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Endogenous Regressors and Inconsistency of LS

The endogenous regressor linear model, a workhorse of econometric applications, assumes that the

dependent variable and regressors are both random and satisfy the linear relation

y = Xβ + ε,

but the usual assumption of zero conditional mean of the error terms given the regressors is not satisfied,

i.e,

E(X 0ε) 6= 0 =⇒ E(ε|X) 6= 0.

This is a more serious departure from the assumptions of the classical linear model than was the case for

the Generalized Regression model, which maintained E(ε|X) = 0 but permitted nonconstant variances

and/or nonzero correlations across error terms; unlike the Generalized Regression model, the classical least

squares estimator will be inconsistent for β if the errors are correlated with the regressors. Writing

β̂LS = (X
0X)−1X 0y = β + (X 0X)−1X 0ε,

application of an appropriate version of the Law of Large Numbers will imply that
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E(xtx
0
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which is routinely assumed to be invertible for the classical regression models, and
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≡ Mxε.

Since E(xtεt) 6= 0 generally implies Mxε 6= 0 (at least for stationary data), it follows that

plim β̂LS = β + plim (
1

T
X 0X)−1(

1

T
X 0ε)

= β +M−1
xx Mxε

≡ β∗ 6= β.
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Of course, the inconsistency of β̂LS for β is only a “problem” if you want to estimate the “primitive”

parameter β rather than β∗, which is the vector of best linear predictor coefficients for yt given xt. Several

examples below will outline cases in which β is a natural “structural” parameter for behavior even though

it cannot be interpreted as the vector of best linear projection coefficients.

An alternative interpretation of the inconsistency of classical least squares lies in the fact that it solves

a sample moment condition of the form

0 =
1

T
X 0(y −Xβ̂LS) =

1

T

X
t

xt(yt − x0tβ̂LS)

(which are called the normal equations), but the analogous condition for the population data distribution

is not satisfied, i.e.,

E(xt(yt − x0tβ)) = E(xtεt) 6= 0.

Thus, least squares solves the “wrong” moment condition in the sample. The classical “solution” to

this problem of endogenous regressors supposes that there is some L-dimensional vector of instrumental

variables, denoted zt below, which is observable and satisfies

E(ztεt) ≡Mzε = 0

for all values of t. Thus, though the regressors xt are correlated with the error terms εt, the instrumental

variables (or “instruments”) zt are not. If only some of the components of xt are correlated with the

errors, the remaining components can be included in the instrument vector zt; depending on the particular

application, other transformations of observable random variables may be suitable instruments.

In addition to being uncorrelated with the error terms, it will be necessary that the instrumental

variables zt are “fully correlated” with the regressors xt: that is, if

E[ztx
0
t] ≡Mzx

is the (L×K) matrix of product-moments of zt with xt, we will need this matrix to be of full column rank,

i.e.

rank(Mzx) = K.

This rank condition, which will be a sufficient condition for identification of the parameter vector β from

the observable data, implies a weaker order condition which is a necessary condition for identification —
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namely, that L ≥ K, i.e., the number of instrumental variables must be at least as large as the number of

regressors.

Models of Endogenous Regressors

Before turning to the details of estimation of the parameter β using observations on yt, xt, and the

instrumental variables zt, it may be informative to consider some examples of linear models with correlation

between the regressors and error terms, and the ways that instrumental variables might be derived. While

no general method for cooking up instruments is available, many models have “natural” instruments

associated with them.

(1) Autocorrelated Errors and Lagged Dependent Variables: Here the linear model of interest is

yt = x0tβ + γyt−1 + εt,

where the error terms are assumed to be first-order autoregressive,

εt = ρεt−1 + ut,

with ut assumed to be i.i.d. with zero mean and variance σ2u, and are independent of {xs} for all s. Since

E(yt−1εt) = E(yt−1(ρεt−1 + ut))

= ρE(yt−1εt−1)

= ρE((α+ βxt−1 + γt−2 + εt−1)εt−1)

= ργE(yt−1εt−1) + ρE(εt−1),

then assuming {xt} are stationary — implying the {yt} are stationary as well — it follows that

E(yt−1εt) = E(yt−2εt−1),

so that

E(yt−1εt) = ργE(yt−1εt) + ρE(ε2t )

= ρE(ε2t )/(1− ργ)

= ρσ2u/(1− ρ2)(1− ργ),
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which is different from zero when ρ 6= 0. Thus, the regressor yt−1 is correlated with the error term εt.

For instruments, we can use the current and lagged values of the regressors; for example, we can use

zt = (x
0
t, x

0
t−1)

0 as instruments for the set of regressors (x0t, yt−1)
0. Since the lagged values of the regressors,

xt−1, show up in the equation for yt−1, it is easy to see that the IVs should be correlated with the right-hand

side variables, and they are uncorrelated with the error terms εt by assumption. Of course, we could also

use more lagged values, i.e., zt = (xt, xt−1, xt−2, . . .), but typically the extra lagged values of xt−1 aren’t as

highly correlated with yt−1, and so might be less useful as IVs.

(2) Omitted Variables: In a “long regression” setting with for cross-section data,

yi = x0iβ + w0iγ + ui

≡ x0iβ + εi,

with εi ≡ w0iγ + ui, we may only observe yi and xi, and only care about estimating β, but if xi and the

“missing regressors” wi are correlated with xi in the population, xi and εi will be correlated in the “short

regression” of yi on xi.

Often, it is hard to think of a convincing example where variables that are not included in the observable

xi (like geographic dummy variables) would be correlated with xi but uncorrelated with wi, so the instru-

mental variable strategy may problematic in this example. Occasionally, though, a “natural experiment”

will provide a variable zi which affects xi directly, but clearly is independent of wi. A well-known example

in econometrics is J. Angrist’s study of the effect of military service (a regressor in xi that is possibly

correlated with an unobserved “ability” variable wi) on future earnings yi. As an instrumental variable,

Angrist used an indicator variable for whether individual i had a high or low draft lottery number during

the Vietnam war years; this would clearly be correlated with military service but should be independent

of individual unobserved ability. An earlier biostatistics study used the same instrumental variable to

estimate the effect of military service on life expectancy. These and similar papers led to a paradigm shift

toward “natural experiment” approaches to estimation of causal effects using microeconomic data over the

past two decades.

(3) Measurement Error: M. Friedman’s classic model for the permanent income hypothesis posits an

individual consumption function as

yi = α+ βpi + ui,
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where yi is “measured consumption” and pi is “permanent income” for individual i. As Friedman noted,

we don’t see permanent income, but only “measured” income, which is assumed to be of the form

xi = pi + vi,

where vi is “transitory income” (just like ui is “transitory consumption”). There are two sorts of as-

sumptions on the observable data that yield instrumental variables here. In one approach, the “repeated

measurement” approach, it is assumed that some other variable related to permanent income, such as

financial wealth “wi”, is observed. Supposing that wealth is linearly related to permanent income,

wi = γ + δpi + ηi,

where the “transitory components” (ui, vi, ηi) are independent of pi, and further supposing that

E(ui) = E(vi) = E(ηi) = 0,

E(uiηi) = E(viηi) = 0

(i.e., the shock to wealth is uncorrelated with transitory consumption or income), then

yt = α+ βxt + εt,

with

εi = ui + βvi,

so that E(xiεi) 6= 0 but

E(wiεi) = E((γ + δpi + ηi)(ui + βvi)) = 0

and

E(wixi) = E((γ + δpi + ηi)(pi + vi)) = δE(p2i ) 6= 0,

provided δ 6= 0 (i.e., wi is really related to pi). So zi = (1, wi)
0 can be used as a vector of instrumental

variables for (1, xi)0.

A different solution, proposed by A. Zellner, assumes a “causal model” relating permanent income to

observable variables wi (including, say, financial wealth, education, work experience, etc.). Writing this

model as

pi = w0iδ + ηi,
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where (ui, vi, εi) is assumed independent of wi with E(ui) = E(vi) = E(εi) = 0, etc. Then wi is clearly

correlated with pi if δ 6= 0,

E(wixi) = E(wi(w
0
iδ + vi + ηi)) = E(wiw

0
i)δ 6= 0,

but

E(wiεi) = E(wi(ui + βvi)) = 0,

so we can use zi ≡ (1, w0i)0 as instruments for (1, xi)0. Though the “repeated measurement” and “causal

model” approaches are quite different — in the former, E(piηi) = 0, E(wiηi) 6= 0, and vice versa in the

latter — we get similar instruments in either case.

(3’) Rational Expectations Models (Measurement Error): A variation on the previous measurement

error model might be

yt = α+ βEt(xt+1) + ut,

with ut i.i.d., independent of {xs}, etc. For example, yt might be “current investment,” and xt might be

“current sales,” so current investment would respond to current expectations of future sales. Assuming we

observe only (yt, xt), where

xt+1 = Et(xt+1) + vt+1,

E(vt+1|xt, yt, xt−1, yt−1, . . .) = 0,

we can write

yt = α+ βxt+1 + εt,

εt ≡ ut + βvt+1,

and can use past values of yt and current and past values of xt as instrumental variables in this regression,

i.e., zt = (1, xt, yt−1, xt−1, yt−2, . . .).

(4) Keynesian Cross: In this shopworn example, discussed by virtually all introductory econometrics

texts, an aggregate consumption function

ct = α+ βyt + εt
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is paired with an income identity

yt = ct + it,

where ct, yt, and it are aggregate consumption, income, and “autonomous investment.” Assuming

E[εt] = 0 = E(εtis)

(so that investment is determined by “animal spirits,” and does not respond to consumption or income), we

can take zt ≡ (1, it)0 as IV’s for (1, yt)0 in estimating the consumption function. This is possibly the simplest

example of a “simultaneous equations model,” in which the variables ct and yt appearing in one equation

(the consumption function) are jointly determined as the solution of a system of equations, rather than the

left-hand variable (here, ct) being determined by the “independent” causal effects of the right-hand-side

regressors and errors.

(4’) Supply and Demand Model: In another simple canonical model of simultaneity, quantity qt and

price pt are determined to equate supply and demand in a particular market. Writing the demand function

as

qt = α+ βpt + γyt + ut,

it is assumed that some other variable yt besides price (say, aggregate income) shifts the demand function,

but does not affect supply. Similarly, the inverse supply function is assumed to be

pt = δ + φqt + ψwt + vt,

where some “supply shifter” variable wt (e.g., “weather”) is included in the inverse supply function but is

excluded from the demand equation. Assuming (yt, wt) are exogenous, i.e.,

E

∙
ytut ytvt
wtut wtvt

¸
= 0,

then zt = (1, yt, wt)
0 will be uncorrelated with (ut, vt), assuming E(ut) = E(vt) = 0; if ψ 6= 0, E(wtpt) 6= 0,

and if γ 6= 0, E(qtyt) 6= 0, so we can use zt = (1, yt, wt)
0 as instrumental variables for xdt ≡ (1, pt, yt)0 in the

demand equation and for xst ≡ (1, qt, wt)
0 in the inverse supply equation.

Just-Identification and Instrumental Variables Estimation

The foregoing examples illustrate how L-dimensional instrumental variables zt satisfying the conditions

E[ztεt] = Mzε = 0 and rank(E[ztx
0
t]) = rank(Mzx) = K can be obtained in certain applications. Now,
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assuming such variables exist, we turn to the question of what to do with them, i.e., how to use them to

get consistent estimators of β. In the special case where L = K (known as the ”just identified” case, since

the order condition for identification is barely satisfied), we can define the instrumental variables (IV)

estimator of β for the linear model as

β̂IV ≡ (Z 0X)−1Z 0y =
"
1

T

X
t

ztx
0
t

#−1
·
"
1

T

X
t

ztyt

#
,

which is generally well-defined because Z 0X is a square (K×K) matrix. This is an obvious generalization

of the classical least squares estimator β̂LS , with “Z
0” replacing “X 0” in that formula throughout. It is

easy to show consistency of this estimator if the conditions Mzε = 0 and rank(Mzx) = K are satisfied;

again writing the IV estimator β̂ in terms of the true parameter and error terms,

β̂IV = β + (
1

T
Z 0X)−1(

1

T
Z 0ε),

a law of large numbers and Slutsky’s theorem will imply that}

plim
µ
1

T
Z 0X

¶−1
≡ plim

Ã
1

T

X
t

ztx
0
t

!−1
=M−1

zx

and

plim
1

T
Z 0ε = plim

1

T

X
t

ztεt = lim
1

T

X
t

E(ztεt) ≡Mzε = 0,

so

β̂IV →p β + (Mzx)
−1Mzε = β,

as required for consistency.

This instrumental variables estimator can be interpreted as a method of moments estimator, because

β̂IV solves a variant of the normal equations, the IV estimating equations

0 =
1

T
Z 0(y −Xβ̂IV ) =

1

T

X
t

zt(yt − x0tβ̂IV ),

which correspond to the correct population moment conditions

E[zt(yt − x0tβ)] = E(ztεt) ≡Mzε = 0.

In effect, the IV estimator sets the sample covariance of the instrumental variables and residuals equal to

zero (assuming a constant term is included in the set of instruments).
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Assuming some central limit theorem can be invoked to show that

1√
T
Z 0ε ≡ 1√

T

X
t

ztεt →d N (0, V0)

for some matrix V0 (with V0 = E[ε2t ztz
0
t] if the original observations on yt and xt are i.i.d.), then it is easy

to show that the IV estimator is approximately normally distributed,

√
T (β̂ − β0) = (

1

T
Z 0X)−1

1√
T
Z 0ε→d N (0,M−1

zx V0M
−1
xz ),

where

Mxz ≡M 0
zx = plim

1

T

X
t

xtz
0
t ≡ plim M̂xz.

A consistent estimator of Mzx is, of course, M̂zx; with a consistent estimator V̂ of V0 using either the

Eicker-White (for serially uncorrelated data) or Newey-West (for serially correlated data) methods applied

to (yt − x0tβ̂IV )zt, large-sample confidence regions and hypothesis tests can be constructed using normal

sampling theory.

Overidentification and Two-Stage Least Squares (2SLS)

If there are more instrumental variables than regressors, i.e., L > K (called the “overidentified” case),

this method-of-moments approach must be generalized, since the IV estimating equations would require

solution of an overdetermined system of linear equations (i.e., more equations than unknown β̂ components)

which will not exist except in rare (probability zero) cases. Of course, we could always “throw out” some

of the “extra” instruments to make L = K. A more general strategy is to premultiply the L-vector zt by

some (K ×L) matrix Π̂0 — which could, in general, be estimated (random) — then use the K-vector Π̂0zt as

instruments. A special case would be Π̂0 = (IK , 0), which would delete the last L−K components of zt; in

general, we will require that the square matrix Π̂0Z 0X will have full rank K, which implies that the rank

of Π̂ must be K (with probability one). Since the dimension of ZΠ̂ is the same as for X, namely, N ×K,

we can just substitute ZΠ̂ into the IV estimator formula to define a generalized instrumental variable or

generalized method of moments estimator of β:

β̂GIV = β̂GIV (Π̂) = (Π̂
0Z 0X)−1(Π̂0Z 0y),

whose asymptotic distribution will depend on the particular sequence of Π̂ matrices used, except in the

just-identified case L = K, where this formula reduces to the previous IV formula (because the K × K
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matrix Π̂ must then be invertible by assumption). Assuming

Π̂→p Π

for some fixed, full-rank (L×K) matrix Π, and assuming that 1
T Z

0X →p Mzx and 1√
T
Z 0ε→d N (0, V0) as

before, then it is easy to verify that the asymptotic distribution of the GIV estimator is

√
T (β̂ − β)→d N (0, [Π0Mzx]

−1(Π0V0Π)[MxzΠ]
−1),

which depends on Π. As before, we can consistently estimate this asymptotic covariance matrix using either

the Eicker-White or Newey-West approaches, depending on whether the data are serially- correlated.

The traditional choice of the “combination” matrix Π̂ is

Π̂ = (Z 0Z)−1Z 0X,

so that Π̂ is the (L × K) matrix of least-squares coefficients for the regression of the columns of X on

the matrix Z, which should certainly yield a matrix ZΠ̂ of fitted values of this regression which will be

“correlated” with X. The resulting estimator of β is called the two-stage least squares (2SLS) estimator,

and has the algebraic form

β̂2SLS = (X
0Z(Z 0Z)−1Z 0X)−1(X 0Z(Z 0Z)−1Z 0y).

= (X̂ 0X)−1X̂ 0y,

where X̂ = ZΠ̂ is the matrix of predicted values of X from the regression of X on Z. In this procedure,

we first fit a “reduced form” regression for xt in the first stage,

xt = Π
0zt + vt,

and use the fitted values as IVs in the second-stage regression. By a law of large numbers, we expect that

Π̂→p Π0 ≡ {E(ztz0t)}−1E(ztxt) ≡M−1
zz Mzx;

substituting this into the previous formula for the asymptotic distribution of the GIV estimator gives a

mighty unwieldy general formula for the asymptotic distribution of the 2SLS estimator,

√
T (β̂ − β)→d N (0, [MxzM

−1
zz Mzx]

−1(MxzM
−1
zz V0M

−1
zz Mzx)[MxzM

−1
zz Mzx]

−1).
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If the error terms εt are assumed to be independent of zt, as was traditionally assumed, this expression

simplifies quite a bit; then

Vo = E[ε2t ztz
0
t] = E[ε2t ] ·E[ztz0t] = σ2Mzz,

so that
√
T (β̂ − β)→d N (0, σ2[MxzM

−1
zz Mzx]

−1)

when the errors are independent of the instruments. The constant variance σ2 could be estimated by the

sample average of the squared values of the residuals et = yt − x0tβ̂2SLS, as for the classical regression

model, and

plim
1

T
X̂ 0X̂ =MxzM

−1
zz Mzx.

Because Z(Z 0Z)−1Z 0 is an idempotent (projection) matrix, there are several other algebraically equiv-

alent ways of writing the 2SLS estimator. In Theil’s interpretation of the 2SLS estimator,

β̂2SLS = (X̂
0X̂)−1X̂ 0y = [(X 0Z(Z 0Z)−1Z 0)(Z(Z 0Z)−1Z 0X)]−1X̂ 0y,

so β is estimated by getting the fitted values of X on Z, then regressing y on X̂ using the classical least

squares formula. Another interpretation, suggested by Basmann, uses the fact that

β̂2SLS = (X̂
0X̂)−1X̂ 0ŷ = (X 0PzzPzzX)

−1X 0PzzPzzy

= (X 0PzzX)
−1X 0Pzzy = (X̂

0X)−1X̂ 0y,

for Pzz ≡ Z(Z 0Z)−1Z 0 and ŷ = Pzzy the vector of fitted values of the least-squares regression of y on Z.

Other interpretations of 2SLS, some to be found on homework problems, exist.

Generalized Method of Moments (GMM)

In the general case where the errors are heteroskedastic and/or serially correlated, so that V0 6= σ2Mzz,

the 2SLS estimator will not have the smallest asymptotic covariance matrix. To obtain an efficient es-

timator, we want to choose the combination matrix Π = plim Π̂ to minimize the asymptotic covariance

matrix

AV (β̂GIV (Π)) = [Π
0Mzx]

−1Π0V0Π[MxzΠ]
−1

of the generalized IV estimator (in the matrix sense). The solution can be found by transforming the

model to an asymptotic version of the Generalized Regression model, and then finding the appropriate GLS
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estimator for the transformed model. First, premultiply the linear model y = Xβ + ε by the normalized

matrix (1/
√
T )Z 0, so that

ỹ ≡ 1√
T
Z 0y

=
³

1√
Γ
Z 0X

´
β +

³
1√
T
Z 0ε

´
≡ X̃β + ε̃,

which defines a new linear model relating the L-dimensional vector ỹ to the (L×K)matrix X̃ of transformed

regressors. By the Central Limit Theorem and the assumption Mzε = 0 = E[ε̃], we know that

ε̃→ N (0, V0),

and we can also show that the asymptotic covariance of X̃ and ε̃ is zero, so for large T the transformed

variables ỹ and X̃ obey the Generalized Regression model (with approximately normal errors, no less!).

The appropriate (infeasible) GLS estimator of β for this model is

β̃GLS ≡ (X̃ 0V −10 X̃)−1X̃ 0V −10 ỹ

=
³

1√
T
X 0ZV −10

1√
T
Z 0X

´−1 ³
1√
T
X 0ZV −10

1√
T
Z 0y

´
= [X 0ZV −10 Z 0X]−1X 0ZV −10 Z 0y

≡ β̂GMM ,

which is called the optimal generalized method of moments estimator. This is in the form of a generalized

IV estimator, with combination matrix of the form.

Π̂∗ = V −10 (
1

T
Z 0X).

To construct a feasible version of this estimator, we would need a consistent estimator of

V0 = AsyV ar(ε̃)

= AsyV ar

µ
1√
T
Z 0ε

¶
,
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which we could obtain by applying the Eicker-White or Newey-West procedures to the residuals from a

2SLS fit of y on X using Z as instruments. For either the infeasible or feasible versions of this GMM

estimator, the asymptotic distribution will be normal, and of the form

√
T (β̂GMM − β)→d N (0, [MxzV

−1
0 Mzx]

−1),

which reduces to the asymptotic distribution of 2SLS in the special case that ε is independent of Z. In

general, though, we can show that the asymptotic covariance matrix of 2SLS will be at least as large (in

the matrix sense) as that for GMM using the same arguments that show that the asymptotic variance of

LS exceeds that of GLS for the Generalized Regression model.

Many variations on 2SLS and GMM exist. For example, we may have a system of equations

yj = Xjβj + εj , j = 1, . . . , J,

with contemporaneous correlation across the components of εj over j. A combination of 2SLS and Zell-

ner’s Seemingly Unrelated Equations (SUR) estimation method yield something known as three-stage least

squares (3SLS), which is efficient if the error terms are normal and independent of Z; otherwise, the GMM

and SUR approaches can be combined to get more efficient joint estimators of all the unknown coefficient

vectors {βj}. The IV and GMM approaches are also naturally applicable to nonlinear systems of equations,

but the estimators do not have nice closed-form expressions for such models, and the derivation of their

asymptotic properties is much more complicated.
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