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Least Squares and Linear Predictors
Given the standard assumptions for the classical linear regression model — which include the strong
assumptions of nonrandom regressors X, with dependent variable y having linear expectation (in the
regressors) and scalar covariance matrix — it might seem natural to replace the additional assumption of

multinormality of y with weaker sufficient conditions that ensure that the classical least squares estimator

-

B = (X'X) X'y
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is approximately (asymptotically) normal. While this is certainly feasible, it is simpler to apply asymptotic
theory under a different, and in some ways weaker, set of assumptions on the process that generates the

data. Instead of imposing linearity of the mean of y in X, etc., we instead assume just that the observations

{z; = (v, x;)’}f\il are 1.i.d with bounded fourth moments, i.e.,
E [||zl||4] < 00.

In this setting, which treats the regressors x; more symmetrically with the dependent variable y;, the
classical LS estimator 3 does not estimate the coefficients for the mean of y as a function of X, but rather

the coefficients of the best linear predictor
B =arg mcinE [(yz — X;c)ﬂ :

Assuming, in addition, that the matrix
D=F [Xixg]
is nonsingular — a population version of the usual assumption that X’X is invertible — the parameter vector

3 is uniquely defined as
B=D"'4,



where

0 =F [x;y;] -
In contrast to the standard assumptions, the usual finite-sample results for the classical LS estimator ,@
do not apply. For instance, the law of iterated expectations implies that the expectation of B, if it exists,
satisfies

B8] = E|xx)'XEyX]|,

but without the assumption of linearity of F [y|X] in X, in general

BBl +8.
so classical LS is not generally unbiased for the best linear prediction coefficients 3. Nevertheless, B is

clearly a smooth function of sample averages,
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Thus demonstration of the consistency of B - ie.,
B=B
— and its asymptotic normality are straightforward applications of the asymptotic theory discussed previ-

ously.

Consistency of Least Squares
Consistency of B follows from a straightforward application of the Weak Law of Large Numbers
and the continuity theorem. Each component of dand Disa sample average of products of elements of
the vector of regressors x; with another component of x; or with the dependent variable y;; since fourth
moments are assumed to exist for y; and x;, the variances of these products are finite, and their means

and variances are identical and covariances are zero because the data are assumed i.i.d. Thus
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and

by the WLLN. Furthermore,

9(D, )

is a continuous function of D and § at all arguments with |D| # 0. Thus, the continuity theorem implies
that

B-D 5D 6B

Note that, if the stronger conditions E(y|X) = X3 and E(||B||?) < oo, were imposed, it could be
possible to alternatively demonstrate consistency of 3 by showing V(B |X) — 0 as N — oo, which would

imply quadratic mean convergence of any linear combination )\'B of ﬁ

Asymptotic Normality of LS
Now we can write the normalized difference v N (B — [3) between the LS estimator and its prob-

ability limit as
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where ¢; = y; — x;3 has

E(xie)) = E(xi (v —x8))



by the definition of 8. Thus, application of the multivariate version of the Lindeberg-Levy CLT implies
that

N
1 d
— E x;e; — N(0,C),
VN i

where

Q
I

V(Xi&‘)

E [agxixg] ,

which exists because of the assumed finite fourth moments of the observations.

Since

by consistency of D and the continuity theorem, the Slutsky theorem implies that

VN (B _ 5) 4 D! N(0,C)= N(0,D'CD!).

Consistent Estimation of the Asymptotic Covariance Matrix
In order to conduct large-sample inference on 3, a consistent estimator of the asymptotic covariance
matrix D™'CD ™! needs to be constructed. (This matrix is sometimes called a “sandwich form,” with C
analogous the filling and D! to the bread.) Since D has already been shown to be consistent for D, only

a consistent estimator of the middle matrix C is needed; such an estimator is
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The first of these last three terms can be shown to converge in probability to C by application of another
law of large numbers (which assumes only i.i.d. data and existence of first moments), and the last two
terms can be shown to converge to zero using that LLN and consistency of B for 3.

The covariance estimator ]3_1@]5_1 was proposed or implied independently by a number of authors,
and can be called the Huber-Eicker- White heteroskedasticity-robust asymptotic covariance matriz estimator,

a daunting title often replaced by the simpler robust covariance matrixz estimator.



Given this estimator and the results above, a large-sample test for a nonlinear hypothesis

Hy :g(B) =0,
where ¢(3) is a differentiable function with
G = %80)
B

assumed to be continuous and have full row rank. (An example would be g(8) = GB — v, with G fixed
and of full row rank, which is typically called the “general linear hypothesis.”)

Application of the so-called “delta method” implies that, under the null hypothesis,
VNg(B) % N(0,GD"'CD'G') .

Since

. _ 0g(B)

by the continuity theorem, it follows from Slutsky’s theorem and the continuous mapping theorem that

LG

the "Generalized Wald statistic"

GWy = N (g@)’ [l

under the null hypothesis, where r = dim{g(B)}. (Wald proposed this statistic in the context of maximum
likelihood (ML) estimation, but the approach applies to any asymptotically normal estimator for which a
consistent estimator of its asymptotic covariance matrix is available.) The Generalized Wald test of the
null hypothesis would reject when Wi exceeds the upper « critical value for a chi-squared random variable

with r degrees of freedom.

A Special Case - I.I.D. Linear Regression Model
We can specialize the results above to the case where each dependent variable y; is the sum of a

linear function of x; and an independent error term ¢; :

yi = x;B+ei,
with &; assumed to be independent of x; with
E(g;)) = 0,
Var(e;)) = o2



For this special case, it follows that

by the assumed independence of ¢; and D. Then D~'CD ! = ¢?D~! and
- d 1 -1
VN (ﬂ - ﬁ) S N(0,0°DY) =N (0,02 [p lim NX’X] ) :

Similarly to the demonstration of consistency of C, it is possible to show the consistency of the usual
estimator s? of o2 under these conditions, so in this case we would approximate the distribution of the LS
estimator LA"I as

B A NB,2(X'X)Y,

which is the large-sample version of the finite-sample results for the LS estimator when the dependent

variables are multinormal.



