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First-Order Serial Correlation

The general problem of serially correlated disturbances in the linear regression model

yt = x
0
tβ + εt, t = 1, . . . , T,

is to find methods to accommodate lack of independence in the disturbances across observations, i.e.,

C(εt, εs) 6= 0 if t 6= s. Unlike the case of heteroskedasticity, we usually assume the error terms are

stationary, so that V ar(yt) = σ2y is a constant across observations. The usual model for serial correlation

assumes that the errors are first-order autoregressive (or AR(1)),

εt = ρεt−1 + ut,

where the “primitive” error terms ut are assumed to be mutually uncorrelated (or, stronger still, i.i.d.)

with E(ut) = 0 and V (ut) = σ2u. By the usual AR(1) calculations, assuming |ρ| < 1, we get E(εt) = 0,

C(εt, εs) = σ2u · ρ|t−s|/(1 − ρ2), so the covariance matrix of the vector of error terms ε is of the form

σ2u ·Ω ≡ σ2u · [ωts], with

wts = ρ|t−s|/(1− ρ2).

Since one matrix square root H of Ω−1 (defined so that H0H = Ω−1) has the form

H ≡

⎡⎢⎢⎣
p
1− ρ2 0 . . . 0
−ρ 1 0 . . .
0 −ρ 1 0
0 0 −ρ 1

⎤⎥⎥⎦ ,
the Feasible GLS estimator β̂FGLS = (X

0Ω̂−1X)−1X0Ω̂−1y for this model can be computed by a regression

of transformed dependent variables y∗t on corresponding regressors x
∗
t , where

y∗1 =
q
1− ρ̂2 · y1, x∗1 =

q
1− ρ̂2 · x1,
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and for t = 2, ..., T,

y∗t = yt − ρ̂yt−1,

x∗t = xt − ρ̂xt−1.

Ignoring the serial dependence in the error terms, we could use the classical least squares estimator

β̂LS = (X
0X)−1X 0y to estimate β; this will be inefficient, but still consistent and asymptotically normal

with

√
T (β̂LS−β)→d N (0,D−1VD−1),

where

D = plim
1

T
X0X,

V = plim
1

T
X0ΣX.

However, the usual LS standard errors will be inconsistent, and might generally be expected to be too

low, making estimated coefficients appear more “significant.” To be more precise, suppose the regressors

are stationary, and let zt = x0tβ − x̄0β be the deviations of the true regression functions from their mean

values, with r =cov(x0tβ,x
0
t−1β) being their first-order autocorrelation coefficient. Then if sgn(r) = sgn(ρ)

(which is typical for economic applications, with both r and ρ positive), the R2 from the classical least

squares fit will be biased toward one — i.e.,

plim
z0z

(y − ȳ)0(y− ȳ)
>> plim

z0Ω−1z

(y− ȳ)0Ω−1(y − ȳ)
,

where the left-hand side is the probability limit of the usual R2 measure and the right-hand side corresponds

to the correct GLS version. Indeed, unusually high values of R2 (around 0.9) in time-series regressions

without lagged dependent variables are generally associated with low values of the Durbin-Watson (DW)

statistic discussed below, indicating that the serial correlation in the dependent variable is wrongly being

attributed to the regression function, not the error terms.

To account for possible serial correlation, we can adopt either a “structural” or a “nonstructural”

approach. In the “structural” approach, we would model the serial correlation process in terms of a few

parameters (like assuming the errors are first-order autoregressive, as is traditional), and either test for

lack of serial correlation (e.g., test H0 : ρ = 0) and/or use estimates of the serial correlation parameters to
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do feasible GLS. A “nonstructural” alternative would stick with classical least squares to estimate β̂LS , but

would construct consistent estimates of the true asymptotic covariance matrix D−1VD−1of least squares.

The Sample Autocorrelation Coefficient

Assuming that the error terms are AR(1) (the simplest version of the ”structural approach), a simple

test for the null hypothesis that ρ = 0 could be based upon the least squares residuals e = y−Xβ̂LS . Since

these residuals are consistent estimators for the true error terms ε, which have a simple linear relation

to their lagged values, a natural estimator of ρ would regress et on et−1 using least squares, yielding the

estimator

ρ̂ =

PT
t=z etet−1PT
t=z e

2
t−1

.

In general, assuming the linear model with AR(1) errors is correctly specified, a suitable central limit

theorem can be invoked to show that

√
T (ρ̂− ρ)→d N (0, 1− ρ2),

so under the null hypothesis H0 : ρ = 0,

√
T ρ̂→d N (0, 1),

implying that Ho should be rejected (against a one-sided alternative HA : ρ > 0) if
√
T ρ̂ exceeds the

upper α critical value z(α) of a standard normal distribution. It is worth noting that the validity of

this result assumes that xt and εs are independent (or at least uncorrelated) across all t and s, so the

regressors cannot include lagged dependent variables (otherwise, the classical LS estimator β̂LS of β will

be inconsistent under the alternative hypothesis).

The Durbin Watson Test

The traditional test statistic for (first-order) serially-correlated errors is the Durbin-Watson statistic,

which is a close relative to the “natural” test statistic
√
T ρ̂. This statistic, based on the least-squares

residual vector e, is defined as

DW =
TX
t=2

(et − et−1)
2/

TX
t=1

e2t .
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By expanding the square and collecting terms, it is easy to verify that

DW ∼= 2(1− ρ̂)

for ρ̂ defined above, where the approximation requires dropping a term or two in the summation of the

squared residuals in the denominator. Thus, values of DW near zero indicate positively-autocorrelated

residuals, and values near 4 suggest negative serial correlation. An asymptotically-equivalent version of

the one-sided test for autocorrelation based on ρ̂ would reject Ho if

DW < 2(1− z(α)/
√
T ),

where z(α) is the upper standard normal critical value for a size α test. The traditional interest in the

Durbin-Watson test in econometrics comes from a desire for an exact (not asymptotic) test under the

assumption of normally-distributed error terms. Durbin and Watson showed that, while an exact critical

value for the DW statistic under H0 : ρ = 0 would depend in a complicated way on the matrix X of

regressors, some bounds exist for the exact critical values which only depend on the number of regressors,

K, and the significance level α. That is, for a one-sided test there are bounds dU ≡ dU (K,α) and

dL = dL(K,α) < dU such that

Pr{DW < dL} ≤ α and Pr{DW > dU} ≤ 1− α

under the null hypothesis ρ = 0, so an exact test would always reject ifDW < dL and accept ifDW > dU . If

the calculated DW statistic falls between the bounds dL and dU the test would be said to be ”inconclusive,”

requiring either more complicated calculations to derive the exact critical value (depending upon the

particular X matrix) or an asymptotic approximation. Since the asymptotic critical value 2(1− z(α))/
√
T

always lies between the tabulated bounds, it is probably simpler from the start just to use the asymptotic

test, which would yield identical results to the exact ”bounds” test whenever the latter was not inconclusive.

The Breusch-Godfrey Test

While the Durbin-Watson test is formulated with the specific alternative hypothesis of AR(1) error

terms in mind, it should have some power in detecting other forms of serial correlation, provided E[εtεt−1] 6=

0 under the alternative hypothesis. Still, more powerful tests for higher-order serial correlation might

involve higher-order autocorrelation estimators. Supposing the error terms are AR(p) for p > 1, i.e.,

εt = ρ1εt−1 + . . .+ ρpεt−p + ut, ut ∼ i.i.d., E(ut) = 0, V (ut) = σ2,
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a straightforward extension of the preceeding asymptotic testing procedure, proposed by Breusch and

Godfrey, would regress the least squares residual et on p lagged values et−1, . . . , et−p using least squares

(again, without a constant term) and test for joint singificance of these lagged values. Letting ût be defined

as the residuals from this regression,

ût = et − ρ̂1et−1 − . . .− ρ̂pet−p,

the Lagrange Multiplier test statistic for H0 : ρ1 = ... = ρp = 0 (assuming ut is normally distributed) is

LM = TR2,

where

R2 ≡ 1−
³ PT

t=p+1 û
2
t/
PT

t=p+1 te
2
t

´
is the “non-constant-adjusted” R2 for this residual regression. An asymptotic test of H0 would reject if the

LM statistic exceeded the upper α critical value of a chi-squared distribution with p degrees of freedom.

Feasible GLS

Returning to the case of AR(1) errors, once it is determined that ρ 6= 0 (through prior reasoning or

diagnostic testing), feasible GLS can be used to obtain a more efficient estimator of the original slope

coefficients β of the linear model for y. There are several variations available for FGLS, depending on

particular estimators of ρ and certain computational details. Some of these variants, typically named after

the author(s) who proposed them, are as follows:

(1) Prais-Winsten: Use ρ̂ = 1−DW/2 as an estimator of ρ, with

β̂ = (X
0
Ω̂−1X)−1X0Ω̂−1y

the standard FGLS estimator of β.

(2) Cochrane-Orcutt: Defining the residuals e = y−Xβ̂ in terms of the current value of β̂, iterate be-

tween ρ̂ =
PT

t=2 etet−1/
PT

t=2 e
2
t−1 and β̂ = (X

0
Ω̂−1X)−1X0Ω̂−1y, starting with the least squares estimator

β̂LS .

(3) Durbin’s Method: Use the GLS transformation

yt − ρyt−1 = (xt − ρxt−1)
0β + ut, t = 2, . . . , T,
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to obtain the linear model

yt = ρyt−1 + x
0
tβ + x

0
t−1γ + ut, t = 2, . . . , T,

ignoring the restriction γ = −ρβ. Regressing yt on yt−1, xt, and xt−1 (deleting redundant constants when

necessary) yields an estimator ρ̂ of ρ as the coefficient on yt−1, which is then used in the FGLS formula for

an estimator of β.

(4) Hildreth-Liu: Minimize the transformed sum of squared residuals,

SSR(β, ρ) ≡ (y − xβ)0Ω−1(ρ)(y − xβ),

over β and a grid of values of ρ, which is essentially a nonlinear least squares variation on Durbin’s method

which imposes the restriction γ = −ρβ.

(5) Maximum Likelihood: Maximize the average log-likelihood function

L(β, ρ, σ2) = constant− 1

2Tσ2
SSR(β, ρ)− 1

2
log σ2 − 1

T
log(1− ρ2)

over β, ρ, and σ2.

In all of these variations, the resulting estimators of β and ρ will have the same asymptotic properties,

provided the form of the serial correlation is correctly specified. These approaches can be extended (some

more conveniently than others) to deal with AR(p) errors, though the simplest approach would use the

estimated autoregression coefficients from the Breusch-Godfrey test to construct estimates of β using the

generalized differenced model

y∗t = yt − ρ1yt−1 − . . .− ρpyt−p

≡ (xt − ρ1xt−1 − . . .− ρpxt−p)
0β + ut

= (x∗t )
0β + ut

using observations from t = p+ 1, ..., T.

Testing with Lagged Dependent Variables

If the regressors xt include lagged values of the dependent variable yt, the results discussed above are

not applicable. As noted above, the classical least squares estimators of β will be inconsistent if ρ 6= 0, and
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even when ρ = 0 the usual test statistic
√
T ρ̂ has a distribution which is more tightly distributed around

zero than a standard normal distribution — i.e.,

√
T ρ̂→d N (0, ν),

for ν << 1 — so the actual significance level of the usual test will be much lower than the nominal size,

making it more difficult to reject the null hypothesis. To obtain consistent estimators of β with serially-

correlated errors and lagged dependent variables, other techniques (like instrumental variables estimation)

will be needed. To test H0 : ρ = 0 in a model with lagged dependent variables as regressors, Durbin

proposed a correction to the usual statistic
√
T ρ̂, now called “Durbin’s h,” which is of the form

h ≡
√
T ρ̂q

1− T · [SE(β̂1)]2
,

where ”SE(β̂1)” is the estimated standard error for the least-squares coefficient on the first lagged depen-

dent variable yt−1 in the original regression of yt on xt. Though this h statistic has a limiting standard

normal distribution under the null hypothesis, there is no guarantee that the denominator will be well-

defined in finite samples.

Another approach to testing for serially-correlated residuals extends the Breusch-Godfrey testing ap-

proach when lagged dependent variables appear in xt. In this case, to test whether εt is AR(p), a second-

step regression of the least-squares residuals et on et−1, . . . , et−p, and xt (including all lagged dependent

variables) is used, with T ·R2 from this second-stage regression being asymptotically χ2(p) under the null

hypothesis that all the serial correlation coefficients are zero.

Consistent Asymptotic Covariance Matrix Estimation

Assuming now that the regressor matrix X does not include lagged endogenous variables, the “non-

structural” approach to dealing with serially-dependent errors would just modify the standard errors of

the classical least squares estimator

β̂LS= (X
0X)−1X0y

to account for possible serial correlation, and even for possible heteroskedasticity or distributional hetero-

geneity. Assuming only that the serial dependence in the errors declines sufficiently quickly as the time gap

between the errors declines, it can be shown under suitable conditions that the asymptotic distribution of
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the least squares estimator has the form

√
T (β̂LS−β)→d N (0,D−1VD−1),

where

D = plim
1

T
X0X,

V = plim
1

T
X0ΣX,

and Σ ≡ E[εε0|X] (as noted above). Obviously a consistent estimator D̂ = 1
TX

0X of D is available; what

is needed is a consistent estimator for V, which can be written in the general form

V ≡ Γ0 +
∞X
j=1

(Γj+Γ
0
j),

where

Γj ≡ plim
1

T

TX
t=j+1

εtεt−jxtxt−j .

Note that Γj = E[(εtxt)(εt−jxt−j)0] if yt,xt are jointly stationary; the leading term, Γ0, is the “middle

matrix” for the asymptotic covariance of least squares under heteroskedasticity (but no serial correlation).

For each j, a consistent estimator of Γj is

Cj =
1

T

TX
t=j+1

etet−jxtxt−j ,

where et = yt − x0tβ̂LS is the least squares residual. However, for a fixed sample size T only T − 1 of these

estimators can be calculated, so an estimator of V must necessarily truncate the infinite sum, defining V̂

to be a finite sum of the Cj terms. Using the fact that Γj tends to zero as j increases, we can obtain

a consistent estimator by using only a relatively small number of Cj estimates in the estimator V̂. An

estimator of V proposed by Newey and West uses a weighted sum of the Cj matrices,

V̂ = C0 +
MX
j=1

∙
1− j

M

¸
· (Cj+C

0
j)

which they show will be consistent for V if M , the number of terms in the sum, increases slowly with the

sample size, say

M =M(T )→∞,
M
3
√
T
→ 0 as T →∞
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under some regularity conditions. Many other variations on this approach, which involve consistent esti-

mation of the “spectral density matrix at frequency zero” of the variables et · xt (which is proportional to

the matrix V), have also been proposed.
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