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Overview

Like Zellner’s seemingly unrelated regression models, the dependent and explanatory variables for

panel data models (or pooled cross section and time series models) are typically denoted using two (or

more) subscripts, where the different subscripts indicate different characteristics of the variable — usually

indicating both individual and time, but possibly denoting location, group, etc. Some variants of the model

(“fixed effects” models) can be viewed as special cases of the classical linear regression model, while others

(“random effects” models) are special cases of the generalized regression model.

The simplest model assumes that the dependent variable yit satisfies a linear model with an intercept

that is specific to individual i,

yit = x
0
itβ + αi + εit, i = 1, ..., N ; t = 1, ..., T.

This is known as a balanced panel, since all individual observations are assumed observable for every time

period (and vice versa); here, Kronecker product notation will useful when using matrix notation for the

data set. In contrast, clustered or grouped data models typically assume the number of observations per

group i can vary across groups, which in this notation would replace the common number of “time periods”

T with a groups-specific number Ti of individuals.

As for seemingly unrelated equations, the number of time periods T in most panel data applications

is usually small relative to the number of individuals N. However, unlike SUR models, where it is more

natural to “stack” observations by the second subscript first — that is, across individuals for each equation,

and then stack by equation — for panel data models the usual convention is to stack observations in the

opposite order of subscripts, that is, first collecting the observations across time for each individual as

yi
(T×1)

= Xi
(T×K)

β + αiιT + εi

for i = 1, ...,N, where yj and εj are T -vectors and Xi is a T ×K matrix,

yi
(T×1)

=

⎛⎜⎜⎝
yi1
yi2
...
yiT

⎞⎟⎟⎠ , εi
(T×1)

=

⎛⎜⎜⎝
εi1
εi2
...
εiT

⎞⎟⎟⎠ , Xi
(T×K)

=

⎛⎜⎜⎝
x0i1
x0i2
...
x0iT

⎞⎟⎟⎠ ,
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and ιT is a T -dimensional column vector of ones. Then, stacking the entire data set by individuals,

y
(NT×1)

=

⎛⎜⎜⎝
y1
y2
...
yN

⎞⎟⎟⎠ , ε
(NT×1)

=

⎛⎜⎜⎝
ε1
ε2
...
εN

⎞⎟⎟⎠ , X
(NT×K)

=

⎛⎜⎜⎝
X1
X2
...
XN

⎞⎟⎟⎠ ,

and defining

α
(N×1)

=

⎛⎜⎜⎝
α1
α2
...
αN

⎞⎟⎟⎠ ,

the data can be represented by the single (relatively simple) equation

y = Xβ +Dα+ ε,

where

D
(NT×N)

≡ IN ⊗ ιT .

In panel data (or clustered data) models, the “individual intercept” αi is meant to control for the effect

of unobservable regressors that are specific to individual i, so that

αi = w
0
iγ

where the unobservable, individual-specific regressors wi might include “ability,” “intelligence,” “family

background,” “ambition,” etc. Different assumptions on the relationship of the observable regressors xit to

the intercept term αi, and thus to the unobservable regressors wi, yield different variations on the classical

and generalized regression models. With this notation, it is understood that the matrix X does not include

a column vector of ones, since otherwise a linear combination of the matrixD of individual-specific “dummy

variables” would yield this vector of ones,

D · ιN = (IN ⊗ ιT )(ιN ⊗ 1)

= (IN · ιN ⊗ ιT · 1)

= ιNT ,

so that the combined matrix [X,D] of regressors would not have full column rank.
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“Fixed Effect” Model

When the individual intercepts αi are treated as fixed constants, which can be arbitrarily related

to the regression vectors xit, the resulting model, known as the fixed effect model, can be viewed as a

special case of the classical linear model under the usual assumptions that X is nonrandom, [X,D] is of

full column rank, E(ε) = 0, and V(ε) =σ2INT . By the usual “residual regression” formulae, the classical

LS estimator of the subvector β of regression coefficients is

β̂FE =
³
X̃0X̃

´−1
X̃0ỹ,

where ỹ ≡
³
INK −D(D0D)−1D0

´
y are the residuals of a regression of y onD, with an analogous definition

of X̃. (The subscript “FE” stands for ”fixed effects”.) By the special structure of the matrix D (which

has a lot of ones in it), it is straightforward to show that the subvector of ỹ corresponding to individual i

can be expressed as

ỹi = (IT − ιT (ι0T ιT )−1ι0T )yi

= yi − yi·ιT ,

where yi· is the average value of yit over t,

yi· ≡
ι0Tyi
ι0T ιT

=
1

T

TX
t=1

yit.

This result can be interpreted as follows: from the original structural equation

yit = x
0
itβ + αi + εit

it follows that

yi· = x
0
i·β + αi + εi·,

and subtracting the second equation from the first yields

yit − yi· = (xit − xi·)0 β+(αi − αi) + (εit − εi·)

= (xit − xi·)0 β + (εit − εi·) ,

so deviating yit and xit from their time-averages eliminates the “fixed effect” αi from the structural equa-

tion, much as taking deviations from means eliminates the intercept term in a classical regression model

(with intercept).
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An alternative interpretation of the fixed effect estimator β̂FE uses first-differences over time, rather

than deviations from time-averages, to eliminate the fixed effect αi:

∆yit ≡ yit − yi,t−1

= ∆x0itβ +∆αi +∆εit

= ∆x0itβ +∆εit,

for i = 1, ..., N and t = 2, ..., T. For balanced panels, LS regression of ∆yit on ∆xit gives identical results

to LS regression of yit − yi· on xit − xi·.

Considering either interpretation, it is clear that the regression coefficients on any component of xit

that is constant over time (xit ≡ xis) will be unidentified, since that component of either ∆xit or xit − xi·

will be identically zero. It is only variation in the regressors across time for a given individual that allows

the corresponding coefficient to be identified relative to the individual-specific, time-invariant intercept αi.

If the error terms εit are i.i.d. and normally distributed with zero mean and variance σ2, then the fixed

effect estimator β̂FE is also the maximum likelihood (ML) estimator of β, and the ML estimator of σ2 is

σ̂2ML =
1

NT

NX
i=1

TX
t=1

³
yit − yi· − (xit − xi·)0 β̂FE

´2
.

This estimator is biased, and, if N →∞ for fixed T (a reasonable approximation if N is large relative to

T ), the ML estimator of σ2 is also inconsistent, with

σ̂2ML
p→ (T − 1)

T
σ2.

This inconsistency of the ML estimator of σ2 is a classic example of the nefarious “incidental parameters

problem” described by Neyman and Scott. Because the number N of intercept terms αi increases to infinity

as N increases, and the corresponding ML estimator

α̂i ≡ yi· − x0i·β̂FE

p→ αi + εi·

is inconsistent for αi, this inconsistency translates into inconsistency of the ML estimator σ̂2ML. Fortunately,

this doesn’t cause inconsistency of β̂FE, and an unbiased and consistent estimator

s2ML =
1

N(T − 1)−K

NX
i=1

TX
t=1

³
yit − yi· − (xit − xi·)0 β̂FE

´2
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of σ2 is readily available.

It is worth mentioning that the “fixed effect” label does not mean that the regressors xit or intercept

terms αi must be viewed as nonrandom, or “fixed” in a statistical sense; they may be indeed be viewed

as random and jointly distributed, provided the conditions on εit are assumed to hold conditional on the

realizations of X and ε. What characterizes a “fixed effect” model is that no structure on the relationship

between αi and xit is imposed.

“Random Effect” Model

A drawback of the fixed-effect model is its failure to identify any components of β corresponding to

regressors that are constant over time for a given individual; for such coefficients to be identified, stronger

conditions on the relation of the individual-specific intercept αi to the regressors xit must be imposed. The

random effects model uses a simple but very strong assumption to restrict this relationship: namely, that

the intercept αi is a random variable which is not related to xit and εit, in the sense that

E(αi) = α, V ar(αi) = σ2α, and Cov(αi, εit) = 0,

all assumed independent of xit. (These moments should be interpreted as conditional on X if the regressors

are viewed as random.) Relabeling the variance of εit as V ar(εit) ≡ σ2ε, the original panel data model can

be rewritten as

yit = x
0
itβ + α+ uit,

where

uit ≡ (αi − α) + εit

has

E(uit) = 0,

V ar(uit) = σ2α + σ2ε,

Cov(uit, uis) = σ2α, and

Cov(uit, ujs) = 0 if i 6= j.

This implies that the model can be written in matrix form as

y = Xβ+αιNT + u,
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where

E(u) = 0,

V(u) = σ2αDD
0 + σ2εINT

≡ σ2εΩ,

with

Ω ≡ INT +
σ2α
σ2ε
DD0

= INT +
σ2α
σ2ε

¡
IN ⊗ ιT ι0T

¢
.

In the unlikely event that the ratio θ ≡ σ2α/σ
2
ε were known — and thus Ω did not contain unknown

parameters — Aitken’s GLS estimator of β and α would have the usual formµ
β̂GLS

α̂GLS

¶
= (Z0Ω−1Z)−1Z0Ω−1y,

where Z ≡ [X, ιNT ] . Like the fixed effects estimator, there are a couple algebraically-equivalent represen-

tations of the GLS estimator β̂GLS of the slope coefficients. One interpretation is the coefficients of a LS

regression of y∗it on x
∗
it, where

y∗it ≡ yit − yi· + ω · (yi· − y··),

x∗it ≡ xit − xi· + ω · (xi· − x··),

for

y·· ≡
1

NT

NX
i=1

TX
t=1

yit,

x·· ≡
1

NT

NX
i=1

TX
t=1

xit,

and

ω ≡

s
σ2ε

Tσ2ε + σ2α

≡
r

1

Tθ + 1
,

where as above θ ≡ σ2α/σ
2
ε. As the variability of the random effect σ2α declines to zero for σ

2
ε fixed, ω → 1,

and the GLS estimator reduces to the usual LS regression of the deviations yit − y·· in the dependent
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variable from its mean value on the corresponding deviations xit − x·· in regressors. Using this result, we

can obtain another interpretation of the GLS estimator as as a matrix-weighted average

β̂GLS = Aβ̂FE + (I−A)β̂B

of the fixed effect estimator β̂FE defined above and the “between estimator”

β̂B ≡
"

NX
i=t

(xi· − x··)(xi· − x··)0
#−1 NX

i=t

(xi· − x··)(yi· − y··)

of β coming from the LS regression of the time-averages yi· on xi· and a constant. (The form of the matrix

A = A(θ) is given in Ruud’s textbook.)

When the variances σ2α and σ2ε are unknown (as is always the case), an estimator of θ ≡ σ2α/σ
2
ε or

ω ≡ (1 + Tθ)−1/2 is needed to construct a Feasible GLS estimator. As noted above, the unbiased estimator

s2FE of σ2ε based upon the fixed-effect estimator β̂FE will be consistent; for fixed T, the corresponding

variance estimator for the “between” estimator

s2B ≡
1

N −K − 1

NX
i=1

³
(yi· − y··)− (xi· − x··)0 β̂B

´2
will be unbiased and consistent for V ar(εi·) = σ2α +

¡
σ2ε/T

¢
. Hence

ω̂ ≡ s2FE
Ts2B

p→ ω,

and can be used in place of ω to construct a Feasible GLS estimator. Note that the corresponding estimator

of σ2α,

s2α ≡ s2B −
¡
s2FE/T

¢
,

is not guaranteed to be positive.

Time Effects and “Differences in Differences”

In addition to the assumption that the “intercept term” varies across individuals i, it might also

be reasonable to assume that it varies across time t; defining ηt to be the time-specific intercept term, a

generalization of the basic panel data model would be

yit = x
0
itβ + αi + ηt + εit, i = 1, ..., N ; t = 1, ..., T,

which, in matrix form, might be written as

y = Xβ +Dα+Rη + ε,
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for

η
(T×1)

=

⎛⎜⎜⎝
η1
η2
...
ηT

⎞⎟⎟⎠
and

R
(NT×T )

≡ ιN ⊗ IT .

Since

DιN = ιNT = RιT ,

the columns of the matrix of regressors [X,D,R] would not be linearly independent, and a normalization

on α or η would need to be imposed, e.g., η1 ≡ 0, which would imply that the first column of R could

be dropped, along with the first component of η. Treating the α and η parameters as fixed effects, the

corresponding fixed effect estimator of β is obtained by a regression of ỹit on x̃it, where

ỹit ≡ yit − yi· − y·t + y··,

with

y·t ≡
1

N

NX
i=1

yit

and corresponding definitions for x̃it and x·t.

If T is small (relative to N), the time-specific intercepts η are typically treated as fixed, which implies

that the coefficients of any regressors that are time-specific (i.e., do not vary across individuals) would

be unidentified. If such coefficients are of interest, the η coefficients can be treated as random effects,

with corresponding variance component σ2η, along with the individual effects α. The corresponding GLS

estimator of β would combine the fixed effects estimator with two different “between” estimators, one

involving the regression of yi· on xi· and a constant and the other regressing y·t on x·t and a constant. The

details are a bit messy, and can be found in many graduate texts.

A special case of the fixed effects model with individual- and time-specific effects is the so-called

“differences in differences” (or “diffs in diffs”) framework, a name more descriptive of the estimation

method than the model itself. The simplest version of this model has T = 2 and a single time-varying

regressor xit which is binary. Specifically the N individual observations are classified into two groups, the

“controls” (for i = 1, ..., Nc), for which xit ≡ 0, and the “treated” (i = Nc + 1, ..., N), for which xi1 = 0
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and xi2 = 1. The scalar coefficient β is the “treatment effect,” i.e., the change in the average value of the

dependent variable between the pre-treatment (t = 1) and post-treatment (t = 2) periods. To repeat,

xit =

⎧⎨⎩
0
0
1

if i = 1, ..., Nc,
if i = Nc + 1, ..., N, and t = 1;
if i = Nc + 1, ..., N, and t = 1.

Writing the structural equation

yit = xitβ + αi + ηt + εit, i = 1, ..., N ; t = 1, 2,

and taking first differences yields

∆yi2 = yi2 − yi1

= ∆xi2β +∆η2 +∆εi2

=

½
∆η2 +∆εi2 if i = 1, ..., Nc

β +∆η2 +∆εi2 if i = Nc + 1, ..., N.

A classical LS regression of ∆yi2 on a constant and ∆xi2 yields

β̂FE = ∆ȳ
2 −∆ȳ1,

where

∆ȳ1 ≡ 1

Nc

NcX
i=1

(yi2 − yi1) and

∆ȳ2 ≡ 1

N −Nc

NX
i=Nc+1

(yi2 − yi1)

are the average changes in yit for the control and treatment groups, respectively. So the estimate of the

treatment effect is the difference in the average change in the dependent variable across the two groups.

As Nc and N −Nc tend to infinity, it is easy to see that

∆ȳ1
p→ ∆η2,

∆ȳ2
p→ β +∆η2,

so the diffs-in-diffs estimator of the treatment effect is consistent. Note that, with this fixed-effects ap-

proach, there is no need to assume the treatment assignment (or “choice”) is independent of the individual

effect αi or time effect ηt.

9



Robust Covariance Estimation

Like other GLS applications, statistical inference with panel data can be sensitive to heteroskedas-

ticity or serial correlation of the error terms. Writing the panel data model as

yit = z
0
itθ+uit,

where z0it includes the row vector of regressors x
0
it and the relevant row of the matrices D and R of dummy

variables for the fixed effect, we may want to assume that the errors uit are uncorrelated across individuals

i but have arbitrary variance-covariance patterns over time t for each individual i. That is, suppose

E(uit) = 0,

Cov(uit, uis) = σi,ts,

Cov(uit, ujs) = 0 if i 6= j.

Stacking the observations in the usual matrix form

y = Zθ + u,

it follows that

V(u) ≡ Σ =

⎡⎢⎢⎣
Σ1 0 ... 0
0 Σ2 ... ...
... ... ... 0
0 ... 0 ΣN

⎤⎥⎥⎦
for

Σj ≡ [σj,ts] .
(T×T )

In the absence of a parametric form for Σj , it would be reasonable to use the classical least squares

estimator

θ̂LS = (Z
0Z)−1Z0y

of the θ coefficients (i.e., the slope coefficients β and any individual or time fixed effects), which should be

consistent and asymptotically normally distributed under fairly general conditions on u. As in other GLS

applications, the trick is to find a consistent estimator for

plim
1

N
V(θ̂LS) = plim

µ
1

N
Z0Z

¶−1µ 1
N
Z0ΣZ

¶µ
1

N
Z0Z

¶−1
,
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the asymptotic covariance matrix of the LS estimator. The middle matrix is the tricky one; since

1

N
Z0ΣZ ≡ 1

N

NX
i=1

TX
t=1

TX
s=1

σi,tszitz
0
is,

the same reasoning that led to the Huber-Eicker-White robust covariance matrix estimator yields

1

N
Z0Σ̂Z ≡ 1

N

NX
i=1

TX
t=1

TX
s=1

ûitûiszitz
0
is

as a consistent estimator of the middle matrix of plim 1
NV(θ̂LS), where ûit are the LS residuals

ûit ≡ yit − z0itθ̂LS .

This estimator will be consistent as N → ∞ under similar conditions as for consistency of the Huber-

Eicker-White heteroskedasticity-robust covariance estimator. This robust covariance matrix estimator

immediately extends to clustered data problems, where the number of “time periods” or “group members”

Ti depends upon the group index i; the formulae above are easily extended by changing “T” to “Ti”

throughout.

Lagged Dependent Variables in Panel Data

A more serious inference problem arises when the regressors include a lagged dependent variable

in models with fixed effects. Consider the special case with T = 2 and

yit = x
0
itβ+γyi,t−1 + αi + εit,

where the {αi} are considered fixed effects and εit satisfies the usual Gauss-Markov assumptions. Assuming

yi0 is observable for all i and considered a nonrandom “starting value”, the fixed-effect estimator of β and

γ is obtained by a LS regression on the differenced model

∆yi2 = yi2 − yi1

= ∆x0i2β+γ∆yi1 +∆εi2.

But now

Cov(∆yi1,∆εi2) = Cov ((yi1 − yi0), (εi2 − εi1))

= −Cov(yi1, εi1)

= −V ar(εi1)

6= 0,
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so the LS regression of ∆yi2 on ∆xi2 and ∆yi1 will yield biased and inconsistent estimators of β and γ in

general. This problem is the same as the problem of inconsistency of LS with lagged dependent variables

and serially-correlated errors; elimination of the fixed effect by differencing (or deviating from individual

means) yields a differenced error term which is serially correlated, and thus related to the lagged dependent

variable. A solution to the inconsistency of the LS estimator for this problem is the “instrumental variables”

method to be discussed next.
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