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Least Squares and Linear Predictors

Given the standard assumptions for the classical linear regression model �which include the strong

assumptions of nonrandom regressors X, with dependent variable y having linear expectation (in the

regressors) and scalar covariance matrix �it might seem natural to replace the additional assumption of

multinormality of y with weaker su¢ cient conditions that ensure that the classical least squares estimator
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is approximately (asymptotically) normal. While this is certainly feasible, it is simpler to apply asymptotic

theory under a di¤erent, and in some ways weaker, set of assumptions on the process that generates the

data. Instead of imposing linearity of the mean of y inX; etc., we instead assume just that the observations

fzi � (yi;x0i)0g
N
i=1 are i.i.d with bounded fourth moments, i.e.,

E
�
jjzijj4

�
<1:

In this setting, which treats the regressors xi more symmetrically with the dependent variable yi, the

classical LS estimator �̂ does not estimate the coe¢ cients for the mean of y as a function of X; but rather

the coe¢ cients of the best linear predictor

� � argmin
c
E
h
(yi � x0ic)

2
i
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Assuming, in addition, that the matrix

D �E
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xix

0
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�
is nonsingular �a population version of the usual assumption that X0X is invertible �the parameter vector

� is uniquely de�ned as

� = D�1�;
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where

� �E [xiyi] :

In contrast to the standard assumptions, the usual �nite-sample results for the classical LS estimator �̂

do not apply. For instance, the law of iterated expectations implies that the expectation of �̂; if it exists,

satis�es

E
h
�̂
i
= E

h
(X0X)�1X0E [yjX]

i
;

but without the assumption of linearity of E [yjX] in X; in general

E
h
�̂
i
6= �;

so classical LS is not generally unbiased for the best linear prediction coe¢ cients �: Nevertheless, �̂ is

clearly a smooth function of sample averages,

�̂ = D̂
�1
�̂;

where
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Thus demonstration of the consistency of �̂ �i.e.,

�̂
p! �

�and its asymptotic normality are straightforward applications of the asymptotic theory discussed previ-

ously.

Consistency of Least Squares

Consistency of �̂ follows from a straightforward application of the Weak Law of Large Numbers

and the continuity theorem. Each component of �̂ and D̂ is a sample average of products of elements of

the vector of regressors xi with another component of xi or with the dependent variable yi; since fourth

moments are assumed to exist for yi and xi; the variances of these products are �nite, and their means

and variances are identical and covariances are zero because the data are assumed i.i.d. Thus

�̂
p! �
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and

D̂
p! D

by the WLLN. Furthermore,

� = D�1�

� g(D; �)

is a continuous function of D and � at all arguments with jDj 6= 0: Thus, the continuity theorem implies

that

�̂ = D̂
�1
�̂

p! D�1� = �:

Note that, if the stronger conditions E(yjX) = X� and E(jj�̂jj2) < 1; were imposed, it could be

possible to alternatively demonstrate consistency of �̂ by showing V(�̂jX)! 0 as N ! 1; which would

imply quadratic mean convergence of any linear combination �0�̂ of �̂.

Asymptotic Normality of LS

Now we can write the normalized di¤erence
p
N
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�
between the LS estimator and its prob-

ability limit as
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where "i � yi � x0i� has

E (xi"i) = E
�
xi
�
yi � x0i�
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= � �D�

= 0
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by the de�nition of �: Thus, application of the multivariate version of the Lindeberg-Levy CLT implies

that
1p
N

NX
i=1

xi"i
d! N(0;C);

where

C � V(xi"i)

= E
�
"2ixix

0
i

�
;

which exists because of the assumed �nite fourth moments of the observations.

Since

D̂�1 p! D�1

by consistency of D̂ and the continuity theorem, the Slutsky theorem implies that

p
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d! D�1 �N (0;C) = N

�
0;D�1CD�1� :

Consistent Estimation of the Asymptotic Covariance Matrix

In order to conduct large-sample inference on �; a consistent estimator of the asymptotic covariance

matrix D�1CD�1 needs to be constructed. (This matrix is sometimes called a �sandwich form,�with C

analogous the �lling and D�1 to the bread.) Since D̂ has already been shown to be consistent for D; only

a consistent estimator of the middle matrix C is needed; such an estimator is
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The �rst of these last three terms can be shown to converge in probability to C by application of another

law of large numbers (which assumes only i.i.d. data and existence of �rst moments), and the last two

terms can be shown to converge to zero using that LLN and consistency of �̂ for �:

The covariance estimator D̂�1ĈD̂
�1
was proposed or implied independently by a number of authors,

and can be called the Huber-Eicker-White heteroskedasticity-robust asymptotic covariance matrix estimator,

a daunting title often replaced by the simpler robust covariance matrix estimator.
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Given this estimator and the results above, a large-sample test for a nonlinear hypothesis

H0 : g(�) = 0;

where g(�) is a di¤erentiable function with

G � @g(�)

@�0

assumed to be continuous and have full row rank. (An example would be g(�) = G� � 
0; with G �xed

and of full row rank, which is typically called the �general linear hypothesis.�)

Application of the so-called �delta method�implies that, under the null hypothesis,

p
Ng(�̂)

d! N
�
0;GD�1CD�1G0� :

Since

Ĝ � @g(�̂)

@�0
p! G

by the continuity theorem, it follows from Slutsky�s theorem and the continuous mapping theorem that

the "Generalized Wald statistic"

GWN � N
�
g(�̂)

�0 h
ĜD̂
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Ĝ0
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g(�̂)

d! �2r

under the null hypothesis, where r = dimfg(�̂)g: (Wald proposed this statistic in the context of maximum

likelihood (ML) estimation, but the approach applies to any asymptotically normal estimator for which a

consistent estimator of its asymptotic covariance matrix is available.) The Generalized Wald test of the

null hypothesis would reject when WN exceeds the upper � critical value for a chi-squared random variable

with r degrees of freedom.

A Special Case - I.I.D. Linear Regression Model

We can specialize the results above to the case where each dependent variable yi is the sum of a

linear function of xi and an independent error term "i :

yi = x
0
i�+"i;

with "i assumed to be independent of xi with

E("i) = 0;

V ar("i) = �2:
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For this special case, it follows that
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by the assumed independence of "i and D: Then D�1CD�1 = �2D�1 and

p
N
�
�̂ � �

�
d! N

�
0;�2D�1� = N 0;�2 �p lim 1

N
X0X

��1!
:

Similarly to the demonstration of consistency of Ĉ; it is possible to show the consistency of the usual

estimator s2 of �2 under these conditions, so in this case we would approximate the distribution of the LS

estimator �̂ as

�̂
A� N(�;s2(X0X)�1);

which is the large-sample version of the �nite-sample results for the LS estimator when the dependent

variables are multinormal.
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