Problem Set \#2

Economics 141
FALL 2008
Due October 2

Useful Problems for Review / Discussion (not to turn in):

Problems 1.1, 1.3, 1.4, 1.5, 1.6, 3.1, 3.2, 3.6, 3.9, and 3.10 from Pindyck \& Rubinfeld's text.

Problems to Turn In:

1. Consider the bivariate regression model without an intercept term:

$$
Y_{i}=\beta \cdot X_{i}+\varepsilon_{i}, \quad i=1, \ldots, N,
$$

where, as usually assumed, the $\left\{X_{i}\right\}$ are fixed constants with $N^{-1} \sum_{i}\left(X_{i}-\bar{X}\right)^{2} \equiv \hat{\sigma}_{X}^{2}>0$ and $E\left[\varepsilon_{i}\right]=0$, $\operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$, and $\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0$ if $i \neq j$.
(a) Find the form of the least squares estimator $\hat{\beta}$ of β in this case, i.e., find an expression for the value $\hat{\beta}$ that minimizes

$$
S(c) \equiv \sum_{i=1}^{N}\left(Y_{i}-c \cdot X_{i}\right)^{2}
$$

over c.
(b) Show that this estimator is linear in the dependent variables $\left\{Y_{i}\right\}$ and unbiased, and give a formula for its variance.
(c) Now, assuming that $X_{i} \neq 0$ for all i and $\bar{X} \neq 0$, consider two other estimators of β :

$$
\tilde{\beta} \equiv \frac{\bar{Y}}{\bar{X}}
$$

and

$$
\vec{\beta} \equiv \frac{1}{N} \sum_{i=1}^{N}\left(\frac{Y_{i}}{X_{i}}\right)
$$

Show that these estimators are also linear in $\left\{Y_{i}\right\}$ and unbiased for β, calculate their variances, and show that those variances are at least as large as $\operatorname{Var}(\hat{\beta})$. [HINT: You may use the fact that the (population or sample) average of $1 / X^{2}$ is at least as large as the inverse of the average of X^{2}). In what case will all of these estimators have the same variance?
2. Suppose you are given the following (semi-fabricated) data on a typical automobile's fuel consumption (F) and automobile speed (S) :

$$
F_{i} \text { (miles/gallon) } \quad S_{i} \text { (miles/hour) }
$$

10	10
18	20
25	30
29	40
30	50
28	60
25	70
22	80
18	90
15	100
11	110
8	120

with

$$
\begin{aligned}
\sum_{i} F_{i} & =239 & \sum_{i} S_{i}=780 \\
\sum_{i} F_{i}^{2} & =5471 & \sum_{i} S_{i}^{2}=65000 \\
\sum_{i} F_{i} \cdot S_{i} & =14350 . &
\end{aligned}
$$

It is conjectured that there is a linear relationship between F_{i} and S_{i} :

$$
F_{i}=\alpha+\beta \cdot S_{i}+U_{i},
$$

where U_{i} is a random error term assumed to have zero mean and constant variance σ^{2}.
(a) What are the least squares estimates of α and β ?
(b) What are the residual sum of squares and R^{2} for this regression?
(c) Plot F_{i} as a function of S_{i} and discuss the appropriateness of the specification used above. On the same graph, plot the fitted values $\hat{F}_{i} \equiv \hat{\alpha}+\hat{\beta} \cdot \dot{S}_{i}$ against S_{i}. Are the estimated residuals "nicely behaved," i.e., do they look independent and centered at zero?
(d) Re-estimate α and β using only the last eight observations (with $S_{i} \geq 50$) and calculate the R^{2} of this regression.
(e) On the basis of this exercise what might you conclude about the relationship between speed and fuel economy? What might be a better model for this relationship than the one considered so far?
3. Suppose that, for a simple linear regression problem, you are given the six values of

$$
N, \sum_{\iota=1}^{N} X_{i}, \sum_{\iota=1}^{N} X_{i}^{2}, \sum_{\iota=1}^{N} Y_{i}, \sum_{\iota=1}^{N} Y_{i}^{2}, \text { and } \sum_{\iota=1}^{N} X_{i} \cdot Y_{i}
$$

The model is, as usual,

$$
Y_{i}=\alpha+\beta \cdot X_{i}+\varepsilon_{i},
$$

where the error terms $\left\{\varepsilon_{i}\right\}$ are assumed to be jointly normally distributed with $E\left(\varepsilon_{i}\right)=0, \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}$, $\operatorname{Cov}\left(\varepsilon_{i}, \varepsilon_{j}\right)=0$ if $i \neq j$, and the regressors X_{1}, \ldots, X_{N} are taken as fixed (nonrandom).

Give concise formulae using these six quantities for calculation of
(a) the sample means \bar{Y} and \bar{X};
(b) the sample variances $\hat{\sigma}_{X}^{2}$ and $\hat{\sigma}_{Y}^{2}$ and the sample covariance $\hat{\sigma}_{X, Y}$;
(c) the least squares estimators $\hat{\alpha}$ and $\hat{\beta}$;
(d) the R^{2} of the regression;
(e) the residual sum of squared errors (SSE) and s_{ε}^{2} for the regression;
(f) the standard errors of $\hat{\alpha}$ and $\hat{\beta}$;
(g) the F-statistic for the test of $H_{0}: \beta=0$.

Although there may be several possible formulae, try to make yours as simple as possible. You may use symbols for simple intermediate calculations, e.g., $r_{X Y}=\hat{\sigma}_{X Y} / \hat{\sigma}_{X} \hat{\sigma}_{Y}$, as long as you define these symbols explicitly in your answers.
4. Short Answer: Give a brief answer, explanation, and/or mathematical derivation to the three questions below.
A. "The Central Limit Theorem gives conditions under which "large" populations are approximately normal. That is, as the number of possible values of a random variable approaches infinity, the distribution of that random variable approaches a normal distribution." True or False? Explain.
B. In trying to model the demand for money as a function of interest rates (using a simple regression model), would you rather observe economic data during a period in which interest rates were relatively stable, or a period in which rates were volatile? Why?
C. Suppose it is observed that, for a set of data points $\left\{\left(X_{i}, Y_{i}\right)\right\}$ which are assumed to satisfy a simple linear regression model, the absolute value of the sample mean of Y_{i} is greater than the absolute value of the sample mean of X_{i}, but the sample variance of the dependent variable Y_{i} is less than the sample variance of the independent variable X_{i} - that is, $|\bar{Y}|>|\bar{X}|$ and $s_{Y}^{2}<s_{X}^{2}$. What, if anything, does this imply about the absolute value of the least-squares slope coefficient estimate $\hat{\beta}$? How about the sign of the intercept term $\hat{\alpha}$?
[Note: the short answer questions in problem \#4 appeared on exams for previous versions of this course, and similar questions - with some choice - will appear on the next midterm exam.]

