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Overview

The seemingly unrelated regressions (SUR) model, proposed by Zellner, can be viewed as a special

case of the generalized regression model E(y) = Xβ, V(y) =σ2Ω; however, it does not share all of the

features or problems of other leading special cases (e.g., models of heteroskedasticity or serial correlation).

While, like those models, the matrix Ω generally involves unknown parameters which must be estimated,

the usual estimators for the covariance matrix of the least squares estimator β̂LS are valid, so that the usual

inference procedures based on normal theory are valid if the dependent variable y is multinormal or if the

sample size N is large and suitable limit theorems are applicable. Also, unlike those other models, there is

little reason to test the null hypothesis H0 : Ω = I; the form of Ω is straightforward and its parameters are

easy to estimate consistently, so a feasible version of Aitken’s GLS estimator is an attractive alternative

to the asymptotically-inefficient LS estimator.

The basic SUR model assumes that, for each individual observation i, there are M dependent variables

yi1, ..., yij , ..., yiM available, each with its own linear regression model:

yij = x
0
ijβj + εij , i = 1, ..., N,

or, with the usual stacking of observations over i,

yj = Xjβj + εj

for j = 1, ...,M, where yj and εj are N -vectors and Xj is an N ×Kj matrix, where

Kj = dim(βj)

is the number of regressors for the jth regression.

The standard conditions for the classical regression model are assumed to hold for each j : namely,

E(yj) = Xjβj ,

V(yj) = σjjIN ,
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with Xj nonstochastic and rank(Xj) = Kj . Under these conditions, and the additional condition of

multinormality of yj , the usual inference theory is valid for the classical LS estimator of βj , applied

separately to each equation.

However, the SUR model permits nonzero covariance between the error terms εij and εij for a given

individual i across equations j and k, i.e.,

Cov(εij , εik) = σij

while assuming

Cov(εij , εi0k) = 0

if i 6= i0. This can be expressed more compactly in matrix form:

C(εj , εk) = σjkIN.

It is the potential nonzero covariance across equations j and k that allows for an improvement in efficiency

of GLS relative to the classical LS estimator of each βj .

Kronecker Product Notation

Zellner’s insight was that, like the usual stacking of the individual dependent variables yij into

an N -vector yj , those latter vectors can themselves be stacked into an MN -dimensional vector y, with a

corresponding arrangement for the error terms, coefficient vectors, and regressors:

y
(MN×1)

=

⎛⎜⎜⎝
y1
y2
...
yM

⎞⎟⎟⎠ , ε
(MN×1)

=

⎛⎜⎜⎝
ε1
ε2
...
εM

⎞⎟⎟⎠ , β
(K×1)

=

⎛⎜⎜⎝
β1
β2
...
βM

⎞⎟⎟⎠ ,

and

X
(MN×K)

=

⎛⎜⎜⎝
X1 0 ... 0
0 X2 ... ...
... ... ... 0
0 ... 0 XM

⎞⎟⎟⎠ ,

with

K ≡
MX
j=1

Kj .

With this notation, and the individual assumptions for each equation j, it follows that

E(y) = Xβ
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and

V(y)
(MN×MN)

=

⎛⎜⎜⎝
σ11IN σ12IN ... σ1MIN
σ21IN σ22IN ... ...
... ... ... ...

σM1IN ... ... σMMIN

⎞⎟⎟⎠ .

This nonscalar covariance matrix is a particular mixture of the matrix

Σ
(M×M)

≡

⎛⎜⎜⎝
σ11 σ12 ... σ1M
σ21 σ22 ... ...
... ... ... ...
σM1 ... ... σMM

⎞⎟⎟⎠
and the (N × N) identity matrix IN . A notation system for such combinations was proposed by the

otherwise-despicable mathematician Kronecker, the so-called Kronecker product notation; for two matrices

A ≡ [aij ] (i = 1, ..., L, j = 1, ...M) and B, the Kronecker product of A and B is defined as

A⊗B ≡

⎛⎜⎜⎝
a11B a12B ... a1MB
a21B a22B ... ...
... ... ... ...

aL1B ... ... aLMB

⎞⎟⎟⎠ .

With this notation, clearly

V(y) = Σ⊗ IN

for the stacked SUR model.

Kronecker products satisfy a distributive rule, which will come in handy later:

(A⊗B) (C⊗D) = AC⊗BD,

assuming all matrix products are well defined. From this rule follows another for inverses of Kronecker

products:

(A⊗B)−1 = A−1⊗B−1,

assuming both A and B are invertible.
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Least Squares and Generalized Least Squares

With the foregoing notation, the classical least squares estimator for the vector β can be expressed

as

β̂LS =
¡
X0X

¢−1
X0y

=

⎛⎜⎜⎝
(X01X1)

−1X01y1
(X02X2)

−1X02y2
...

(X0MXM)
−1X0MyM

⎞⎟⎟⎠ .

In contrast, the GLS estimator of β (assuming Σ is known) is

β̂GLS =
³
X0 (Σ⊗ IN )−1X

´−1
X0 (Σ⊗ IN )−1 y

=
¡
X0
¡
Σ−1⊗IN

¢
X
¢−1

X0
¡
Σ−1⊗IN

¢
y

=

⎛⎜⎜⎝
σ11 (X01X1) σ12 (X01X2) ... σ1M (X01XM)
σ21 (X02X1) σ22 (X02X2) ... ...

... ... ... ...
σM1 (X0MX1) ... ... σMM (X0MXM)

⎞⎟⎟⎠
−1
⎛⎜⎜⎜⎜⎜⎝

X01

³P
j σ

1jyj

´
X02

³P
j σ

2jyj

´
...

X0M

³P
j σ

Mjyj

´

⎞⎟⎟⎟⎟⎟⎠ ,

where σij is defined to be the element in the ith row and jth column of Σ−1, i.e., Σ−1 ≡
£
σij
¤
.

To get a better idea of what is going on with the GLS estimator, consider the special case M = 2, with

β̂LS ≡
µ
b1
b2

¶
and β̂GLS ≡

µ
β̂1
β̂2

¶
;

then it can be shown that the GLS estimators β̂1 and β̂2 satisfy the two equations

β̂1 = b1 −
µ
σ21
σ22

¶¡
X01X1

¢
X01

³
y2 −X02β̂2

´
,

β̂2 = b2 −
µ
σ12
σ11

¶¡
X02X2

¢
X02

³
y1 −X01β̂1

´
.

Thus the GLS estimators can be viewed as “adjusted” versions of classical LS, where the adjustment involves

the regression of the GLS residuals from the other equation on the regressors from each equation. As noted

by Luce in JASA, 1964, the GLS estimator for this model can be calculated sequentially by including

appropriately-reweighted residuals from all other equations as additional regressors for each equation.

Another important special case is when the matrix Σ is diagonal, i.e., σij = 0 if i 6= j. In this case,
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since Σ−1 = diag[1/σii], it follows that

β̂GLS =

⎛⎜⎜⎝
1
σ11
(X01X1) 0 ... 0

0 1
σ22
(X02X2) ... ...

... ... ... 0
0 ... 0 1

σMM
(X0MXM)

⎞⎟⎟⎠
−1⎛⎜⎜⎝

1
σ11
X01y1

1
σ22
X02y2
...

1
σMM

X0MyM

⎞⎟⎟⎠

=

⎛⎜⎜⎝
(X01X1)

−1X01y1
(X02X2)

−1X02y2
...

(X0MXM)
−1X0MyM

⎞⎟⎟⎠
≡ β̂LS .

Not surprisingly, then, if there is no covariance across equations in the error terms, there is no prospect

for an efficiency improvement in the GLS estimator relative to LS, applied equation by equation.

Still another important special case is when the matrix of regressors is identical for each equation, i.e.,

Xj ≡ X0 for some N ×K∗ matrix X0, with K∗ = K/M. Here the stacked matrix X takes the form

X
(MN×K)

=

⎛⎜⎜⎝
X0 0 ... 0
0 X0 ... ...
... ... ... 0
0 ... 0 X0

⎞⎟⎟⎠
= (IM ⊗X0) ,

and the GLS estimator also reduces to classical LS:

β̂GLS =
³
X0 (Σ⊗ IN)−1X

´−1
X0 (Σ⊗ IN)−1 y

=
¡
(IM⊗X)0

¡
Σ−1⊗IN

¢
(IM⊗X)

¢−1
(IM⊗X)0

¡
Σ−1⊗IN

¢
y

=
¡
Σ−1⊗X0X

¢−1 ¡
Σ−1⊗X0

¢
y

=
³
IM⊗

¡
X0X

¢−1
X0
´⎛⎜⎜⎝

y1
y2
...
yM

⎞⎟⎟⎠

=

⎛⎜⎜⎝
(X00X0)

−1X00y1
(X00X0)

−1X00y2
...

(X00X0)
−1X00yM

⎞⎟⎟⎠
= β̂LS .

Some intuition for this reduction can be obtained by considering Luce’s result that GLS can be obtained

iteratively, by starting from classical LS estimators and including the residuals from other equations as
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regressors for each equation. Since the LS residuals are, by construction, orthogonal to the common matrix

of regressors X0, their inclusion in each equation will not affect the LS estimates of the βj coefficients. An

extension of this argument implies that, if each matrix of regressors Xj has a submatrix X0 in common

— for example, if all equations have an intercept term — then the GLS coefficients corresponding to those

common regressors X0 will be identical to their LS counterparts.

Feasible GLS

An obvious estimator of the unknown covariance matrix Σ = V(y) = [σij ] would be Σ̂ ≡ [σ̂ij ],

with

σ̂jk ≡
1

N

³
yj −Xjβ̂j

´0 ³
yk −Xkβ̂k

´
;

while these estimators are not unbiased for σjk, they are consistent under the usual conditions, and obtain-

ing unbiased estimators for σjk when j 6= k involves more than a simple “degrees of freedom” adjustment.

Again imposing reasonable regularity conditions, it can be shown that the feasible GLS estimator

β̂FGLS =
³
X0
³
Σ̂−1⊗IN

´
X
´−1

X0
³
Σ̂−1⊗IN

´
y

is asymptotically equivalent to the infeasible GLS estimator which assumes Σ is known:

√
N
³
β̂FGLS − β̂GLS

´
p→ 0.

Thus
√
N
³
β̂FGLS − β

´
d→ N (0,V) ,

where

V = plim
µ
1

N
X0
¡
Σ−1⊗IN

¢
X

¶−1
= plim

µ
1

N
X0
³
Σ̂−1⊗IN

´
X

¶−1
≡ plim V̂,

so inference on the parameter vector β can be carried out using the approximate normality of β̂FGLS :

β̂FGLS
A∼ N

³
β, V̂

´
.
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