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Least Squares and Linear Predictors

Given the standard assumptions for the classical linear regression model — which include the strong

assumptions of nonrandom regressors X, with dependent variable y having linear expectation (in the

regressors) and scalar covariance matrix — it might seem natural to replace the additional assumption of

multinormality of y with weaker sufficient conditions that ensure that the classical least squares estimator

β̂ ≡ (X0X)−1X0y
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is approximately (asymptotically) normal. While this is certainly feasible, it is simpler to apply asymptotic

theory under a different, and in some ways weaker, set of assumptions on the process that generates the

data. Instead of imposing linearity of the mean of y inX, etc., we instead assume just that the observations

{zi ≡ (yi,x0i)0}Ni=1 are i.i.d with bounded fourth moments, i.e.,

E
£||zi||4¤ <∞.

In this setting, which treats the regressors xi more symmetrically with the dependent variable yi, the

classical LS estimator β̂ does not estimate the coefficients for the mean of y as a function of X, but rather

the coefficients of the best linear predictor

β ≡ argmin
c

E
h
(yi − x0ic)2

i
.

Assuming, in addition, that the matrix

D ≡E £xix0i¤
is nonsingular — a population version of the usual assumption that X0X is invertible — the parameter vector

β is uniquely defined as

β = D−1δ,
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where

δ ≡E [xiyi] .

In contrast to the standard assumptions, the usual finite-sample results for the classical LS estimator β̂

do not apply. For instance, the law of iterated expectations implies that the expectation of β̂, if it exists,

satisfies

E
h
β̂
i
= E

h
(X0X)−1X0E [y|X]

i
,

but without the assumption of linearity of E [y|X] in X, in general

E
h
β̂
i
6= β,

so classical LS is not generally unbiased for the best linear prediction coefficients β. Nevertheless, β̂ is

clearly a smooth function of sample averages,

β̂ = D̂
−1
δ̂,

where

D̂ ≡ 1

N

NX
i=1

xix
0
i,

δ̂ ≡ 1

N

NX
i=1

xiyi.

Thus demonstration of the consistency of β̂ — i.e.,

β̂
p→ β

— and its asymptotic normality are straightforward applications of the asymptotic theory discussed previ-

ously.

Consistency of Least Squares

Consistency of β̂ follows from a straightforward application of the Weak Law of Large Numbers

and the continuity theorem. Each component of δ̂ and D̂ is a sample average of products of elements of

the vector of regressors xi with another component of xi or with the dependent variable yi; since fourth

moments are assumed to exist for yi and xi, the variances of these products are finite, and their means

and variances are identical because the data are assumed i.i.d. Thus

δ̂
p→ δ
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and

D̂
p→ D

by the WLLN. Furthermore,

β = D−1δ

≡ g(D, δ)

is a continuous function of D and δ at all arguments with |D| 6= 0. Thus, the continuity theorem implies

that

β̂ = D̂
−1
δ̂

p→ D−1δ = β.

Note that, if the stronger condition E(y|X) = Xβ were imposed, it would be possible to alternatively
demonstrate consistency of β̂ by showing V(β̂|X)→ 0 as N → ∞, which would imply quadratic mean

convergence of any linear combination λ0β̂ of β̂.

Asymptotic Normality of LS

Now we can write the normalized difference
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´
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where εi ≡ (yi − x0iβ) has

E (xiεi) = E
¡
xi
¡
yi − x0iβ

¢¢
= δ −Dβ

= 0
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by the definition of β. Thus, application of the multivariate version of the Lindeberg-Levy CLT implies

that
1√
N

NX
i=1

xiεi
d→ N(0,C),

where

C ≡ V(xiεi)

= E
£
ε2ixix

0
i

¤
,

which exists because of the assumed finite fourth moments of the observations.

Since

D̂−1 p→ D−1

by consistency of D̂ and the continuity theorem, the Slutsky theorem implies that

√
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β̂ − β

´
d→ D−1 ·N (0,C) = N ¡0,D−1CD−1¢ .

Consistent Estimation of the Asymptotic Covariance Matrix

In order to conduct large-sample inference on β, a consistent estimator of the asymptotic covariance

matrix D−1CD−1 needs to be constructed. (This matrix is sometimes called a “sandwich form,” with C

analogous the filling and D−1 to the bread.) Since D̂ has already been shown to be consistent for D, only

a consistent estimator of the middle matrix C is needed; such an estimator is
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The first of these last three terms can be shown to converge in probability to C by application of another

law of large numbers (which assumes only i.i.d. data and existence of first moments), and the last two

terms can be shown to converge to zero using that LLN and consistency of β̂ for β.

The covariance estimator D̂−1ĈD̂
−1
was proposed or implied independently by a number of authors,

and can be called the Huber-Eicker-White heteroskedasticity-robust asymptotic covariance matrix estimator,

a daunting title often replaced by the simpler robust covariance matrix estimator.
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Given this estimator and the results above, a large-sample test for a nonlinear hypothesis

H0 : g(β) = 0,

where g(β) is a differentiable function with

G ≡ ∂g(β)

∂β0

assumed to be continuous and have full row rank. (An example would be g(β) =Gβ − γ0, which is
sometimes called the “general linear hypothesis.”)

Application of the so-called “delta method” implies that, under the null hypothesis,

√
Ng(β̂)

d→ N
¡
0,GD−1CD−1G0¢ .

Since

Ĝ ≡ ∂g(β̂)

∂β0
p→G

by the continuity theorem, it follows from Slutsky’s theorem and the continuous mapping theorem that

the "Wald statistic"

WN ≡ N
³
g(β̂)

´0 h
ĜD̂

−1
ĈD̂

−1
Ĝ0
i−1

g(β̂)

d→ χ2r

under the null hypothesis, where r = dim{g(β̂)}. The Wald test of the null hypothesis would reject when
WN exceeds the upper α critical value for a chi-squared random variable with r degrees of freedom.

A Special Case - I.i.d. Linear Regression Model

We can specialize the results above to the case where each dependent variable yi is the sum of a

linear function of xi and an independent error term εi :

yi = x
0
iβ+εi,

with εi assumed to be independent of xi with

E(εi) = 0,

V ar(εi) = σ2.
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For this special case, it follows that

C = E
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by the assumed independence of εi and D. Then D−1CD−1 = σ2D−1 and
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Similarly to the demonstration of consistency of Ĉ, it is possible to show the consistency of the usual

estimator s2 of σ2 under these conditions, so in this case we would approximate the distribution of the LS

estimator β̂ as

β̂
A∼ N(β,s2(X0X)−1),

which is the large-sample version of the finite-sample results for the LS estimator when the dependent

variables are multinormal.
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