the city and the zip code

of foreign inventors. We mapped cities and zip codes into regions for European and Canadian inventors with

the help of national Maps and Gazetteers. As the location of the first inventor is highly correlated with the

location of the other inventors this method gives an accurate representation of the distribution of innovation

in Europe and North America.

In our estimate of knowledge flows we want to be particularly careful. We want to measure knowledge

diffused across regions and available to be used by others and not track the diffusion of knowledge within

a company. While the first flow may generate externalities the second simply mirrors the existence of large

multinational companies that probably compensate their departments in different regions for providing and

diffusing knowledge. Therefore we do not include in the count of citations c(r, s) the ”self-citations”, i.e. those

citations done between two patents assigned to the same institution (University, Company, Research-Lab,

and so on)4.

Other studies have used patent to patent citation to track communication of knowledge across inventors

(see Jaffe and Trajtenberg [14] Chapters 5, 6 and 7) and recent surveys have shown that ”patent citations

do provide indication of communication, albeit one that also carries a fair amount of noise” (Jaffe and

Trajtenberg [14], Chapter 12 pp. 380). The use of citations in our study to extract information on knowledge

flows is probably less affected by the ”noise” as we aggregate over large units (regions). Moreover we explicitly

allow and model a random error when using citations as proxies for knowledge flows (in section 2.1).

3The list of regions and countries they belong to is described in Appendix A
4If we estimate the main specification in Table 2 column I, including self citations the coefficient that is mostly affected,

increasing in absolute value by 30%, is the one on the Out of Region dummy. The other coefficients change very little.
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The data on employment in R&D and spending per employee in R&D are the averages for the 1992-1996

period. The first is measured as number of employees working in the R&D sector and the second in spending

per employee in constant 1992 U.S. dollars. The averaging over four years allows us to fill some existing gaps

in the regional yearly data and provides a value less affected by year to year fluctuations. In particular, by

doing so, we are more confident to approximate the relative balanced growth path levels of these variables.

For European regions the data are from the REGIO dataset, for Switzerland data were provided by the

Swiss statistical office, for the U.S. data are from the National Science Foundation and for Canada they are

from Statcan. A detailed description of the Data and their sources can be found in the Data Appendix.

4 Flows of Ideas

4.1 Diffusion

In this section we present the estimates of equation (5). We divide patents into citing patents (granted in the

1992-1996 period, a total of 919,743 patents) and cited patents (granted in the 1975-1991, a total of 3,046’869

patents). The total count of potential citing patents for the citing region r is denoted as (P9296)r and the

total count of potential cited patents for the cited region s is denoted as (P7591)s. In order to include in the

regression the information from regional couples without any citation link we add 0.01 citations to all the

region-couples5. In the basic specification we include several controls. We include citing and cited regions

specific effects, we include five dummies, one for crossing a regional border between region r and region s,

one for crossing two regional borders, one for crossing a national border, one for crossing a Common Trade

Area border and one for crossing a linguistic border. For instance the dummy ”Crossing Region Border”

is equal to zero if the sending and receiving regions are the same (r = s) and equal to one otherwise, the

dummy ”Crossing the next region border” is zero if r and s are either the same region or they share a border

and it is one otherwise, and so on. We also include measures of three types of distance. (d1)r,s is simply

the geographical distance between two regions. It is measured in thousands of kilometers and calculated as

the shortest arc distance on the earth surface between the two regions, choosing as location of each region

the location of its largest metropolitan area. Technological distance (d2)r,s is a measure of the difference in

technological specialization of two regions. This measure is based on an index of technological proximity first

introduced by Jaffe [12]. This index is calculated as follows: first we divide the patents granted in thirty-six

technological groups (defined in Jaffe and Trajtenberg [14] pp. 452-454). For each region s we construct the

vector of shares of patents in each group shs = (shs1, ...shs36). Then for each citing-cited region couple (r, s)

5We also redo estimates of specifications in Table 2 and 3 using only those observations with strictly positive c(r, s). Results
are similar to those obtained using all observations and are available upon request.
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we construct the un-centered correlation coefficient between vector shr and shs as

ρr,s =

P
i(shsi ∗ shri)pP

i(shsi)
2
P

i(shri)
2
. (9)

The un-centered correlation is also the angular distance between the vectors: two regions with identical

specialization have a correlation of one, two with orthogonal specialization have a correlation of zero. The

technological distance (d2)r,s is equal to 1 − ρr,s and is bounded between 0 and 1. Finally the distance

in innovative intensity (d3)r,s measures how far two regions are in technological advancement, rather than

technological specialization. It is the difference in absolute value of patents per worker granted in the two

regions in the 1975-1991 period. A region at the frontier of technological innovation would have a large

value of per capita patents while regions that are technologically lagging behind have low values of the same

variable. This distance may affect the intensity of spillovers as a region may be more effective in using

knowledge flowing from another region with similar level of technological advancement rather than from a

region that is much more (or much less) technologically developed6.

 
Table 1 

Descriptive statistics 
 

Variable Mean Std. 
Deviation 

Min Max 

Number of region to region citations 
without self, c(r,s) 

75.2 516.7 0 68778 

Geographical distancea (d1) 4.44 3.22 0 13.70 
Technological distance  (d2) 0.34 0.19 0 1 
Innovative advancement distanceb (d3) 1.38 1.52 0 8.48 
Number of Patents in cited region, 
1975-1991, (P7591) 

6523.2 12924 1 96804 

Number of Patents in citing region, 
1992-1996, (P9296) 

2544 5186 2 44744 

 
Notes: Citation frequencies are calculated omitting self-citations, 
i.e. citations between patents whose first authors belong to the 
same company-institution.  
a: Thousands of Kilometers. 
b: Difference in patents per worker (absolute value). 

 

Table 1 reports some summary statistics for the number of citations, the number of patented innovations

and for the three measures of distance. Geographical distance range from 0 kilometers, when citing and cited

region are the same one, to almost fourteen thousand Kilometers (between the US Hawaiian Islands and the

Greek Islands of Nisia Aigouu-Kriti). Most of the distances, though, are below 10,000 kilometers (only 2% of

distances are above). Technological distances range from 0 (same region) to 1, and innovative advancement

6Similar results are obtained if we include only ”positive” innovative distances and zeros for negative distances, assuming
that regions can only receive flows from more advanced ones.
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distances range from 0 to 8.48. The average number of region to region citations without self-citations is

75.2 but the variance is very large and the distribution very skewed with many couples with few citations

and few couples with a very large number of citations. Our regression results, though, are rather robust to

the exclusion of outliers.

 
Table 2 

Determinants of Knowledge Flows 
(Aggregating All Sectors) 

 
Specification I (All sectors) 

Citing:92-96 
Cited: 75-91 

II (All sectors) 
Citing:92-96 
Cited: 75-84 

III (All sectors) 
Citing:92-96 
Cited: 85-91 

Crossing Region Border -1.56* 
(0.15) 

-1.54* 
(0.23) 

-1.99* 
(0.22) 

Crossing next-Region Border -0.50* 
(0.05) 

-0.80* 
(0.10) 

-0.65* 
(0.09) 

Crossing Country Border -0.30* 
(0.05) 

-0.40* 
(0.08) 

-0.44* 
(0.07) 

Crossing Trade-Block Border 0.06 
(0.04) 

0.01 
(0.06) 

0.08 
(0.06) 

Crossing Linguistic Border -0.31* 
(0.04) 

-0.19* 
(0.07) 

-0.42* 
(0.06) 

1000 Km farther (γ1) -0.036* 
(0.005) 

-0.045* 
(0.009) 

-0.06* 
(0.009) 

1 std deviation of technological 
distance farther (γ2) 

-0.66* 
(0.03) 

-0.82* 
(0.04) 

-0.81* 
(0.04) 

1 std deviation in innovation 
activity  farther  (γ3) 

-0.19* 
(0.02) 

-0.19* 
(0.03) 

-0.17* 
(0.02) 

Citing Region Fixed Effects Yes Yes Yes 
Citied Region Fixed Effects Yes Yes Yes 
Observations 19881 19740 19740 
R2 0.21 0.22 0.26 

 
Notes: Citation frequencies are calculated omitting self-citations. To all 

region-couples is added 0.01 citations to avoid zeroes. Heteroskedasticity 
Robust Std errors in parenthesis. *= significant at 1% confidence level. 

 

Table 2 reports in column I the estimates of the basic specification using patents in the period 1975-1991

as the ”sending” cohort and in the period 1992-1996 as the ”receiving” cohort. We pool all sectors and

obtain 19,881 regional couples. Using the reported coefficients we can calculate the percentage decrease of

the dependent variable as the independent variables change. For instance passing from within the region

to outside it (first row), the knowledge flow drops to (e−1.56 =) 21% of its initial value. Crossing another

regional border by moving out of the bordering region causes a further drop to (e−0.50 =) 60% of the

previous value, which corresponds to about 12% (=0.6*0.21) of the initial value. Crossing the national

border causes a further drop to 9.4% of the initial value. As we proceed by row moving down Table 2

we see that exiting the trade block has no significant effect (if anything it is positive), while moving out

of a linguistic border decreases knowledge flows by 30% of their value. Also controlling for these bilateral

characteristics geographical distance still has an effect on knowledge flows. For each thousand Km of distance,
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knowledge flows drop an additional 4%. Each effect is incremental, therefore at a distance of 6000 Km (this

is roughly the distance between say New York and Paris) after moving out of the region, next-region, country

and trade-block, the flow of knowledge between two regions is reduced to about 8% of its initial intensity.

Technological differences as well as differences in the innovative advancement have rather strong effect on the

flow of knowledge too. An increase of the first distance by a standard deviation decreases flows to (e−0.66 =)

51% of their previous level, while an increase of one standard deviation of the second distance decreases

them to (e−0.19 =) 82% of their previous level.

In order to check our assumption that relative knowledge flows across regions are not dramatically affected

by the chosen period and therefore stable over time, we split the time interval of cited patents (1975-91) in

two sub-periods (75-84 and 85-91) and we separately estimate the flows as revealed by citations from the

92-96 cohort to each of the two cohorts (column II and III in table 2). In spite of the time difference between

the two cohorts the estimated coefficients are not dramatically different. Crossing the regional border and

a linguistic border has less of an effect for older citations than for more recent. The passing of time could

make knowledge relatively more available outside the region where it has been generated and outside the

linguistic area. For other variables there is not a significant difference.

It is useful to represent in a diagram the decay of knowledge flows as we move out of the region where

knowledge was generated. Figure 1 represents the decay of these flows starting from the initial amount

of knowledge (100%=1) represented in the left extreme of the diagram. Using the estimates in Table 2

we calculate the percentage of knowledge flows as the region border is crossed (first drop), the next-region

border is crossed (second drop), the country and the trade-block border are crossed (third and fourth

drop) and intervals of 1000 Kilometers at a time are travelled. The figure, reporting the decay measured

using estimates in specification I, II and III of Table 2, provides a graphical representation of the effects

of geographical borders and distance on knowledge flows. We did not represent graphically the effect of

linguistic borders and of technological and innovative distance.
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Figure 1 

Decay of Knowledge Flows 

0

0.2

0.4

0.6

0.8

1

1.2

In Region Next
Region

Out of
Next

Region

Out of
Country

Out of
Trade
Block

plus 1000
Km

plus 2000
KM

plus 3000
Km

plus 4000
Km

plus 5000
Km

plus 6000
Km

plus 7000
Km

plus 8000
Km

plus 9000
Km

plus
10000 Km

Location

P
er

ce
n

ta
g

e 
o

f 
in

it
ia

l k
n

o
w

le
d

g
e

Decay total citations

Decay Old Citations (75-84)

Decay Recent Citations (85-92)

 

The pattern obtained by using the whole 75-91 cited cohort (solid line) or each sub-cohort (dashed line

for 75-84 and shaded line for 85-91) is rather similar. Looking at Figure 1 what stands out is the substantial

drop in knowledge flows associated with crossing the regional border. Also significant are the effects of

moving out of the next region and out of the country. The effect of pure distance, past the country border,

is rather small. It appears that a large part of knowledge is highly localized, but is this degree of localization

realistic? Let’s establish this point through some further analysis and comparisons.

4.2 Comparisons

In order to have a better understanding of the sensitivity of knowledge flows to geographical barriers it

is useful to compare the estimates obtained above, relative to overall knowledge, with two other types of

estimates. First we consider how far reaching are knowledge flows in some particular sectors of innovation.

Our idea of the ”global scientific community” is probably affected by casual observation and anecdotal

evidence relative to the computer and information technology sector. While knowledge in those sectors may

be less sensitive to geographical barriers, it may still be highly localized for other sectors. We analyze,

therefore, knowledge diffusion in the Computer sector as well as in two more ”traditional” sectors such as

Motors and Agriculture-Food7. Then we also compare knowledge flows to other types of flows that involve

movements of goods or people (trade and migrations). Compared to these, more embodied, flows we expect

knowledge to be less sensitive to geographical barriers and to reach farther.

7The patent classes in each of the categories used is described in Jaffe and Trajtenberg [14] pp. 452-454.
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4.2.1 Computers, Motors and Agriculture-Food

The estimates of the previous section, showing a strong degree of localization of knowledge flows, seem in

stark contrast with anecdotal evidence and casual observation suggesting perfect diffusion, via E-mail, web,

phone and fax of any piece of knowledge generated in the advanced economies. Information technology should

make knowledge flows perfectly portable in space and the community of innovators should be, especially in

the nineties (to which the ”receiving” cohort belongs), a global one. It is possible that part of the community

of innovators is genuinely global, but this may not be the majority of them so that overall knowledge still

has an important local component.

In order to inquire into this issue we consider three specific sectors: computers, motors and agriculture-

food. As the information technology promotes globalization we think that researchers who study computers

are most familiar with information technology. Moreover, thanks to a high degree of international standard-

ization in computer language and computer procedures, knowledge in this sector should flow more freely

across countries and space. Motors and Agriculture-food, on the other hand, are technologies more linked to

the specificities of regional economies and probably less engaged into IT-promoted ”globalization”. Therefore

we expect their knowledge flows to be less far reaching. All three sectors, though, are relevant innovators,

with 13,235 patents granted to ”Computer hardware and software” during the period 1992-1996, 11,026

patents granted to the ”Motor and Engine” sector and 8,843 to the ”Agriculture-Food” sector. Consid-

ering only patents and citations within each of these sectors, we estimate, for each of them separately, a

specification like 5. Table 3 reports the estimated coefficients.

Table 3 
Determinants of Knowledge Flows 

(Computers, Motors and Agri-Food) 
 

Specification  I  (Computers) 
Total citations 

I  (Motors) 
Total citations 

III (Agri-Food) 
Total citations 

Crossing Region Border -0.67* 
(0.27) 

-2.33* 
(0.29) 

-1.32* 
(0.30) 

Crossing the “next” Region Border -0.02 
(0.11) 

-0.46* 
(0.12) 

-0.74* 
(0.13) 

Crossing the Country Border -0.18* 
(0.08) 

-0.11 
(0.08) 

-0.47* 
(0.09) 

Crossing the  Trade Block Border 0.06 
(0.06) 

-0.04 
(0.06) 

0.06 
(0.06) 

1000 Km farther -0.04* 
(0.01) 

-0.03* 
(0.009) 

-0.12* 
(0.01) 

Crossing Linguistic Border -0.21* 
(0.06) 

-0.15* 
(0.06) 

-0.06 
(0.06) 

1 std deviation in innovation 
activity farther (Patent/Worker) 

-0.69* 
(0.04) 

-0.64* 
(0.04) 

-0.51* 
(0.04) 

Citing Region Fixed Effects Yes Yes Yes 
Citied Region Fixed Effects Yes Yes Yes 
Observations 14280 17689 17955 
R2 0.15 0.15 0.17 

 
Notes: Citation frequencies are calculated omitting self-citations. To all 

region-couples is added 0.01 citations to avoid zeroes. Heteroskedasticity 
Robust Std errors in parenthesis. *= significant at 1% confidence level. 
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Consider the first two coefficients that capture the effect of moving out of the region and out of its

neighbors. We notice the strikingly different behavior of knowledge in the computer sectors from the other

two more traditional sectors. For the motor and agriculture-food sectors the sum of these two effects is

larger than for the general case, leaving only 6% and 12% (respectively) of the initial knowledge out of the

neighbor regions. For the computer sector fully 50% of the initial knowledge flows all the way outside of the

trade block. Further travel in distance seems to harm especially the knowledge flow in the Agriculture-Food

sector, that drops by 50% out of the country and decreases by 12% each thousand kilometers travelled

(climatic reasons may play a role). Interestingly, for the Computer sector the linguistic border seems to be

more harmful than for the two more traditional sectors. This could be due to the fact that the computer

community is global, but it prevalently speaks English. The community of motor-engine inventors, and

agricultural-food inventors, on the other hand, seems much more local and regionally/nationally based.

Representing in Figure 2 the decay of knowledge flows as geographical proximity decreases, the extremely

different pattern of Computer vs. Motor and Agriculture-Food sectors clearly stands out.

Figure 2 
Decay of Knowledge Flows: 

(Computers, Motors and Agri-Food)
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The overall knowledge flows are more similar to those measured in the ”traditional” sectors (Motors and

Agriculture-Food) than to those measured in the computer sector. Let us point out, interestingly, that the

high geographical localization of knowledge flows does not correspond to higher localization of innovation.

Computer innovation is much more concentrated than innovation in Motors or in Agriculture. Between

1992 and 1996 four regions8 accounted for 55% of the innovation in the Computer sector and California,
8California, Texas, Massachussets and New York
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the top innovator, accounted for full 25% of the patenting in Computer. In the same period we need to

add innovation from the top ten regions to account for 55% of innovation in motors and we need the top

16 regions to make 55% of innovation in Agriculture and food. Moreover, while all the top innovators in

Computer are US states, four European regions enter the top ten list for Motors and two the top ten list

for Agriculture and Food. Motors and Agriculture-Food, in spite of having more localized knowledge flows

exhibit much lower concentration in innovative activity than the Computer sector does. Were innovative

agglomerations driven mainly by positive knowledge spillovers the opposite would have happened.

4.2.2 Trade and Migration

While overall knowledge flows are less far reaching than those in the highly globalized computer sector, how

do these flows compare to some ”material” flows such as trade and migration? There are, by now, several

estimates of the effect of crossing a country border (U.S. to Canada) on trade flows and at least a few

estimates of the effect of crossing a country border on migration flows. We concentrate on country-border

effect as a useful benchmark: a region-border effect has not been estimated (to our knowledge) for trade and

migration due to the unavailability of data for within-region trade and migration. In particular, it is useful

to compare the country-border effect on trade and migration with the estimated border-effects for knowledge

flows. In order to have a measure of knowledge flows comparable to flows of trade and migrants we omit

within region flows (i.e. citations to the same region patents) and consider only citations made to patents

generated in different regions.

For trade flows we use the estimates of ”home bias” in trade from Helliwell [10] Chapter 1, that range

between 2.5 and 3.2, including in the range the original estimates of 3.1 by McCallum [18]. These estimates

imply a decline of 92-96% (leaving 8-4% of the previous level) of trade flows as the national border is

crossed. For migration flows, Helliwell [10] Chapter 5 reports a much wider range of estimated home bias,

with coefficients between 2 and 4.5, implying again a drop in migration flows at the border between 87

and 99%. Taking the median estimates for the above coefficients we report the ”border effects” as drops in

flows of trade and migration in Figure 3. On the same figure we report also the estimated decay in overall

knowledge flows and in knowledge flows of the Computer sector. In Figure 3 we use the same estimates

used to generate Figure 1 and 2, but we standardize to one (initial level) the amount of knowledge available

just outside the region of origin (rather than the knowledge within it). The differences between the decay

of trade-migration flows and knowledge flows are striking. The drop in trade (or migration) when crossing

a country-border alone is 94-95%. Such effect is much larger than the cumulated effect on knowledge flows

from crossing the next-region’s , the country’s, the trade-block’s borders and travelling several thousands

kilometers. For instance, more than 50% of the out-of-region knowledge flows reach beyond the trade-block
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border and that percentage is about 98% for computer-related knowledge flows.

Similarly, we can estimate the effect of distance on knowledge flows using as independent variable ln(d1)r,s

to be able to compare it to the effect of distance on trade that is always estimated in logs. The estimate

(not reported in the tables) of the coefficient on ln(d1)r,s is -0.09, fifteen times smaller than the effect of

ln(distance) on trade, estimated around -1.4. Put in such perspective knowledge flows are much more

”global” than trade and migration.

Figure 3 
Comparison of Flows
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Flows of goods and people are much more affected by geographic barriers than knowledge flows are.

This is particularly true if we consider that the estimates of the border effect for trade and migration were

obtained using the Canada-US border (probably one of the most ”permeable” among national borders)

while the effect of knowledge flows were estimated for all Western Europe-North American countries. Such

comparison reassures us about the plausibility of our estimates: knowledge has an important local component,

but travels much farther than goods or people, moreover knowledge used in the information technology sector

(computer innovation) is highly ”globalized”.

4.3 ”Innovators” and ”Receivers”

We might have been excessively ”generous” in considering each citation as the sign of the flow of an idea.

Relevant ideas may be generated only by few institutions at the frontier of technological development, while

other regions are receivers of these ideas and merely apply small variations or adjustments to them. In this

section we assume that the regions with largest innovative capacity in each country (i.e. most patented
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innovations in 1975-1991) are the large international sources of ideas, while other regions are mere receivers.

Citations of ideas from these large innovators are considered as flows of truly relevant ideas, citations from

other regions are ”minor” references and are neglected. We consider, therefore, citations from all 141 regions

to the twenty regions that are top innovators in each of the 19 countries considered (for the US we choose the

two largest, California and New York, that are also the largest innovators overall in our dataset). If the ideas

flowing out of these large innovators are more relevant for future use they may also be more far reaching.

Knowledge out of these twenty regions (denoted with an asterisk in the ”list of Regions” in the Appendix)

may depict a different image of diffusion around the world. The estimates obtained from this exercise and

presented in Table 4 show that it is not the case. Diffusion of knowledge as estimated using flows from

selected ”innovators” to ”receivers” looks extremely similar to diffusion estimated using all regions.

Table 4 
Determinants of Knowledge Flows 

 from large Innovators to other regions 
(All Sectors) 

 
Specification  (All sectors) 

using citations to 
top-regions only 

Crossing Region Border -1.82* 
(0.56) 

Crossing next-Region Border -0.44* 
(0.19) 

Crossing Country Border -0.26* 
(0.13) 

Crossing Trade-Block Border -0.08 
(0.09) 

Crossing Linguistic Border -0.22* 
(0.10) 

1000 Km farther (γ1) -0.01 
(0.01) 

1 std deviation of technological 
distance farther (γ2) 

-0.45* 
(0.08) 

1 std deviation in innovation 
activity  farther  (γ3) 

-0.07 
(0.04) 

Citing Region Fixed Effects Yes 
Citied Region Fixed Effects Yes 
Observations 2820 
R2 0.74 

 
Notes: Citation frequencies are calculated omitting self-citations. To all 

region-couples is added 0.01 citations to avoid zeroes. Heteroskedasticity 
Robust Std errors in parenthesis. *= significant at 1% confidence level. 

The coefficients in Table 4 are quite similar to those estimated in column I, Table 2. The standard errors

are larger in Table 4, as the number of observations has been reduced to one seventh of the initial sample.

Moving out of the region is now estimated to cause knowledge to drop to 16% of its initial level (the previous

estimate was 22%). Moving out of the next region causes a further drop to 64% (previous estimate was

60%) of the previous level reducing knowledge to 10% of the initial level. Finally, once out of the country

knowledge is around 8% of the initial level. In the previous estimate it was 9.4%. Also the linguistic border

effect is similar to what was estimated in Table 2 (0.22 vs. 0.31). Only the effect of geographical distance
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and of innovative distance is strongly reduced from the previous estimates. For innovative distance this is

probably due to the substantial reduction in the variability of that measure. As we are only considering

intense innovators as sources of citations their innovative distance from the other regions is very close to

being simply a citing region fixed effect . Technological distance has still a relevant impact on flows.

Looking in general to the results, the estimates obtained using only few regions as innovators do not differ

much from those that use all regions. Knowledge generated by the large innovators and revealed by citations

does not exhibit a degree of localization different from that of knowledge generated by other regional sources.

5 Innovation Function

5.1 Regions’ Balanced Growth Path

Estimation of Equation (8) is the second task of the paper. That relation relies on the assumption that the

process of knowledge creation was around its Balanced Growth Path (BGP) during the considered 1975-1996

period. In this section we test two conditions that ensure Equation (8) to be well specified. They are:

1. (Pat9296 ∗ bβ)r = γ(Pat7591 ∗ bβ)r +er
2. The deviations from the BGP relation written above, er, have zero average, and are not correlated to

LR&Dr or hr.

The first condition says that new ideas generated in each region r during the 92-96 period must be

proportional, in BGP, to the ideas generated in the 75-91 period9 up to a random disturbance er. This is

proven in the appendix.

The second condition ensures that the deviations from BGP, er, are zero mean and not correlated with

other determinants of innovation so that the errors urs in equation (8) are uncorrelated with the explanatory

variables.

9Recall that Ar96-Ar92 = (Pat9296 ∗ β)r and Ar91-Ar75 = (Pat7591 ∗ β)r .
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Figure 4 

Proportionality of new ideas in Regional BGP: 
(92-96) period versus (75-91) period 
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Before performing a formal test of condition 1 it is useful to look at Figure 4 . The BGP relation

implies that there is a linear relation with zero intercept between the amount of new ideas generated in

region r during the period 75-91 (A 7591 = (Pat7591 ∗ bβ)r ) and those generated during the period 92-96
(A 9296 = (Pat9296 ∗ bβ)r). Figure 4 plots these two variables against each other. The visual impression

that we get just from looking at the picture is that there exists a very tight linear relation between the

two variables and that the intercept of the regression line is just about zero. Table 5, confirms that a

linear relationship between the two variables explain 95% of the variance of (Pat9296 ∗ bβ)r and confirms that
the intercept of the linear relation is not statistically different from 0 (column I, with all observations and

Column III without two outliers, identifiable in Figure 4 as California and New Jersey ). Also, no significant

concavity or convexity, captured by a quadratic and a cubic term, exists in the relation (Column II and

Column IV).

Table 5: Balanced Growth Path relationship 
Dep. Variable (A_9296)r=(Pat_9296)r* rβ̂ /1000 

 I II III IV 
 All Observations 

(141 obs) 
Without top 2 outliers 
(139 obs) 

Constant -0.18 
(0.14) 

0.33 
(0.17) 

0.15 
(0.08) 

-0.11 
(0.07) 

A_7592 0.35* 

(0.03) 
0.22* 

(0.10) 
0.36* 
(0.02) 

0.37* 
(0.07) 

(A_7592)
2  0.006 

(0.005) 
 0.001 

(0.008) 
(A_7592)

3  0.00006 
(0.00004) 

 0.00004 
(0.0001) 

R2 0.95 0.96 0.96 0.96 
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Moreover regressing the estimated residuals er from the regressions in Table 4 (not reported) we find

no significant correlation with LR&Dr and hr. Neither in level nor in logs does there exist any significant

correlation between the residuals and the two explanatory variables. Our data do not reject the assumption

that knowledge creation in European and North-American regions has been on average on BGP with a

common long run growth rate of Ar. Deviations from this BGP have been rather small, and random. In

particular they were uncorrelated with regional R&D. As a consequence equation (8) is correctly specified.

5.2 Basic Specification

We have established, so far, that knowledge flows across regions depend on several bilateral characteristics.

Proving the existence of these flows though, does not prove the existence of externalities (and in particular

of positive externalities) of knowledge on innovation. Available knowledge originating in other regions may

very well bring, together with contribution for new ideas, increased standard of novelty, a reduction in the

”yet unexplored” innovation possibilities. It may push companies or the government to employ less able

people in R&D. These effects may very well generate a zero net effect or even a negative net effect on the

productivity of researchers in innovation. Therefore no clear prior exists on the sign and magnitude of εI in

equation (8). Conversely, we expect εL and εh to be non negative, as an increase of researchers and of their

resources should not decrease their findings of new ideas.

We estimate the innovation function in (8). First we construct the stock of available ideas in each region

r, AAVAr as
P
s∈S

exp
³bγ1(d1)r,s + bγ2(d2)r,s + γ3(d3)r,s +

bf(Charr,s)´ bβsPs . The term in parenthesis is the

estimate of φ(r, s) using relation (2). We use the parameter estimates from Table 2 column I in order to

calculate this value. In estimating the equation we include country fixed effects Ci, as the propensity to

patent in the US may differ across countries, due to different costs, and we control also for the previously

estimated average intensity of ideas per patent in regions, ln(bβr). The exact specification that we estimate
is as follows:

ln(Pr) = Ci + c ln(bβr) + εL ln(L
R&D
r ) + εh ln(hr) + (10)

+εI lnA
AVA
r + ur,s

Table 6 reports the estimates of the coefficients of equation (10). We estimate the equation using instru-

mental variables technique and we report heteroskedasticity-robust standard errors. As the variable AAVAr is

measured potentially with error and is endogenous to the innovation process we instrument it with R&DAVA
r
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calculated as follows:

R&DAVA
r =

X
s∈S

exp
³bγ1(d1)r,s + bγ2(d2)r,s + bγ3(d3)r,s + bf(Charr,s)´ (LR&D ∗ h)s

In this set of estimates we maintain that total R&D spending (LR&D ∗ h) is exogenous. We will deal with
potential endogeneity problem of R&D resources in section 5.4. We use the flow-weighted amount of R&D

regional spending as instrument for the flow-weighted amount of available ideas .

 
Table 6: The innovation function 

Dep. Variable ln(Pat9296)   
AAVA is measured using the regression estimates of phi(r,s) to construct flows (weights) 

 
Spec. I 

(All obs.) 
II 
(All obs.) 

III 
No Outliers 

IV 
No 
Outliers 

V 
Europe 
Only 

VI 
North 
Americ
a Only 

ln(LR&D)  0.83* 
(0.11) 

 0.92* 
(0.12) 

   

ln(h)  0.62* 
(0.16) 

 0.58* 
(0.16) 

   

ln(LR&Dh) p-value1: 
0.40  

0.73* 

(0.06) 
p-value1: 
0.18  

0.73* 
(0.08) 

0.68* 
(0.10) 

0.74* 
(0.10) 

ln(AAVA) 0.25 
(0.21) 

0.32 
(0.27) 

0.01 
(0.19) 

0.11 
(0.26) 

0.12 
(0.32) 

0.43 
(0.42) 

ln(βr) -0.53* 
(0.13) 

-0.48* 
(0.18) 

 -0.63* 
(0.12) 

-0.77* 
(0.15) 

-0.17* 
(0.08) 

Country 
Dummies 

Yes Yes Yes Yes Yes Yes 

Observations 141 141 127 127 79 62 
R2 0.92 0.92 0.89 0.89 0.92 0.92 

Notes: Method of estimation: IV with robust std. error.  Instrument for ln(AAVA ): 
ln(R&DAVA) 

Outliers: Regions with more 50,000 patents or less than 50 Patents in 1975-1991. 
1: The  p-value is relative to the test of equality of the two coefficients: ln(R&D)= ln(h) 

 

The first Column of Table 6 presents the estimates for the basic specification, using data for all regions and

including, as separate inputs, R&D employment, LR&Dr , and spending per R&D employee, hr. While these

two inputs are both very important in generating innovation, with an elasticity of 0.83 and 0.62 respectively,

the elasticity of the stock of available knowledge is not significantly different from 0. While the estimates of

the coefficient of ln(AAVAr ) are not very precise, its point estimate (0.25) is much lower than the elasticity

of R&D resources. A formal test does not reject the hypothesis that the coefficients on ln(LR&Dr ) and on

ln(hr) are equal. Therefore we estimate specification in column II, using this restriction and controlling for

total R&D spending (LR&Dr ∗ hr) as an input of production. This restriction improves the precision of the
estimates of innovation elasticity to R&D. Elasticity of new ideas to total R&D spending is 0.73. Again the

effect of ln(AAVAr ) on innovation is not significantly different from 0, but both the point estimate (0.32)

and standard error (0.27) are larger than in column I.

In order to check the robustness of our estimates, and to improve, potentially, the precision of the
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estimates of the εI coefficient we re-estimate our equation omitting outlier regions. These regions are those

that patented disproportionately more (California, New York and New Jersey all with more than 50,000

inventions in the 1975-91 period) and those that patented disproportionately less (several regions in Greece,

Southern Italy, Spain and East Germany with less than 20 patents during 1975-91) than the rest. As we

see from column III and IV of our specification, the elasticity of innovation to R&D resources remains close

to 0.7, and the effect of available knowledge is even closer to 0 (0.01-0.11). In this case we can reject at

5% confidence level, using a double-sided test, that the coefficient on lnAAVAr is equal to the coefficient on

ln(LR&Dr ) in specification III, or to that on ln(LR&Dr hr) in specification IV.

Finally, in order to see if the behavior of innovation is different for North America and Europe, we re-

estimate the equations on regions of each area separately (column V and VI). Besides a general increase in

standard errors, results are similar to those obtained for the two areas together. Elasticity of innovation to

R&D still close to 0.7 for both areas and impact of available knowledge much smaller. Only the impact of

ln(AAVAr ) is somewhat larger for North America than for the whole sample, but the precision of this estimate

worsens significantly.

5.3 Simple measure of Knowledge Flows

The reader may be worried that the estimates of lnAAVAr rely too much on the modelling of the knowl-

edge flows across regions. Parameters entering the calculation of bφ(r, s) are estimated using the model of
knowledge diffusion represented by expression (2) and therefore susceptible to any criticism addressed to

that model. In order to dissipate these worries we use here a more direct measure of φ(r, s). Considering

its definition in expression (3) and simply using the correspondence between ideas and patents and between

their flows and citation. We construct the index as

eφ(r, s) = citations(s, r)/(Patents ∗Ave.cit.)sP
s (citations(s, r)/(Patents ∗Ave.cits))

. (11)

The numerator captures citations between region r and s standardized by the number of patents, Patents,

in the cited region s multiplied by the average number of citations received by patents of region s. The term

Ave.cit. adjusts the number of patents generated in each region to account for their importance measured

as average number of citations received by the region’s patents. The standardization at the denominator

guarantees that the index is between 0 and 1, that it does not depend on average citation propensity of

region r and that the sum over ”sending” regions is equal to 1. As all quantities on the right hand side are

observable we can directly measure eφ(r, s). The values obtained are used to construct AAVAr as
P
s∈S
eφ(r, s)∆As.

We can, then, re-estimate equation (10) using this new measure of AAVAr and using as dependent variable the
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citation-weighted patents of region r (rather than using ln(bβr)) to control for the region-specific importance
of patents. Similarly we use

P
s∈S
eφ(r, s)(LR&Ds hs) to calculate R&D

AVA
r that is used as instrument. Table 7

reports the estimates for the same specifications as in Table 6.

 
Table 7: The innovation function 

Dep. Variable: ln(citation-weighted Patents)   
AAVA is measured using the direct measures of  phi(r,s) to construct flows (weights) 

 
 

Specification I 
(All obs.) 

II 
(All obs.) 

III 
No 
Outliers 

IV 
No 
Outliers 

V 
Europe 
Only 

VI 
North 
America 
Only 

ln(LR&D)  0.66* 
(0.10) 

 0.74* 
(0.11) 

   

ln(h)  0.66* 
(0.19) 

 0.63 
(0.18) 

   

ln(LR&Dh) p-value1: 
0.98 

0.60* 
(0.07) 

p-value1: 
0.68 

0.70* 
(0.04) 

0.59* 
(0.08) 

0.57* 
(0.08) 

ln(AAVA) 0.10 
(0.20) 

0.20 
(0.23) 

-0.05 
(0.27) 

-0.09 
(0.28) 

0.10 
(0.24) 

0.05 
(0.37) 

Country 
Dummies 

Yes Yes Yes Yes Yes Yes 

Observations 141 141 127 127 79 62 
R2 0.60 0.58 0.61 0.60 0.66 0.73 

Notes: : Method of estimation: IV with robust std error.  Instrument for ln(AAVA ): 
ln(R&DAVA) 

Outliers: Regions with more 50,000 patents or less than 50 Patents in 1975-1991. 
1: The  p-value is relative to the test of equality of the two coefficients: ln(R&D)= ln(h) 

The elasticity of Innovation to total R&D resources is still in the vicinity of 0.6-0.7. The restriction of

equal coefficients on R&D employees and R&D spending is still not rejected by the data. Those coefficient

are nearly identical in column I. The effect of available knowledge is still not significantly different from 0

in any specification. In this set of estimates, the point estimates of knowledge externalities is even lower

than before, in some cases negative. In four specifications out of six we can reject at the 5% level that

the coefficient on ln(AAVAr ) is equal to the coefficient on ln(hr) or on ln(L
R&D
r hr). Interestingly, even in

this case, the specifications that omit outliers (III and IV) produce the lower point estimates of knowledge

externalities (-0.05 and -0.09). While measurement error for the variable AAVAr could generate attenuation

bias, the use of IV method and the fact that these estimates are close to the previous ones reassures us.

5.4 Instrumental Variables: Regional Market Potential

Our estimates of the effect of R&D on innovation could be biased by the presence of some unobservable

regional factors that attract R&D while also increasing its returns in terms of innovation. One of these

factors could be past accumulated knowledge that may also generate endogeneity: R&D goes where past

ideas have been generated because available past ideas increase research productivity, past ideas in turn are

correlated with new ideas generated. In order to address this issue we need an instrument for R&D which is
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correlated with its regional distribution but not with its regional productivity in generating innovation. It

is reasonable to assume that R&D distribution across regions is affected by the return of doing research in

each region. If the expected return from inventions is larger in some regions we would expect more research

done there. Expected return from innovation is given by the value of a patent, and, due to transport costs,

a patent is more valuable where there is a larger local market for innovations. If the same invention is more

valuable where there is a larger local market but the local market has no impact on making R&D resources

more productive then we can use market potential as an instrument for R&D10.

Different regions have different market potentials for innovations, depending on their location and their

connections with the other markets. Interestingly we have a revealed measure of the potential market for

patented goods, at least in each country. This measure is the extent to which patent protection is pursued by

residents of a country in other countries. If a patent is protected only on the domestic market it is because

the inventors believe that small profits would come by trading the good abroad and therefore it is not worth

seeking protection there. On the contrary a patent that is protected in a broad collection of countries reveals

the intention of its inventors to protect their potential profits in foreign markets. We assume that seeking

international patenting in other countries reveals what areas the inventor considers as potential markets for

the new good.

We use data available from WIPO (World Intellectual Property Organization) on patents granted in each

of our 19 countries to inventors residing in each of them for the period 1993-1996. Identifying the patent

protection in a country as the sign that an invention is targeting that country as a market, allows us to

estimate the effect of country characteristics and distance on the potential demand for innovations coming

from each country. This allows us to calculate the market potential for innovation in each of our regions.

We use this measure of market potential as instrument for regional R&D.

Here we briefly describe how we use the data on cross-country patenting to infer the market potential for

innovation in each region. Let’s denote with πij the share of world patents granted in country j to residents

of country i. This is a good proxy of the market for new goods that inventions from country i have in country

j (in relative terms). πij is the demand coming from country j for innovations generated in country i.

It is useful to think of the market πij as depending on country j and country i characteristics and on

bilateral characteristics affecting the relative intensity of patenting from a country into another. The bilateral

characteristics that we use are geographical distance (distij) and a same-country dummy (SameCij). πij

can be decomposed as follows:

πij = (Πi,all)(Πall,j)(e
−δdistij )(efSameCij )εij (12)

10This type of instrument for R&D is also used in Bottazzi and Peri [2] .
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Πi,all is the share of total patents in the world granted to inventors that are residents of country i,

Πall,j is the share of of total patents in the world granted by the patent office of country j. e
−δdistij is an

exponential function in the geographical distance between i and j, efSameCij is the effect of patenting in the

same country where the inventor is resident and εij is a positive multiplicative random factor distributed as

a lognormal that captures all the other unobserved bilateral determinants of πij . As πij , distij and SameCij

are observable we may use a simple regression to perform the above decomposition. Taking logs of both

sides of equation (12) we have

ln(πij) = Ci + Cj − δ(distij) + f(SameCij) + uij , (13)

where Ciand Cj are country specific effects and capture the origin and destination country effects

(ln(Πi,all), ln(Πall,j)). distij is the geographical distance between the two regions and SameCij is a dummy

which is equal to one if the inventor’s country and the granting country are the same. uij = ln(εij) is a zero

mean, normally distributed error. Once we have used OLS to estimate equation (13) we can construct the

predicted share πri,dj which measures the innovation generated in region ri of country i and demanded in

region dj of country j. The parameters Cj , δ and f depend on where inventions are patented and how the

distance and national borders affect this marketing decision. They allow us to capture the market potential

for innovation. Let’s call shmardj the share of region dj in the market for innovation of country j. Also we

denote with a hatb the OLS estimates of our parameters. The predicted potential demand coming from
region dj for innovation invented in ri would be

bπri,dj = (shmardj bΠall,j) exp(−bδdistri,dj + bfSameCridj ). (14)

In our implementation we measure shmardj as the share of GDP of country j produced in region dj

Therefore the total market potential for innovation produced in a generic region r of country i is

Pot1r =
X
dj

X
j

bπr,dj . (15)

Alternatively, using a region’s gross product as proxy for the demand for new goods (rather than the

value shmardj bΠall,j derived from international patenting) we can define another measure of demand from

region dj for innovation invented in region r of country i : bpr,dj = exp(−bδdistr,dj + bfSameCr,dj)Ydj . The
total market potential for region r of country i would be

Pot2r =
X
dj

X
j

bpr,dj . (16)

26



Both constructs use the geographic position of each region and the inter-country pattern of demand for

innovations, revealed by international patenting, to evaluate the main determinant of a patent’s value, which

is the market potential that the average patent has in region r of country i. We estimate equation (10) using

Pot1r or Pot2r and their transform PotnAVA =
P
s∈S
bφ(r, s)Potns as instruments for total R&D spending

and for AAVAr . Table 8 reports the results of the instrumental variables estimations using different measures

for AAVAr and different instruments.

 
Table 8: Instrumenting R&D with Mkt potential 

Dep. Variable: ln(Citation-weighted Patents) 
 
 

Specification: I II III IV V VI 

rhDR )*&ln(  0.84* 
(0.21) 

0.85* 
(0.23) 

0.76 
(0.17) 

0.91* 
(0.25) 

0.92* 
(0.30) 

0.75* 
(0.18) 

ln(AAVA)  -0.09 
(0.42) 

0.16 
(0.51) 

 -0.21 
(0.54) 

0.32 
(0.53) 

Country Dummies Yes Yes Yes Yes Yes Yes 
Observations 141 141 141 141 141 141 
R2 0.86 0.75 0.77 0.73 0.72 0.77 

 
Notes: Method of estimation: IV with robust std errors. Column I, 
II and III instrumenting ln(R&D*h)r and AAVA

r with ln( Pot1) and 
ln(Pot1AVA ). Column IV, V and VI  instrumenting ln(R&D*h)r 

and AAVA
r with ln(Pot2) and ln(Pot2AVA ). 

 

Pot1r and Pot1
AVA
r explain only about 10% of the variation of total R&D spending and of AAVAr . As a

consequence, the IV estimates (specification I,II and III) have larger std. errors than the previous estimates.

Similarly large errors are obtained when we use Pot2r and Pot2
AVA
r (column IV, V and VI) as instruments.

Column I and IV in Table 8 include only R&D resources as input. The point estimates of the elasticity

of innovation to R&D (0.8-0.9) do not change much from the specification in Table 6 and 7 that assumed

exogenous R&D. Point estimates are somewhat larger but standard errors increase (by a factor of three) so

that no significant difference is revealed. No evidence of a meaningful endogeneity bias is present. When

we include the term ln(AAVAr ) either calculated using bφ(r, s) (column II and V) or calculated using eφ(r, s)
(column III and VI) no evidence of significant positive impact of this variable is found. Point estimates are

negative in 2 cases and only in one case are they larger than 0.2. Unluckily the large standard errors prevent

us from making strong inferences based on these estimates. On average, though, these estimates do not

suggest either positive and significant knowledge externalities or a positive and significant bias of the OLS

estimates of ln(AAVAr ).
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5.5 Impact of Knowledge from ”Innovators”

As we did for knowledge diffusion, we consider here if knowledge generated only in the main ”innovating

regions” has a significant impact on innovation of other regions. Regions that are sources of most inter-

national innovation, may be the true stimulators in knowledge creation. Adding other regions as source

of spillovers may simply add noise to our estimates. Also, considering the effect of knowledge going from

these ”innovators” to ”receiving” regions helps us correcting the potential R&D endogeneity. In this case

we can safely assume that R&D done in the innovating regions is exogenous for the receivers. This exercise,

although applied to the innovation process rather than to productivity, is similar to what Keller [17] does

by analyzing the impact of R&D in the five largest world innovators on productivity of other nine countries.

No expectations of similar results should arise, though, as we are considering knowledge externalities in

innovation while he is concerned with any technological externality in production. The relevant knowledge

available to region r, denoted in this case as AAVA,20r , is calculated as
20P
s=1

eφ20(r, s)∆As. The summation is
taken over the twenty top-country innovators. eφ20(r, s) is calculated as eφ(r, s) and standardized so that the
sum across the twenty top-innovators is equal to one. ∆As is measured as the citation-weighted patents

generated in each of the innovating regions (s), in 1975-1991. The results of the estimation of the innovation

function are reported in Table 9.

 
Table 9: The innovation function 

Dep. Variable: ln(Citation-weighted Patents)   
AAVA,20 is measured using only 20 top innovators 

 
 

Specification I  (including all 
“receivers”) 

II  (including all 
“receivers”) 

III 
Europe 
Only 

IV 
North 
America 
Only 

ln(LR&D)  0.64* 
(0.11) 

   

ln(h)  0.68* 
(0.19) 

   

ln(LR&Dh) p-value: 
0.88 

0.65* 
(0.05) 

0.61* 
(0.11) 

0.71* 
(0.05) 

ln(AAVA,20) -0.24 
(0.25) 

-0.23 
(0.25) 

-0.27 
(0.31) 

-0.37 
(0.39) 

Country 
Dummies 

Yes Yes Yes Yes 

Observations 122 122 64 58 
R2 0.74 0.74 0.58 0.72 

Notes: : Method of estimation: IV with robust std errors.  Instrument for ln(AAVA,20 ): 
ln(R&DAVA,20) 

1: The  p-value is relative to the test of equality of the two coefficients: ln(R&D)= ln(h). 

The first column of Table 9 presents the estimates including all ”receiving” regions, i.e. those regions that

are not top innovators in the nineteen countries. The estimates of elasticity of innovation to employment

(LR&D) and to resources per worker in R&D (h) are very similar to the estimates obtained in Table 7,
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using all regions. The effect of spillovers from the top innovators only, is still not significantly different

from 0. In all specifications of Table 9 the point estimate on knowledge externalities is negative and in

all cases the hypothesis of equal coefficients on knowledge available and on total R&D spending is rejected

at the 1% confidence level. Column II imposes the restriction of equal coefficients on R&D employees and

resources per R&D employee and estimates an elasticity of innovation to total R&D spending of 0.65. The

separate estimates for European and North American regions (column III and IV) do not reveal any relevant

difference in productivity of R&D resources and knowledge available in generating innovation. The elasticity

of innovation to R&D is still in the 0.6-0.7 range, while available knowledge has no significant effect.

To sum up, while no estimate, singularly taken, makes us certain that available knowledge has no effect

on innovation, the overall picture, emerging from several specifications, does not provide any evidence in

favor of positive and significant knowledge spillovers in innovation.

6 Conclusions

The present study analyzes the process of knowledge diffusion and knowledge externalities as evidenced

aggregating data on patent creation and patent citations. While diffusion of ideas is needed in order to have

externalities of knowledge, there is no reason to believe that simply measuring the intensity and scope of

this knowledge diffusion provides us with a measure of knowledge externalities. In order to have positive

externalities, in fact, we need that existing ideas affect positively the productivity of scientists in generating

new ideas. Some doubts that knowledge has positive externalities on innovation have been raised by the

literature that analyzes innovation over time (Griliches [8]). There seems to be evidence that productivity

of R&D in innovation has decreased over time. Diffusion of new ideas, in fact, brings not only ”new inspi-

ration” to researchers but also increased standard for innovation, and it reduces the unexplored territories

of human knowledge. These effects may offset the positive spillovers. Our study finds that there are very

important positive and negative determinants of knowledge diffusion: regions farther away from each other,

in different countries, specialized in different sectors and speaking different languages exhibit much lower

flows of knowledge than close, similar regions in the same country. Nevertheless these flows do not bring

significantly positive knowledge externalities when we consider the effect of available knowledge on the in-

novation generating function. While we think that this study confirms the presence of decreasing returns in

innovation, already suspected from time-series data analysis, we do not address here the impact of knowledge

externalities on production. Knowledge spillovers could be good for production as they are one component

(but not the only one) of technological spillovers. As other works (e.g. Coe and Helpman [5], Keller [17]) find

evidence of positive technological externalities on production, it would be interesting to measure the impact
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of knowledge externalities on production in particular. We leave this line of research to further development

of our work.
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A List of Regions

Austria: OSTOSTERREICH*, SUDOSTERREICH, WESTOSTERREICH

Belgium: BRUXELLES, VLAAMS GEWEST*, REGIONE WALLONNE

Canada (Provinces): NEW FOUNDLAND, PRINCE EDWARDS ISLAND, NOVA SCOTIA, NEW

BRUNSWICH, QUEBECK, ONTARIO*, MANITOBA, SASKATCHEWAN, ALBERTA, BRITISH COLUMBIA.

Denmark: DENMARK*

Finland: FINLAND*

France: ILE DE FRANCE*, BASSIN PARISIENNE, NORD-PAS DE CALAIS, ESTE, OUESTE, SUD-

OUEST, CENTRE-EST, MEDITERRANEE.

Germany: BADEN-WURTENBERG, BAYERN, BERLIN, BRANDENBURG, BREMEN, HAMBURG,

HESSEN, MECKLENBURG-VORPOMMEM, NIEDERSACHSEN, NORDRHINE-WESTFALIA*, RHEINLAND-

PFALZ, SAARLAND, SACHSEN, DESSA, SCHLESWIG-HOLSTEIN, TURINGEN.

Greece: VORAIA ELLADA, KENTRIKI ELLADA, ATTIKI*, NISIA AIGAIOU, KRITI.

Ireland: IRELAND*

Italy: NORDOVEST, LOMBARDIA*, NORD-EST, EMILIA ROMAGNA, CENTRO, LAZIO, ABRUZZO-

MOLISE, CAMPANIA, SUD, SICILIA, SARDEGNA.

Luxemburg: LUXEMBURG*

Norway: NORWAY*

Portugal: PORTUGAL*

Spain: NOROESTE, NORESTE, COMUNIDAD DE MADRID, CENTRO, ESTE*, SUR, CANARIAS.

Sweden: SWEDEN*

Switzerland: REGIONE LEMANIQUE, ESPACEMITTELAND, NORTHWESTSCHWEITZ*, ZURICH,

OSTCHWEITZ, ZENTRALSCWEITZ, TICINO.

United Kingdom: NORTH, YORKSHIRE AND THE HUMBER, EAST MIDLANDS, EAST AN-

GLIA, SOUTHEAST*, SOUTHWEST,WESTMIDLANDS, NORTHWEST,WALES, SCOTLAND, NORTH-

ERN IRELAND.

USA (States): ALABAMA, ALASKA, ARIZONA, ARKANSAS, CALIFORNIA*, COLORADO, CON-

NECTICUT, DELAWARE, D.C., FLORIDA, GEORGIA, HAWAII, IDAHO, ILLINOIS, INDIANA, IOWA,

KANSAS, KENTUCKY, LOUISIANA, MAINE, MARYLAND, MASSACHUSSETS, MICHIGAN, MIN-

NESOTA, MISSISSIPI, MISSOURI, MONTANA, NEBRASKA, NEVADA, NEW HAMPSHIRE, NEW

JERSEY, NEW MEXICO, NEW YORK*, NORTH CAROLINA, DAKOTA, OHIO, OKLAHOMA, ORE-

GON, PENNSYLVANIA, RHODE ISLAND, SOUTH CAROLINA, SOUTHDAKOTA, TENNESSEE, TEXAS,
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UTAH, VERMONT, VIRGINIA, WASHINGTON, WEST VIRGINIA, WISCONSIN, WYOMING.

*= Largest innovator(s) in the Country

B Data Appendix

B.1 R&D Expenditure Data (1992-1996)

• Europe:

Main Source for Data on R&D1992-1996: Eurostat Regio Database

(http://europa.eu.int/comm/eurostat)

As there were some missing values for some regions we interpolated existing values or we imputed regional

values using the share of national R&D in the region from a previous year applied to the national Figure for

the year. The following is the detailed description of the interpolated and imputed data:

Austria : linear interpolation for 1992, imputed for 1994,1995.

Belgium: linear interpolation for 1992 country total, imputed for 1993

Denmark: imputed for 1994-95.

Germany: imputed for 1992-94-95.

Greece: imputed for 1995.

Spain: imputed for 1995.

France: imputed for 1995.

Italy: imputed for 1992-94-95

The Netherlands: imputed for 92-95.

Portugal: linear interpolations for 93,94.

Sweden: linear interpolations for 92,94.

U.K. Inputed for 1992.

Switzerland used regional GDP shares to get regional values 92-95 where total R&D Expenditure

had been obtained from the Swiss Statistical Office.

• U.S.A.:

Main Source: National Science Foundation/Division of Science Resources Studies, Survey of Industrial

Research and Development: 1998.

Missing values for 1992 and 1994 were obtained through linear interpolation.
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Other Interpolations due to ’NA’:

1991:Colorado, Kansas and North Dakota, 1989 and 1991: Idaho, Missouri, Maine, Montana, New

Hampshire, West Virginia and Vermont.

For Delaware the growth rate between 1993 and 1994 was applied to get 1992 value.

• Canada:

Main Source: The document Cat No. 88F0006XIB01001” Estimates of Canadian Research and De-

velopment Expenditures(GERD), Canada, 1989 to 2000, and by Province 1989 to 1998.” obtained from

www.statcan.org.

Exchange rates:

http://www.oanda.com/convert/fxhistory

B.2 R&D Employment Data (1992-1996)

• Europe:

Main Source for Data on R&D1992-1996: Eurostat Regio Database

(http://europa.eu.int/comm/eurostat)

Missing values were treated in the same way as done for R&D Spending:

Austria: linear interpolation for 1992, imputed for 1994-95.

Belgium: linear interpolation for 1992-93 country total, imputed 1992-93 regional values.

Denmark: linear interpolation for 1994.

Germany: linear interpolation for 1992, imputed regional values for 1992-94.

Greece: linear interpolation for 1992, imputed values for 1994-95.

Italy: Imputed values for 1992-93.

Portugal: Linear interpolations for 1993-94.

Sweden: Linear interpolations for 1992-94.

U.K.: Imputed regional values for 1992, used 92-93 growth rates to impute 1994-95 values.

Switzerland: used regional GDP shares to impute regional values 1992-95 where total R&D Employ-

ment had been obtained from the Swiss Statistical Office.

• U.S.A.:

The data on employment by state have been obtained using the share of Scientists and Engineers by

state in total employment from the Census 1991, and applying them to the total employment in 1992-1996.
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• Canada:

Values for provinces in 1992-94 were interpolated using the share of each province in 1995 multiplied by

the total employment in R&D for that year. Value for 1995 was obtained from www.statcan.org.

B.3 Population and Employment Data (1992-1996)

• Europe:

Main Source: Eurostat Region CD 1999. Demographic Statistics section.

(London is missing for all years)

Norway: Statistics Norway at

http://www.ssb.no/english/subjects/02/nos c607 en/tab/t-105.html

Switzerland: file Swiss cantonal income 90 99 from Swiss Statistics- Swiss Federal Statistical Office-

(http://www.statistik.admin.ch/eindex.htm)

• U.S.A.:

Bureau of Economic Analysis website, regional statistics section

http://www.bea.doc.gov/bea/regional/spi/

• Canada:

CANSIM database at www.statcan.org

C BGP implies Condition 1 Section 5.1

Assume that Art is the existing stock of ideas in region r and year t and that g is the common yearly growth

rate of the stock of ideas in BGP for each region r. Then considering three years such that t0 < t1 < t2 we

have, for the generic region i:

Art2 −Art1 = [(1 + g)t2−t1 − 1]Art1 (17)

Art1 −Art0 = [(1 + g)t1−t0 − 1]Art0 (18a)

Art1 = (1 + g)
t1−t0Art0 (19)
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Merging the three expressions and considering t0 = 75, t1 = 92, t2 = 96 we obtain (Ar96 −Ar92) =
γ (Ar92 −Ar75) where γ = {[(1 + g)4 − 1](1 + g)17}/[(1 + g)17 − 1]. Measuring the change of stock of ideas
between two years as the number of patent granted times the estimated intensity of ideas in each patent the

equation written above yields: (Pat9296 ∗ bβ)r = γ(Pat7591 ∗ bβ)r. Adding a random disturbance we have the

relation under 1 in Section 5.1.
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